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Summary 
This document is the draft specification of RealVideo9 Codec. 
RealVideo9 achieves new levels of compression performance at low as 
well as high data rates. The improvements are due in part to 1/4 pixel 
interpolation for motion estimation, the addition of 16x8,8x16 pixel 
motion compensated blocks to the 8x8 and 16x16 blocks, medium 
complexity motion estimation technique with better RD characteristics, 
16x16 double transforms, better in-loop filter, efficient coding of 4x4 
intra prediction modes, run length coding of MB-Types, and more 
efficient variable length coding by symbol manipulation and adaptive 
coding. The algorithm also benefits from black level filter, and noise 
reduction pre-filtering. RealVideo9 does not need a post filter.

RealNetworks, Inc CONFIDENTIAL INFORMATION 
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1 High Level Overview 
RealVideo9 represents major advances in compression performance. 
RealVideo9 achieves new levels of compression performance at low as 
well as high data rates. The improvements are due in part to 1/4 pixel 
interpolation for motion estimation, the addition of 16x8 and 8x16 
pixel motion compensated blocks to the 8x8 and 16x16 blocks, medium 
complexity motion estimation technique with better RD characteristics, 
16x16 double transforms, better in-loop filter, efficient coding of 4x4 
intra prediction modes, run length coding, and more efficient variable 
length coding by symbol manipulation and adaptive coding. RealVideo9 
doesn’t need a post filter. RealVideo9 Decoder has built in CPU 
scalability to ensure best possible Video Experience various hardware 
configurations.  

RealNetworks, Inc CONFIDENTIAL INFORMATION 
Copyright © 1999-2002 RealNetworks, Inc. All rights reserved. 
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2 Requirements, Objectives 
Minimum Decode Platform: 160x120 pixel, 7.5 fps decode on a Pentium™ 
200 MHz with 16 MB of memory. 
 
Target bit rates: < 20 kbps, 30 kbps, 100 kbps, 500 kbps, 1-2 Mbps DVD 
quality bit rates, HDTV bit rates, and above. 
 
Target frame sizes: minimum frame size is 32x32, with particular 
attention to the range CIF (352 x 288) to VGA Resolution (640 x 480). 
 
Video quality requirements: A noticeable improvement in video quality 
over RealVideo 8 at comparable data rates. 
 

3 Interface Specification 
 

3.1 RealVideo DLL 

 
Decoder DLL will comply to the RealVideo back-end interface detailed in 
Annex A. These interfaces  might change for subsequent releases. 
 

3.2 Console Application 

 
A console application version of the codec will be available for 
development and testing purposes. The encoder and decoder command line 
arguments are listed in Annex B. 
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4 Algorithm Descriptions 
 
As compression quality is still considered the most important 
development area for improving the streaming video experience, 
RealVideo9 delivers a quantum jump in compression efficiency. 
 

4.1 Introduction 

 
The RealVideo9 and RealVideo8 algorithm is largely based on H.26L or 
the Joint Video Team proposal Mpeg4 part 10 / Advanced Video Codec, 
which experiments have shown provides significant and very visible 
coding gains over Mpeg4v2/H263+.   
RealVideo9 deviates from 26L by: 

• not performing the chroma DC coefficient manipulation (although a 
lower chroma DC quantizer achieves almost the exact same result) 

• not including the 8x4, and 4x8 motion compensated modes 

• additional 4x4 intra prediction modes (These were proposed to JVT 
and have been accepted in simplified form (mode 7)) 

• addition of B frames (26L now has generalised Bipredictive-frames) 

• inloop filter definition and usage 

• addition of an alternate VLC for coefficients. 

• Double transform for Inter and Intra MBs. 

• Quantizer Matrix for Double Transform. 

• Improved Intra prediction mode coding. 

• Adaptive MB Type coding. 

• Allows RPR 
 
Changes w.r.t. RealVideo8 are: 

q Improved Intra mode coding 
q Advanced Deblocking Filter 
q No Post filter required 
q Quarter Pel Motion Estimation (includes the Funny position) 
q 16x8 and 8x16 motion compensation 
q Double Transform for Inter 16x16 
q New QP Matrix for Double Transform 
q Optimized Entropy coding through explicit Super VLC quantizer. 
q Adaptive MB Types 
q Run length encoding of Skip Modes 
q Better B Frame motion vector prediction 
q Bidirectional MB Type for B frames 
q New Picture Size scheme to allow splicing of Files. 
 

