Playing With Emscripten and ASM.js


The last 5 years or so have provided a tremendous amount of hype about the capabilities of JavaScript. I think it really kicked off when Google announced their Chrome web browser in September, 2008 along with its V8 JS engine. This seemed to spark an arms race in JS engine performance along with much hyperbole that eventually all software could, would, and/or should be written in straight JavaScript for maximum portability and future-proofing, perhaps aided by Emscripten, a tool which magically transforms C and C++ code into JS. The latest round of rhetoric comes courtesy of something called asm.js which purports to narrow the gap between JS and native code performance.
I haven’t been a believer, to express it charitably. But I wanted to be certain, so I set out to devise my own experiment to test modern JS performance.
Up Front Summary
I was extremely surprised that my experiment demonstrated JS performance FAR beyond my expectations. There might be something to these claims of magnficent JS speed in numerical applications. Basically, here were my thoughts during the process:
- There’s no way that JavaScript can come anywhere close to C performance for a numerically intensive operation; a simple experiment should demonstrate this.
- Here’s a straightforward C program to perform a simple yet numerically intensive operation.
- Let’s compile the C program on gcc and get some baseline performance numbers.
- Let’s use Emscripten to convert the C program to JavaScript and run it under Chrome.
- Ha! Pitiful JS performance, just as I expected!
- Try the same program under Firefox, since Firefox is supposed to have some crazy optimization for asm.js code, allegedly emitted by Emscripten.
- LOL! Firefox performs even worse than Chrome!
- Wait a minute… the Emscripten documentation mentioned using optimization levels for generating higher performance JS, so try ‘-O1’.
- Umm… wow: Chrome’s performance increased dramatically! What about Firefox? Not only is Firefox faster than Chrome, it’s faster than the gcc-generated code!
- As my faith in C is suddenly shaken to its core, I remembered to compile the gcc version with an explicit optimization level. The native C version pulled ahead of Firefox again, but the Firefox code is still close.
- Aha! This is just desktop– but what about mobile? One of the leading arguments for converting everything to pure JavaScript is that such programs will magically run perfectly in mobile browsers. So I wager that this is where the experiment will fall over.
- I proceed to try the same converted program on a variety of mobile platforms.
- The mobile platforms perform rather admirably as well.
- I am surprised.
The Experiment
I wanted to run a simple yet numerically-intensive and relevant benchmark, and something I am familiar with. I settled on JPEG image decoding. Again, I wanted to keep this simple, ideally in a single file because I didn’t know how hard it might be to deal with Emscripten. I found NanoJPEG, which is a straightforward JPEG decoder contained in a single C file.
Read the rest of this entry »
Posted in General | 7 Comments »