Category Archives: General

Chrome’s New Audio Notifier

Version 32 of Google’s Chrome web browser introduced this nifty feature:


Chrome audio notifier icon

When a browser tab has an element that is producing audio, the browser’s tab shows the above audio notification icon to inform the user. I have seen that people have a few questions about this, specifically:

  1. How does this feature work?
  2. Why wasn’t this done sooner?
  3. Are other browsers going to follow suit?

Short answers: 1) Chrome offers a new plugin API that the Flash Player is now using, as are Chrome’s internal media playing facilities; 2) this feature was contingent on the new plugin infrastructure mentioned in the previous answer; 3) other browsers would require the same infrastructure support.

Longer answers follow…

Plugin History
Plugins were originally based on the Netscape Plugin API. This was developed in the early 1990s in order to support embedding PDFs into the Netscape web browser. The NPAPI does things like providing graphics contexts for drawing and input processing, and mediate network requests through the browser’s network facilities.

What NPAPI doesn’t do is handle audio. In the early-mid 1990s, audio support was not a widespread consideration in the consumer PC arena. Due to the lack of audio API support, if a plugin wanted to play audio, it had to go outside of the plugin framework.


NPAPI plugin model

There are a few downsides to this approach:

So that last item hopefully answers the question of why it has been so difficult for NPAPI-supporting browsers to implement what seems like it would be simple functionality, like implementing a per-tab audio notifier.

Plugin Future
Since Google released Chrome in an effort to facilitate advancements on the client side of the internet, they have made numerous efforts to modernize various legacy aspects of web technology. These efforts include the SPDY protocol, Native Client, WebM/WebP, and something call the Pepper Plugin API (PPAPI). This is a more modern take on the classic plugin architecture to supplant the aging NPAPI:


PPAPI plugin model

Right away, we see that the job of the plugin writer is greatly simplified. Where was this API years ago when I was writing my API jungle piece?

The Linux version of Chrome was apparently the first version that packaged the Pepper version of the Flash Player (doing so fixed an obnoxious bug in the Linux Flash Player interaction with GTK). Now, it looks like Windows and Mac have followed suit. Digging into the Chrome directory on a Windows 7 installation:

AppData\Local\Google\Chrome\Application\[version]\PepperFlash\pepflashplayer.dll

This directory exists for version 31 as well, which is still hanging around my system.

So, to re-iterate: Chrome has a new plugin API that plugins use to access the audio API. Chrome knows when the API is accessed and that allows the browser to display the audio notifier on a tab.

Other Browsers
What about other browsers? “Mozilla is not interested in or working on Pepper at this time. See the Chrome Pepper pages.”

Overthinking My Search Engine Problem

I wrote a search engine for my Game Music Appreciation website, because the site would have been significantly less valuable without it (and I would eventually realize that the search feature is probably the most valuable part of this endeavor). I came up with a search solution that was a bit sketchy, but worked… until it didn’t. I thought of a fix but still searched for more robust and modern solutions (where ‘modern’ is defined as something that doesn’t require compiling a C program into a static CGI script and hoping that it works on a server I can’t debug on).

Finally, I realized that I was overthinking the problem– did you know that a bunch of relational database management systems (RDBMSs) support full text search (FTS)? Okay, maybe you did, but I didn’t know this.

Problem Statement
My goal is to enable users to search the metadata (title, composer, copyright, other tags) attached to various games. To do this, I want to index a series of contrived documents that describe the metadata. 2 examples of these contrived documents, interesting because both of these games have very different titles depending on region, something the search engine needs to account for:

system: Nintendo NES
game: Snoopy's Silly Sports Spectacular
author: None; copyright: 1988 Kemco; dumped by: None
additional tags: Donald Duck.nsf Donald Duck

system: Super Nintendo
game: Arcana
author: Jun Ishikawa, Hirokazu Ando; copyright: 1992 HAL Laboratory; dumped by: Datschge
additional tags: card.rsn.gamemusic Card Master Cardmaster

The index needs to map these documents to various pieces of game music and the search solution needs to efficiently search these documents and find the various game music entries that match a user’s request.

Now that I’ve been looking at it for long enough, I’m able to express the problem surprisingly succinctly. If I had understood that much originally, this probably would have been simpler.