4.2 Overview 

 
RealVideo 9 is a hybrid predictive coder that uses temporal prediction 
(motion compensation) and spatial prediction (intra-prediction), 
transform-based residual coding and an inloop deblocking filter.  
Figure 4.1 provides a high-level block diagram of the algorithm. 
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Figure 4.1: Block diagram of the RealVideo 9 decoder algorithm 
 

The Incoming Bitstream describes how to reconstruct pictures in groups 
of non-overlapping 16x16 pixels (macroblocks).  For each macroblock, 
the bitstream indicates whether Spatial Prediction or Temporal 
Prediction is to be used.  Once a prediction is formed, the image 
residual is formed through the Coefficient Decoding, Dequantization and 
Inverse Transform process.  The prediction and residual are added and 
stored in memory for use in future spatial prediction.  Once the entire 
picture has been reconstructed, an inloop deblocking filter is used to 
remove blocking artifacts.  This filtered image is then ready to be 
rendered and, in addition, used for future temporal prediction. 
 
The RealVideo 9 decoding algorithm is defined to reconstruct video 
images in YUV 4:2:0 format.  It is the function of the video renderer 
(or equivalent player module) to format the picture to the appropriate 
color space for display. 
 

4.2.1 Picture Types 
 
There are 3 picture types in RealVideo 9 – I-Pictures, P-Pictures and 
B-Pictures. 
 
I-Pictures are also referred to as Intra-Frames or Key Frames.  They do 
not use temporal prediction and, therefore, do not require other 
decoded reference frames to be in the decoder for proper 
reconstruction.  I-Pictures provide entry or access points to the video 
sequence. 
 
P-Pictures use both spatial and temporal prediction.  The temporal 
prediction always uses one reference frame.  That reference frame shall 
always be the most previous reconstructed I-Picture or P-Picture. 
 
B-Pictures use both spatial and temporal prediction.  However, temporal 
prediction uses up to 2 reference frames.  These reference frames shall 
always be the 2 most previous reconstructed I-Pictures or P-Pictures 
that were found in the bitstream (i.e. in “bitstream” order, not 
display order).  Because the display time of one reference picture is 
always before the B-Picture and the other is always after the B-
Picture, the placement of B-Pictures in the bitstream is not in display 
order.  Figure 4.2 provides an example of display and bitstream 
ordering of I, P and B Pictures. 
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(a) 
 

 
(b) 
 

Figure 4.2: (a) Display Order. (b) Bitstream and Decode Order 

4.2.2 Picture Structure 
 
Pictures are divided into non-overlapping 16x16 group of pixels called 
macroblocks. For instance, a QCIF picture (176x144 pixels) is divided 
into 99 macroblocks as indicated in Figure 4.3. 

 

 
Figure 4.3: A picture with 11 x 9 macroblocks (QCIF picture) 

 
When parsing and decoding the video bitstream macroblocks are scanned 
from left to right starting at the top left of the picture.  Once an 
entire row of macroblocks are decoded the next row down proceeds. 
 
 
 

I0 B1 B2 B3 P4 B5 B6 B7 P8 

I0 B1 B2 B3 P4 B5 B6 B7 P8 

9 macroblocks 

11 macroblocks 

176 pixels 

144 pixels 

Bitstream/Decode Order 

Display Time 
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4.2.3 Macroblock Structure 
 
The basic transform used for residual coding is a 4x4 2-D transform. 
Figure 4.4 below indicate how a macroblock is divided into 4x4 regions 
and the scanning order of these regions. 
 

 
 

Figure 4.4: Macroblock scanning order of 4x4 blocks during residual 
coding 

4.3 Core Compression Algorithm 

4.3.1 Arithmetic operators 

The following arithmetic operators are defined as follows. 

+ Addition 

– Subtraction  

* Multiplication 
/  Integer division with truncation of the result toward zero. 
>> Arithmetic right shift of a two’s complement integer 

representation of binary digits.  This function is defined 
as / for positive integer values. This function is defined 
as integer division with truncation to –inf for nagative 
integer values. 

