Game Music Appreciation

A little over a year ago, I was prototyping a method to leverage Google Chrome’s Native Client technology in order to play old chiptunes (video game music) directly in a web browser. The last time I posted on the matter, I said that I might have something ready for public consumption by the time Google Chrome 21 rolled around. I thought I was being facetious but I wasn’t too far off. Chrome 20 is the current release version as I write this.

Anyway, I did it: I created a chiptune music player in Native Client by leveraging existing C/C++ libraries such as Game Music Emu, Audio Overload SDK, and Vio2sf. Then I packaged up the player into into a Google Chrome extension and published it on the Chrome Web Store. Then I made a website cataloging as many chiptunes as I could find for 7 different systems:

http://gamemusic.multimedia.cx/

Check it out if you have any affinity for old game music or you want to hear how music was made using a limited range of bleeps and bloops. Thus far, the site catalogs NES, SNES, Game Boy, Nintendo DS, Genesis, Saturn, and Dreamcast songs. I’m hoping to add support and catalogs for many more systems, though, eventually bringing support in line with the Chipamp plugin for Winamp.

Winamp and the March of GUI

Ars Technica recently published a 15-year retrospective on the venerable Winamp multimedia player, prompting bouts of nostalgia and revelations of “Huh? That program is still around?” from many readers. I was among them.



I remember first using Winamp in 1997. I remember finding a few of these new files called MP3s online and being able to play the first 20 seconds using the official Fraunhofer Windows player– full playback required the fully licensed version. Then I searched for another player and came up with Winamp. The first version I ever used was v1.05 in the summer of 1997. I remember checking the website often for updates and trying out every single one. I can’t imagine doing that nowadays– programs need to auto-update themselves (which Winamp probably does now; I can’t recall the last time I used the program).

Video Underdog
The last time Winamp came up on my radar was early in 2003 when a new version came with support for a custom, proprietary multimedia audio/video format called Nullsoft Video (NSV). I remember the timeframe because the date is indicated in the earliest revision of my NSV spec document (back when I was maintaining such docs in a series of plaintext files). This was cobbled together from details I and others in the open source multimedia community sorted out from sample files. It was missing quite a few details, though.

Then, Winamp founder Justin Frankel — introduced through a colleague on the xine team — emailed me his official NSV format and told me I was free to incorporate details into my document just as long as it wasn’t obvious that I had the official spec. This put me in an obnoxious position of trying to incorporate details which would have been very difficult to reverse engineer without the official doc. I think I coped with the situation by never really getting around to updating my doc in any meaningful way. Then, one day, the official spec was released to the world anyway, and it is now mirrored here at multimedia.cx.

I don’t think the format ever really caught on in any meaningful way, so not a big deal. (Anytime I say that about a format, I always learn it saw huge adoption is some small but vocal community.)

What’s Wrong With This Picture?
What I really wanted to discuss in this post was the matter of graphical user interfaces and how they have changed in the last 15 years.
Continue reading

Size Discrepany in the ‘du’ Command

I had a problem today while using the common Unix command ‘du’. As a refresher, ‘du’ stands for disk usage and is a handy tool for understanding how much disk space is being occupied.

I think ‘du’ is probably doing the right thing. The problem might be that I’m getting strange (read: 1/2 the expected number) when running the tool against directories on vmhgfs, the VMware filesystem.

Science Project
On an Ubuntu Linux VMware session, my home directory is on the main file system, which is ext4. The directory /mnt/hgfs is reported by ‘mount’ to be of type vmhgfs and is shared with the host machine.

Create a directory in the home directory and generate a 10 MiB file:

mkdir /home/melanson/dir
dd if=/dev/urandom of=/home/melanson/dir/random-file bs=1048576 count=10

Create a directory on the shared drive and copy the same file:

mkdir /mnt/hgfs/vmshare/dir
cp /home/melanson/dir/random-file /mnt/hgfs/vmshare/dir

Run ‘du’ on each directory using the -k and -h options:

du -k /home/melanson/dir /mnt/hgfs/vmshare/dir
10244   /home/melanson/dir
5120    /mnt/hgfs/vmshare/dir

du -h /home/melanson/dir /mnt/hgfs/vmshare/dir
11M    /home/melanson/directory
5.0M   /mnt/hgfs/vmshare/directory

I noticed this discrepancy when I was trying to pack a set of files (akin to ‘tar’-ing) living in a directory in the shared location. I was going mad trying to understand why the original directory was only 2 MB as reported by ‘du’ but the final packed file was 4 MB.

To be fair, the man page for ‘du’ succinctly states that the tool’s purpose is merely to estimate file space usage”.

RAR Is Still A Contender

RAR (Roshal ARchive) is still a popular format in some corners of the internet. In fact, I procured a set of nearly 1500 RAR files that I want to use in a little project. But I didn’t want my program to have to operate directly on the RAR files which meant that I would need to recompress them to another format. Surely, one of the usual lossless compressors commonplace with Linux these days would perform better. Probably not gzip. Maybe not bzip2 either. Perhaps xz, though?

Conclusion
At first, I concluded that xz beat RAR on every single file in the corpus. But then I studied the comparison again and realized it wasn’t quite apples to apples. So I designed a new experiment.

New conclusion: RAR still beats xz on every sample in this corpus (for the record, the data could be described as executable program data mixed with reduced quality PCM audio samples).

Methodology
My experiment involved first reprocessing the archive files into a new resource archive file format and only compressing that file (rather than a set of files) using gzip, bzip2, xz, and rar at the maximum compression settings.

echo filesize,gzip,bzip2,xz,rar,filename > compressed-sizes.csv
for f in `ls /path/to/files/*`
do
  gzip -9 --stdout $f > out.gz
  bzip2 -9 --stdout $f > out.bz2
  xz -9 --stdout --check=crc32 $f > out.xz
  rar a -m5 out.rar $f
  stat --printf "%s," $f out.gz out.bz2 out.rar out.xz >> compressed-sizes.csv
  echo $f >> compressed-sizes.csv
  rm -f out.gz out.bz2 out.xz out.rar
done

Note that xz gets the option '--check=crc32' since I’m using the XZ Embedded library which requires it. It really doesn’t make a huge different in filesize.

Experimental Results
The preceding command line generates compressed-sizes.csv which goes into a Google Spreadsheet (export as CSV).

Here are the full results of the bake-off, graphed:



That’s not especially useful. Here are the top 2 contenders compared directly:



Action
Obviously, I’m unmoved by the data. There is no way I’m leaving these files in their RAR form for this project, marginal space and bandwidth savings be darned. There are other trade-offs in play here. I know there is free source code available for decompressing RAR files but the license wouldn’t mesh well with GPL source code libraries that form the core of the same project. Plus, the XZ Embedded code is already integrated and painstakingly debugged.

During this little exercise, I learned of a little site called Maximum Compression which takes experiments like the foregoing to their logical conclusion by comparing over 200 compression programs on a standard data corpus. According to the site’s summary page, there’s a library called PAQ8PX which posts the best overall scores.