First Solution & Breakage
My original solution was based on SWISH-E. The CGI script was a C program that statically linked the SWISH-E library into a binary that miraculously ran on my web provider. At least, it ran until it decided to stop working a month ago when I added a new feature unrelated to search. It was a very bizarre problem, the details of which would probably bore you to tears. But if you care, the details are all there in the Stack Overflow question I asked on the matter.

While no one could think of a direct answer to the problem, I eventually thought of a roundabout fix. The problem seemed to pertain to the static linking. Since I couldn’t count on the relevant SWISH-E library to be on my host’s system, I uploaded the shared library to the same directory as the CGI script and used dlopen()/dlsym() to fetch the functions I needed. It worked again, but I didn’t know for how long.

Searching For A Hosted Solution
I know that anything is possible in this day and age; while my web host is fairly limited, there are lots of solutions for things like this and you can deploy any technology you want, and for reasonable prices. I figured that there must be a hosted solution out there.

I have long wanted a compelling reason to really dive into Amazon Web Services (AWS) and this sounded like a good opportunity. After all, my script works well enough; if I could just find a simple Linux box out there where I could install the SWISH-E library and compile the CGI script, I should be good to go. AWS has a free tier and I started investigating this approach. But it seems like a rabbit hole with a lot of moving pieces necessary for such a simple task.

I had heard that AWS had something in this area. Sure enough, it’s called CloudSearch. However, I’m somewhat discouraged by the fact that it would cost me around $75 per month to run the smallest type of search instance which is at the core of the service.

Finally, I came to another platform called Heroku. It’s supposed to be super-scalable while having a free tier for hobbyists. I started investigating FTS on Heroku and found this article which recommends using the FTS capabilities of their standard hosted PostgreSQL solution. However, the free tier of Postgres hosting only allows for 10,000 rows of data. Right now, my database has about 5400 rows. I expect it to easily overflow the 10,000 limit as soon as I incorporate the C64 SID music corpus.

However, this Postgres approach planted a seed.

RDBMS Revelation
I have 2 RDBMSs available on my hosting plan– MySQL and SQLite (the former is a separate service while SQLite is built into PHP). I quickly learned that both have FTS capabilities. Since I like using SQLite so much, I elected to leverage its FTS functionality. And it’s just this simple:

CREATE VIRTUAL TABLE gamemusic_metadata_fts USING fts3
( content TEXT, game_id INT, title TEXT );

SELECT id, title FROM gamemusic_metadata_fts WHERE content MATCH "arcana";
479|Arcana

The ‘content’ column gets the metadata pseudo-documents. The SQL gets wrapped up in a little PHP so that it queries this small database and turns the result into JSON. The script is then ready as a drop-in replacement for the previous script.

Adding AY Files To The Game Music Website

For the first time since I launched the site in the summer of last year, I finally added support for new systems for my Game Music Appreciation site: A set of chiptune music files which bear the file extension AY. These files come from games that were on the ZX Spectrum and Amstrad CPC computer systems.


ZX Spectrum   Amstrad CPC

Right now, there are over 650 ZX Spectrum games in the site while there are all of 20 Amstrad CPC games. The latter system seems a bit short-changed, but I read that a lot of Amstrad games were straight ports from the Spectrum anyway since the systems possessed assorted similarities. This might help explain the discrepancy.

Technically
The AY corpus has always been low hanging fruit due to the fact that the site already supports the format courtesy of the game-music-emu backend. The thing that blocked me was that I didn’t know much about these systems. I knew that there were 2 systems (and possibly more) that shared the same chiptune format. Apparently, these machines were big in Europe (I was only vaguely aware of them before I started this project).

Both the Spectrum and the Amstrad used Zilog Z-80 CPUs for computing and created music using a General Instruments synthesizer chip designated AY-3-8912, hence the chiptune file extension AY. This has 3 channels similar to the C64 SID chip. Additionally, there’s a fourth channel that game music emu calls “beeper” (and which Wikipedia describes as “one channel with 10 octaves”). Per my listening, it seems similar to the old PC speaker/honker. The metadata for a lot of the songs will specify either (AY) or (Beeper).

Wrangling Metadata
Large collections of AY files are easy to find; as is typical for pure chiptunes, the files are incredibly small.

As usual, the hardest part of the whole process was munging metadata. There seems to be 2 slightly different conventions for AY metadata, likely from 2 different people doing the bulk of the work and releasing the fruits of their labor into the wild. After I recognized the subtle differences between the 2 formats, it was straightforward to craft a tool to perform most of the work, leaving only a minimum of cleanup effort required afterwards.