 

4.3.2 Macroblock Types 
Each macroblock is given a categorization (macroblock type) that 
indicates both the way prediction is done for that macroblock (e.g. 
spatial or temporal) and the way residual transform is done (e.g. 
single 4x4 transforms or a double transforms).  The complete list of 
macroblock types is given below in Table 4.1. 
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TABLE 4.1: List of macroblock types 

MB Types Description I-Pic P-Pic B-Pic 
INTRA Intra, 16 4x4 predictions X X X 
INTRA_16x16 Intra, 16x16 prediction, Dbl Xfm X X X 
INTER Inter, 1MV  X  
INTER_16x16 Inter, 1MV, Dbl Xfrm  X  
INTER_16x8V Inter, 2MVs for 2 16x8 blocks  X  
INTER_8x16V Inter, 2MVs for 2 8x16 blocks  X  
INTER_4V Inter, 4MVs for 4 8x8 blocks  X  
SKIPPED Inter, no residual, MV=(0,0)  X  
FORWARD Fwd MV, 1MV   X 
BACKWARD Bwd MV, 1MV   X 
DIRECT Direct, Derived 2MV for 16x16 

block 
  X 

BIDIR Fwd & Bwd MV for 16x16 block   X 
SKIPPED Direct, no residual, Derived MV 

for 16x16 block 
  X 

 
 

4.3.3 1/4 sub-pel prediction 
 
Motion vectors in RealVideo 9 are transmitted in 1/4 pixel units. 
Motion vectors always point to reference picture relative to MB 
position in the decoded picture. The integer Motion Vector for a 
decoded 1/4 pixel motion vector is defined as the full pixel location 
such that the resulting phase (subpel) is +ve and less than max phases. 
When the motion vectors for a macroblock have been decoded the full-
pixel offset can be obtained by shifting right by 2 bits. 
 

MVx_int = (MVx_luma >> 2) 
MVy_int = (MVy_luma >> 2).   

 
The “phase” or sub-pixel location can be obtained by extracting the 2 
least significant bits. 
 

MVx_sub = (MVx_luma & 3) 
MVy_sub = (MVy_luma & 3). 

 
The integer pixels used in the intrepolation are the actual pixels of 
the reference picture and/or the padded pixels. The MV is illegal if it 
requires pixels beyond the padded reference image.  
 
For luma sub-pixel interpolation is calculated with a 6-tap filter. For 
chroma, a 2-tap filter is used. In addition, one of the 16 interpolated 
pixels, MVx_sub = 3, MVy_sub = 3, in the luma plane is created using a 
stronger filter.  The different horizontal and vertical filters are 
illustrated in Table 4.2. 
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TABLE 4.2: Luma Horizontal and vertical motion compensation filters 

(MVx_sub, 
MVy_sub) 

Horizontal, Vertical Filter, p0 = integer pixels, 
t0 = temporary buffer, v0 = interpolated image 

(0,0) t0 = p0 
v0 = t0  

(0,1) t0 = p0 
v0 = (t-2 – 5t-1 + 52t0 + 20t1 – 5t2 + t3 + 32) >> 6 

(0,2) t0 = p0 
v0 = (t-2 – 5t-1 + 20t0 + 20t1 – 5t2 + t3 + 16) >> 5 

(0,3) t0 = p0 
v0 = (t-2 – 5t-1 + 20t0 + 52t1 – 5t2 + t3 + 32) >> 6 

(1,0) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6 
v0 = t0 

(1,1) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6 
v0 = (t-2 – 5t-1 + 52t0 + 20t1 – 5t2 + t3 + 32) >> 6 

(1,2) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6 
v0 = (t-2 – 5t-1 + 20t0 + 20t1 – 5t2 + t3 + 16) >> 5 

(1,3) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6 
v0 = (t-2 – 5t-1 + 20t0 + 52t1 – 5t2 + t3 + 32) >> 6 

(2,0) t0 = (p-2 – 5p-1 + 20p0 + 20p1 – 5p2 + p3 + 16) >> 5 
v0 = t0 

(2,1) t0 = (p-2 – 5p-1 + 20p0 + 20p1 – 5p2 + p3 + 16) >> 5 
v0 = (t-2 – 5t-1 + 52t0 + 20t1 – 5t2 + t3 + 32) >> 6 

