My SBC Collection

Like many computer nerds in the last decade, I have accumulated more than a few single-board computers, or “SBCs”, which are small computers based around a system-on-a-chip (SoC) that nearly always features an ARM CPU at its core. Surprisingly few of these units are Raspberry Pi units, though that brand has come to exemplify and dominate the product category.

Also, as is the case for many computer nerds, most of these SBCs lay fallow for years at a time. Equipped with an inexpensive lightbox that I procured in the last year, I decided I could at least create glamour shots of various units and catalog them in a blog post.

While Raspberry Pi still enjoys the most mindshare far and away, and while I do have a few Raspberry Pi units in my inventory, I have always been a bigger fan of the ODROID brand, which works with convenient importers around the world (in the USA, I can vouch for Ameridroid, to whom I’ve forked over a fair amount of cash for these computing toys).

As mentioned, Raspberry Pi undisputedly has the most mindshare of all these SBC brands and I often wonder why… and then I immediately remind myself that it has the biggest ecosystem, and has a variety of turnkey projects and applications (such as Pi-hole and PiVPN) that promise a lower barrier to entry — as well as a slightly lower price point — than some of these other options. ODROID had a decent ecosystem for awhile, especially considering the monthly ODROID Magazine, though that ceased publication in July 2020. The Raspberry Pi and its variants were famously difficult to come by due to the global chip shortage from 2021-2023. Meanwhile, I had no trouble procuring these boards during the same timeframe.

So let’s delve into the collection…
Continue reading

Dreamcast Finds

Pursuant to my recent post about finally understanding how Sega Dreamcast GD-ROM rips are structured, I was able to prepare the contents of various demo discs in a manner that makes exploration easy via the Internet Archive. This is due to the way that IA makes it easy to browse archives such as ZIP or ISO files (anything that 7zip knows how to unpack), and also presents the audio tracks for native playback directly through the web browser.

These are some of the interesting things I have found while perusing the various Dreamcast sampler discs.

Multimedia Formats
First and foremost: Multimedia-wise, SFD and ADX files abound on all the discs. SFD files are Sofdec, a middleware format used for a lot of FMV on Dreamcast games. These were little more than MPEG video files with a non-MPEG (ADPCM instead) audio codec. VLC will usually play the video portions of these files but has trouble detecting the audio. It’s not for lack of audio codec support because it can play the ADX files just fine.
Continue reading

Understanding The Dreamcast GD-ROM Layout

I’m finally completing something I set out to comprehend over a decade ago. I wanted to understand how data is actually laid out on a Sega Dreamcast GD-ROM drive. I’m trying to remember why I even still care. There was something about how I wanted to make sure the contents of a set of Dreamcast demo discs was archived for study.


Lot of 9 volumes of the Official Sega Dreamcast Magazine

I eventually figured it out. Read on, if you are interested in the technical details. Or, if you would like to examine the fruits of this effort, check out the Dreamcast demo discs that I took apart and uploaded to the Internet Archive.

If you care to read some geeky technical details of some of the artifacts on these sampler discs, check out this followup post on Dreamcast Finds.

Motivation
Why do I still care about this? Well, see the original charter of this blog above. It’s mostly about studying multimedia formats, as well as the general operation of games and their non-multimedia data formats. It’s also something that has nagged at me ever since I extracted a bunch of Dreamcast discs years ago and tried to understand why the tracks were arranged the way they were, and how I could systematically split the files out of the filesystem. This turns out not to be as easy as it might sound, even if you can get past the obstacle of getting at the raw data.
Continue reading

ISO-9660 Compromise, Part 2: Finding Root

A long time ago, I dashed off a quick blog post with a curious finding after studying the ISO-9660 spec: The format stores multi-byte numbers in a format I termed “omni-endian”– the committee developing the format apparently couldn’t come to an agreement on this basic point regarding big- vs. little-endian encoding (I’m envisioning something along the lines of “tastes great! … less filling!” in the committee meetings).

I recently discovered another bit of compromise in the ISO-9660 spec: It seems that there are 2 different methods for processing the directory structure. That means it’s incumbent upon ISO-9660 creation software to fill in the data structures to support both methods, because some ISO-reading programs out there rely on one set of data structures while the rest prefer to read the other set.

Background

As a refresher, the “ISO” extension of an ISO file refers to the ISO-9660 specification. This is a type of read-only filesystem (i.e, the filesystem is created once and never updated after initial creation) for the purpose of storing on a read-only medium, often an optical disc (CD-ROM, DVD-ROM). The level of nostalgic interest I display for the ISO-9660 filesystem reminds me of my computer science curriculum professors from the mid-90s reminiscing about ye olden days of punchcard programming, but such is my lot. I’m probably also alone in my frustration of seeing rips of, e.g., GameCube or Xbox or 3DO games being tagged with the extension .ISO since those systems use different read-only filesystems.

I recently fell in with an odd bunch called the eXoDOS project and was trying to help fill in a few gaps. One request was a 1994 game called Power Drive for DOS.


Power Drive CD-ROM

Continue reading