(As an aside, I think this process is called extract – transform – load, or ETL. Sounds fancy and complicated, yet it’s technically one of the first computer programming tasks I was ever paid to perform.)

Collateral Damage
While pushing this feature, I managed to break the site’s search engine. The search solution I developed was always sketchy (involving compiling a C program as a static binary CGI script and trusting it to run on the server). I will probably need to find a better approach, preferably sooner than later.

Game Music Appreciation, One Year Later

I released my game music website last year about this time. It was a good start and had potential to grow in a lot of directions. But I’m a bit disappointed that I haven’t evolved it as quickly as I would like to. I have made a few improvements, like adjusting the play lengths of many metadata-less songs and revising the original atrocious design of the website using something called Twitter Bootstrap (and, wow, once you know what Bootstrap is, you start noticing it everywhere on the modern web). However, here are a few of the challenges that have slowed me down over the year:

Problems With Native Client – Build System
The technology which enables this project — Google’s Native Client (NaCl) — can be troublesome. One of my key frustrations with the environment is that every single revision of the NaCl SDK seems to adopt a completely new build system layout. If you want to port your NaCl project forward to newer revisions, you have to spend time wrapping your head around whatever the favored build system is. When I first investigated NaCl, I think it was using vanilla GNU Make. Then it switched to SCons. Then I forgot about NaCl for about a year and when I came back, the SDK had reverted back to GNU Make. While that has been consistent, the layout of the SDK sometimes changes and a different example Makefile shows the way.

The very latest version of the API has required me to really overhaul the Makefile and to truly understand the zen of Makefile programming. I’m even starting to grasp the relationship it has to functional programming.

Problems With Native Client – API Versions and Chrome Bugs
I built the original Salty Game Music Player when NaCl API version 16 was current. By the time I published the v16 version, v19 was available. I made the effort to port forward (a few APIs had superfically changed, nothing too dramatic). However, when I would experiment with this new player, I would see intermittent problems on my Windows 7 desktop. Because of this, I was hesitant to make a new player release.

Around the end of May, I started getting bug reports from site users that their Chrome browsers weren’t allowing them to activate the Salty Game Music Player — the upshot was that they couldn’t play music unless they manually flipped a setting in their browser configuration. It turns out that Chrome 27 introduced a bug that caused this problem. Not only that, but my player was one of only 2 known NaCl apps that used the problematic feature (the other was developed by the Google engineer who entered the bug).

After feeling negligent for a long while about not doing anything to fix the bug, I made a concerted and creative effort to work around the bug and pushed out a new version of the player (based on API v25). My effort didn’t work and I had to roll it back somewhat (but still using the new player binaries). The bug was something that I couldn’t work around. However, at about the same time that I was attempting to do this, Google was rolling out Chrome 28 which fixed the bug, rendering my worry and effort moot.

Problems With Native Client – Still Not In The Clear
I felt reasonably secure about releasing the updated player since I couldn’t make my aforementioned problem occur on my Windows 7 setup anymore. I actually have a written test plan for this player, believe it or not. However, I quickly started receiving new bug reports from Windows users. Mostly, these are Windows 8 users. The player basically doesn’t work at all for them now. One user reports the problem on Windows 7 (and another on Windows 2008 Server, I think). But I can’t see it.

I have a theory about what might be going wrong, but of course I’ll need to test it, and determine how to fix it.

Database Difficulties
The player is only half of the site; the other half is the organization of music files. Working on this project has repeatedly reminded me of my fundamental lack of skill concerning databases. I have a ‘production’ database– now I’m afraid to do anything with it for fear of messing it up. It’s an an SQLite3 database, so it’s easy to make backups and to create a copy in order to test and debug a new script. Still, I feel like I’m missing an entire career path worth of database best practices.

There is also the matter of ongoing database maintenance. There are graphical frontends for SQLite3 which make casual updates easier and obviate the need for anything more sophisticated (like a custom web app). However, I have a slightly more complicated database entry task that I fear will require, well, a custom web app in order to smoothly process hundreds, if not thousands of new song files (which have quirks which prohibit the easy mass processing I have been able to get away with so far).

Going Forward
I remain hopeful that I’ll gradually overcome these difficulties. I still love this project and I have received nothing but positive feedback over the past year (modulo the assorted recommendations that I port the entire player to pure JavaScript).

You would think I would learn a lesson about building anything on top of a Google platform in the future, especially Native Client. Despite all this, I have another NaCl project planned.