(2,2) t0 = (p-2 – 5p-1 + 20p0 + 20p1 – 5p2 + p3 + 16) >> 5 
v0 = (t-2 – 5t-1 + 20t0 + 20t1 – 5t2 + t3 + 16) >> 5 

(2,3) t0 = (p-2 – 5p-1 + 20p0 + 20p1 – 5p2 + p3 + 16) >> 5 
v0 = (t-2 – 5t-1 + 20t0 + 52t1 – 5t2 + t3 + 32) >> 6 

(3,0) t0 = (p-2 – 5p-1 + 20p0 + 52p1 – 5p2 + p3 + 32) >> 6 
v0 = t0 

(3,1) t0 = (p-2 – 5p-1 + 20p0 + 52p1 – 5p2 + p3 + 32) >> 6 
v0 = (t-2 – 5t-1 + 52t0 + 20t1 – 5t2 + t3 + 32) >> 6 

(3,2) t0 = (p-2 – 5p-1 + 20p0 + 52p1 – 5p2 + p3 + 32) >> 6 
v0 = (t-2 – 5t-1 + 20t0 + 20t1 – 5t2 + t3 + 16) >> 5 

(3,3) t0 = p0 + p1 
v0 = (t0 + t1 + 2) >> 2 

 
The value of t0 is clipped to 0-255 before calculating v0.The final 
value of v0 is again clipped to the range 0-255. 
Motion vectors for chroma motion compensation are derived from the 
motion vectors for the luma.  Specifically, the chroma MVs are 
calculated as 
 
 MVx_chroma = MVx_luma /2 
 MVy_chroma = MVy_luma /2 
 
Then the integer offset and sub-pixel location can be obtained by 
 

MVx_chroma_int = (MVx_chroma >> 2) 
MVy_chroma_int = (MVy_chroma >> 2).   

 
MVx_chroma_sub = (MVx_chroma & 3) 
MVy_chroma_sub = (MVy_chroma & 3). 
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Additionally, the size of motion compensation blocks are half the size, 
horizontally and vertically, from those used in luma.  Thus, motion 
compensation block sizes for chroma include 8x8, 8x4, 4x8 and 4x4.  
Chroma motion compensation filters are given in Table 4.3. 
 
Note the rounding or addition factor for each sub-pixel location.  In 
addition, note that the (3,3) position is the same as the (2,2) 
position. 
 
TABLE 4.3: Chroma Horizontal and vertical motion compensation filters 

(MVx_chroma_sub, 
MVy_chroma_sub) 

Filter (input py,x, output fy,x) 

(0,0) f0,0 = p0,0 
(0,1) f0,0 = (3p0,0 +  p1,0 + 2) >> 2 
(0,2) f0,0 = ( p0,0 +  p1,0      ) >> 1 
(0,3) f0,0 = ( p0,0 + 3p1,0 + 2) >> 2 

(1,0) f0,0 = (3p0,0 +  p0,1 + 1) >> 2 
(1,1) f0,0 = (9p0,0 + 3p0,1 + 3p1,0 +  p1,1 + 7) >> 4 
(1,2) f0,0 = (3p0,0 +  p0,1 + 3p1,0 +  p1,1 + 4) >> 3 
(1,3) f0,0 = (3p0,0 +  p0,1 + 9p1,0 + 3p1,1 + 7) >> 4 

(2,0) f0,0 = ( p0,0 +  p0,1 + 1) >> 1 
(2,1) f0,0 = (3p0,0 + 3p0,1 +  p1,0 +  p1,1 + 4) >> 3 
(2,2) f0,0 = ( p0,0 +  p0,1 +  p1,0 +  p1,1 + 1) >> 2 
(2,3) f0,0 = ( p0,0 +  p0,1 + 3p1,0 + 3p1,1 + 4) >> 3 

(3,0) f0,0 = ( p0,0 + 3p0,1 + 1) >> 2 
(3,1) f0,0 = (3p0,0 + 9p0,1 +  p1,0 + 3p1,1 + 7) >> 4 
(3,2) f0,0 = ( p0,0 + 3p0,1 +  p1,0 + 3p1,1 + 4) >> 3 
(3,3) f0,0 = ( p0,0 +  p0,1 +  p1,0 +  p1,1 + 1) >> 2 

The final value of f is clipped to the range 0-255. 

