At first, I was planning to just make a little website where users could install a Chrome browser extension and play music from old 8-bit NES games. But, like many software projects, the goal sort of ballooned. I created a website where users can easily play old video game music. It doesn’t cover too many systems yet, but I have had individual requests to add just about every system you can think of.
The craziest part is that I know it’s possible to represent most of the systems. Eventually, it would be great to reach Chipamp parity (a combination plugin for Winamp that packages together plugins for many of these chiptunes). But there is a process to all of this. I have taken to defining a number of phases that are required to get a new system covered.
Phase 0 informally involves marveling at the obscurity of some of the console systems for which chiptune collections have evolved. WonderSwan? Sharp X68000? PC-88? I may be viewing this through a terribly Ameri-centric lens. I’ve at least heard of the ZX Spectrum and the Amstrad CPC even if I’ve never seen either.
No matter. The goal is to get all their chiptunes cataloged and playable.
Phase 1: Finding A Player
The first step is to find a bit of open source code that can play a particular format. If it’s a library that can handle many formats, like Game Music Emu or Audio Overload SDK, even better (probably). The specific open source license isn’t a big concern for me. I’m almost certain that some of the libraries that SaltyGME currently mixes are somehow incompatible, license-wise. I’ll worry about it when I encounter someone who A) cares, and B) is in a position to do something about it. Historical preservation comes first, and these software libraries aren’t getting any younger (I’m finding some that haven’t been touched in a decade).
Phase 2: Test Program
The next phase is to create a basic test bench program that sends a music file into the library, generates a buffer of audio, and shoves it out to the speakers via PulseAudio’s simple API (people like to rip on PulseAudio, but its simple API really lives up to its name and requires pages less boilerplate code to play a few samples than ALSA).
Phase 3: Plug Into Web Player
After successfully creating the test bench and understanding exactly which source files need to be built, the next phase is to hook it up to the main SaltyGME program via the ad-hoc plugin API I developed. This API requires that a player backend can, at the very least, initialize itself based on a buffer of bytes and generate audio samples into an array of 16-bit numbers. The API also provides functions for managing files with multiple tracks and toggling individual voices/channels if the library supports such a feature. Having the test bench application written beforehand usually smooths out this step.
But really, I’m just getting started.
Phase 4: Collecting A Song Corpus
Then there is the matter of staging a collection of songs for a given system. It seems like it would just be a matter of finding a large collection of songs for a given format, downloading them in bulk, and mirroring them. Honestly, that’s the easy part. People who are interested in this stuff have been lovingly curating massive collections of these songs for years (see SNESmusic.org for one of the best examples, and they also host a torrent of all their music for really quick and easy hoarding).
Continue reading