4.3.4 Block sizes for Inter prediction 
 
In this model it is possible to estimate motion and compensate motion 
on 16x16, 16x8, 8x16 and 8x8 pixel block sizes. The encoder chooses one 
motion compensation mode for each macroblock. Motion vectors off the 
edge of the frame are allowed and used. The luma frame data is padded 
by 16 on each side. Interpolation filter Taps Lengths of 6 and 2 exist 
for RV9. A valid MV is defined such that the interpolation of that MV 
is possible within the padded image. 

 
 INTER INTER_16X8V INTER_8X16V INTER_4V 
 INTER_16X16 
 FORWARD 
 BACKWARD 
 DIRECT 
 BIDIR 

 
Figure 4.5: Motion compensation block sizes for Inter macroblocks 
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4.3.5 4x4 Intra Prediction 
 
An improved advanced intra coding mode is used. Relative to the AIC 
mode in H.263+, this version is 4x4 based, the prediction is done in 
the spatial domain using one of nine prediction modes. DC prediction 
(the average of the block above and to the left) mode is always 
allowed. Two modes use simple spatial prediction (1) column based from 
above, and (2) row based from the left. Additional prediction modes are 
diagonal. 
 
In figure 4.6 below, a 4x4 block is to be predicted (pixels labeled a 
to p below). The pixels A to P and X from neighboring blocks and may 
already decoded and used for prediction. 
 
 

X A B C D E F G H 
I a b c d 
J e f g h 
K i j k l 
L m n o p 
M 
N 
O 
P 

 
Figure 4.6: Predicted and predictor pixels 

 
Under some situations pixels A,B,C,D or I,J,K,L or X are not available 
for use at the decoder.  These situations include 
 

1. These pixels are located outside the picture boundary 
2. These pixels belong to another independent slice 

 
In these cases, modes that require these pixels will not be encountered 
by the decoder.  Similarly, pixels E,F,G,H or M,N,O,P may also not be 
available for use at the decoder.  These situations include the ones 
above with the additional case 
 

3. These pixels are located in parts of the current frame that 
have yet to be decoded and reconstructed 

 
In these situations the decoder shall use the value of D for pixels 
E,F,G,H when they are not available.  T he decoder shall use the value 
of L for pixels M,N,O,P when they are not available.  For example, 
E,F,G,H are not valid for 4x4 blocks on the right edge of the 16x16 macroblock 
except the top row when the macroblock is not at the right edge of the picture. 
M,N,O,P are only valid for 4x4 blocks on the left edge of the 16x16 macroblock 
except on the bottom row. 
 
Mode 0: 
Generally all pixels are predicted by (A+B+C+D+I+J+K+L+4)>>3. If four 
of the pixels are outside the picture, the average of the remaining 
four is used for prediction – i.e. (A+B+C+D+2)>>2 or (I+J+K+L+2)>>2.  
If all 8 pixels are outside the picture the prediction for all pixels 
in the block is set to 128.  A block may therefore always be predicted 
in this mode. 
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Mode 1: 
If pixels A,B,C,D are inside the picture,  a,e,i,m are predicted by A, 
b,f,j,n by B etc. 
 
Mode 2: 
If pixels I,J,K,L are inside the picture,  a,b,c,d are predicted by I,  
e,f,g,h by J etc. 
 
Mode 3 - 8: 
These diagonal modes are used only if all A,B,C,D,I,J,K,L,X are inside 
the picture.  
 
Mode 3: 
m is predicted by    (L + 2K + J + 2) >> 2 
i,n are predicted by   (K + 2J + I + 2) >> 2 
e,j,o are predicted by   (J + 2I + X + 2) >> 2 
a,f,k,l are predicted by   (I + 2X + A + 2) >> 2 
b,g,l are predicted by   (X + 2A + B + 2) >> 2 
c,h are predicted by   (A + 2B + C + 2) >> 2 
d is predicted by    (B + 2C + D + 2) >> 2 
 
Mode 4: 
a is predicted by    (A + 2B + C + I + 2J + K + 4) >> 3 
b,e are predicted by   (B + 2C + D + J + 2K + L + 4) >> 3 
c,f,i are predicted by  (C + 2D + E + K + 2L + M + 4) >> 3 
d,g,j,m are predicted by  (D + 2E + F + L + 2M + N + 4) >> 3 
h,k,n are predicted by  (E + 2F + G + M + 2N + O + 4) >> 3 
l,o are predicted by  (F + 2G + H + N + 2O + P + 4) >> 3 
p is predicted by   (G + H + O + P + 2) >> 2 
 
Mode 5: 
a,j are predicted by   (X + A + 1) >> 1 
b,k are predicted by  (A + B + 1) >> 1 
c,l are predicted by  (B + C + 1) >> 1 
d is predicted by   (C + D + 1) >> 1 
e,n are predicted by  (I + 2X + A + 2) >> 2 
f,o are predicted by  (X + 2A + B + 2) >> 2 
g,p are predicted by  (A + 2B + C + 2) >> 2 
h is predicted by   (B + 2C + D + 2) >> 2 
i is predicted by   (X + 2I + J + 2) >> 2 
m is predicted by   (I + 2J + K + 2) >> 2 
 
Mode 6: 
a is predicted by    (2A + 2B + J + 2K + L + 4) >> 3 
b,i are predicted by  (B + C + 1) >> 1 
c,j are predicted by  (C + D + 1) >> 1 
d,k are predicted by  (D + E + 1) >> 1 
l is predicted by   (E + F + 1) >> 1 
e is predicted by   (A + 2B + C + K + 2L + M + 4) >> 3 
f,m are predicted by  (B + 2C + D + 2) >> 2 
g,n are predicted by  (C + 2D + E + 2) >> 2 
h,o are predicted by  (D + 2E + F + 2) >> 2 
p is predicted by   (E + 2F + G + 2) >> 2 
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Mode 7: 
a is predicted by    (B + 2C + D + 2I + 2J + 4) >> 3 
b is predicted by   (C + 2D + E + I + 2J + K + 4) >> 3 
c,e are predicted by  (D + 2E + F + 2J + 2K + 4) >> 3 
d,f are predicted by  (E + 2F + G + J + 2K + L + 4) >> 3 
g,i are predicted by  (F + 2G + H + 2K +2L + 4) >> 3 
h,j are predicted by  (G + 3H + K + 3L + 4) >> 3 
l,n are predicted by  (L + 2M + N + 2) >> 2 
m,k are predicted by  (G + H + L + M + 2) >> 2 
o is predicted by   (M + N + 1) >> 1 
p is predicted by   (M + 2N + O + 2) >> 2 
 
Mode 8: 
a,g are predicted by   (X + I + 1) >> 1 
b,h are predicted by  (I + 2X + A + 2) >> 2 
c is predicted by   (X + 2A + B + 2) >> 2 
d is predicted by   (A + 2B + C + 2) >> 2 
e,k are predicted by  (I + J + 1) >> 1 
f,l are predicted by  (X + 2I + J + 2) >> 2 
i,o are predicted by  (J + K + 1) >> 1 
j,p are predicted by  (I + 2J + K + 2) >> 2 
m is predicted by   (K + L + 1) >> 1 
n is predicted by   (J + 2K + L + 2) >> 2 
 
Spatial prediction in chroma is also done on a 4x4 block basis using 
the same prediction modes used for luma.  No additional prediction mode 
information is transmitted in the bitstream for chroma prediction.  
Instead, the prediction modes for chroma are derived from the modes 
used for luma. 
 
For each chroma 4x4 block there are 4 4x4 blocks for the corresponding 
location in luma.  The prediction mode used for both chroma planes (U 
and V) is the prediction mode used for the upper left of these luma 4x4 
blocks. 
 

4.3.6 16x16 Intra Prediction 
 
For Intra16x16 macroblocks, one of four prediction modes are used to 
form a 16x16 prediction for the entire macroblock.  Three modes are 
similar to modes 0 – 2 for 4x4 intra plus a new planar prediction mode. 
The image residual of Intra16x16 macroblocks are Double Transformed 
(see section QQ). 
 
Define P(i,-1), i=0..15 to be the 16 pixels above the macroblock to be 
predicted, and P(-1,j), j=0..15 to be the 16 pixels to the left of the 
macroblock to be predicted. 
 
Mode 0: DC Prediction 
If all P(i,-1) and P(-1,i) are inside the picture and current slice 
then all 256 pixels are predicted by 
 
           15 

 pred = (( ∑  P(i,-1) + P(-1,i)) + 16) >> 5 

           i=0 

 

If P(i,-1) are inside the picture and current slice then all 256 pixels 
are predicted by 
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           15 

 pred = (( ∑  P(i,-1)) + 8) >> 4 

           i=0 

 

If P(-1,i) are inside the picture and current slice then all 256 pixels 
are predicted by 
 
           15 

 pred = (( ∑  P(-1,i)) + 8) >> 4 

           i=0 

 

If all 32 pixels are outside the picture, the prediction for all pixels 
in the block is set to 128.  A block may therefore always be predicted 
in this mode. 
 
Mode 1: Vertical Prediction 
If pixels P(i,-1), i=0..15 are inside the picture and current slice,  
P(0,j), j=0..15 are predicted by P(0,-1) etc. 
 
Mode 2: Horizontal Prediction 
If pixels P(-1,j), j=0..15 are inside the picture and current slice,  
P(i,0), i=0..15 are predicted by P(-1,0) etc. 
 
Mode 3: Planar Prediction 

This mode is used only if all P(i,-1), i=0..15 and P(-1,j), 
j=0..15 are inside the picture and current slice.  The following 
calculations are performed: 

 

 

     8 

 H = ∑ i∙(P(7+i,-1) – P(7-i,-1)) 

    i=1 

 

     8 

 V = ∑ j∙(P(-1,7+j) – P(-1,7-j)) 

    j=1 

 

 a = 16x(P(-1,15) + P(15,-1)) 

b = (H+(H>>2))>>4 

c = (V+(V>>2))>>4 

 

And finally the actual prediction: 

 

pred(i,j) = (a + b∙(i-7) + c∙(j-7) + 16) >> 5 
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All calculations shall be integer.  No divisions (only shifts) are 
needed, and all calculations shall be within 16 bits. 

 
For chroma the mode used is the mode chosen for luma, except when the 
luma mode is 3 then mode 0 is used. Modes 0,1, and 2 are predicted in 
the same way as luma except 8x8 blocks are used.  
 

4.3.7 4x4 Transform 

4.3.7.1 Exact integer transform instead of DCT 
A 4x4 integer transform is used for image residuals.  By having an 
exact definition of the inverse transform, there is no encoder/decoder 
mismatch. The transformation of the pixels a,b,c,d into four transform 
coefficients is defined by: 
 

A = 13a + 13b + 13c + 13d 
B = 17a +  7b -  7c - 17d 
C = 13a - 13b – 13c + 13d 
D =  7a - 17b + 17c -  7d 

 
The inverse transform is defined by: 
 

a' = 13A + 17B + 13C +  7D 
b' = 13A +  7B - 13C – 17D 
c' = 13A –  7B – 13C + 17D 
d' = 13A – 17B + 13C -  7D 

 
The relationship between the transform in one dimension without 
normalization is a’ = 676 x a. This is used in the quantization step 
(see below). The actual transform is 2D and since it is a separable 
transform, it implemented as a horizontal 1D transform followed by a 
vertical 1D transform. 

4.3.7.2 Double Transform 
An additional 4x4 transform is used for the 16 DC coefficients of the 
16 4x4 transforms inside a macroblock.  The coefficients of this second 
transform are coded and transmitted as a block in addition to the 16 
4x4 luma blocks (each then having only 15 coefficients). Since we use 
the same integer transform to DC coefficients, we have to perform 
additional normalization to those coefficients, which implies a 
division by 676.  To avoid the division we performed normalization by 
49/215 on the encoder side and 48/215 on the decoder side, which gives 
sufficient accuracy. 
 

4.3.8 Quantization 
Quantization is table-based and designed in such a way that the bit 
usage as a function of the quantization parameter is fairly linear. In 
the encoder and decoder, the QP range 0-31 is mapped into the tables 
A[QP] and B[QP], respectively, where the relationship between A[] and 
B[] is:  
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A[QP] x B[QP] x 6762 = 234.  
 
with 
 

A(QP=0,..,31) = {620, 553, 492, 439, 391, 348, 310, 276, 246, 219, 195, 
174, 155, 138, 123, 110, 98, 87, 78, 69, 62, 55, 49, 44, 39, 35, 
31, 27, 24, 22, 19, 17} 

 
B(QP=0,..,31) = {60, 67, 76, 85, 96, 108, 121, 136, 152, 171, 192, 216, 

242, 272, 305, 341, 383, 432, 481, 544, 606, 683, 767, 854, 963, 
1074, 1212, 1392, 1566, 1708, 1978, 2211} 

 
Quantization of coefficient level K is performed as  
 

LEVEL = (((K>>4) x A[QP]x32) >> 16) + f) >> 5,   
 
where f is 5 for Inter macroblocks and 10 for Intra macroblocks.  
Dequantization is defined as 
 

K’ = ((LEVEL x B[QP]) + 8) >> 4.  
 
For the coefficients of the second transform in INTRA_16x16 and 
INTER_16x16 macroblocks quantization is performed as  
 

LEVEL = (K x A[QP] + f)>>20,  
 
where f is 0x55555.  Dequantization is as above except that the three 
lowest frequency coefficients are dequantized with a different 
quantization level.  These special coefficients are shown in Figure 
4.7.   
 

 
 

Figure 4.7: Second transform coefficients with lowered QP (shaded) 
 

Specifically, these coefficients are dequantized using a different QP 
value.  This value is derived from the macroblock QP (used for the 
other coefficients) using the two tables below.  The first table is used for 
Intra macroblocks, and the second table is used for Inter macroblocks. 
 

luma_intra_quant_DC[32] =  
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,17,18,18,18,19
,19,19,20,20,20,22,22,22,22} 

 
luma_inter_quant_DC[32] =  

{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,20,21
,21,22,23,23,23,24,24,24,24} 

 c1 

c4 

c8 

c10 

c5 

c7 

c11 

c14 

c6 

c12 

c13 

c15 

c0 

c2 

c3 

c9 
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Quantization is performed the same way for chroma as for luma, except 
the QP value used is derived from the QP used for luma using the tables 
below. The chroma DC coefficient (c0) is given an even lower QP than the 
chroma AC coefficients (c1-c15). 
 

chroma_QP_map_AC[32] = 
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,17,18,19,20,20,21,22,
22,23,23,24,24,25,25}; 

 
chroma_QP_map_DC[32] = 

{0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,15,16,17,18,18,19,20,20
,21,21,22,22,23,23}; 

 
After inverse transformation, the pixel values will then be 210 too 
high, and a 10 bit downshift is needed as a part of the frame 
reconstruction. The definition of the transform and quantization is 
designed so that no overflow will occur with the use of 32-bit 
arithmetic for input, output or intermediates.  For exact precisions 
see 4.3.7.1. 

4.3.8.1 Dynamic Range for Various Methods. 

A*B*676*676 = 2^34 
Transform Input = 9 Bits per pixel  
Double Xfrm input is DC coeff of 16 4x4 blocks normalized by 49/2^15. 
So the input to the remaining chain is 11 bits. 
Transform Intermediates = 13*13*4*4 * 2^9 = 21 Bits. 
Transform Output = 21 Bits 
(11 bits can represent normalized Xfrm at QP0) 
 
Quant Input = 21Bits 
Transform Coeff Value Reduced to 17 Bits and then saturated to 16 bits 
during Quantization. (Corresponds to ½ LSB Granularity for Table A) 
The down shift & saturation is not done for the double Xfrm.  
Quant Output = 10 Bits. (signed) 
(In case of Double Xfrm and SuperVLC, if the output exceeds 10Bits, the 
Double transform is not done. The MB is recoded as INTRA MB) 
Tranform +  Quant  normalization = 2^20 
 
QVAL * B = Level * [A * B *  676 * 676] / [13 * 13] * 2^20 < 2^16 
Dquant Input = 10 Bits  
Dquant Intermediates = 16 Bits  
Dquant Normalisation =  2^4 
Dquant Output = Max 12 Bits  
 
Ixfrm Input = 12 Bits 
Ixfrm Intermediate = 13*13 * 2^12 < 2^20 
Ixfrm Normalization = 2^10 
Ixfrm Output = 9 bits 
 
Double Xfrm 
 
QVAL * B = Level * [A * B *  676 * 676] / [13 * 13] * 2^20 < 2^18 
Dquant Input = 11 Bits 
Dquant Intermediates = 18 Bits  
Dquant Normalisation =  2^4 
Dquant Output = Max 14 Bits  
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Ixfrm Input = 14 Bits 
Ixfrm Intermediate = 13*13 * 2^14 < 2^22 
Ixfrm Normalization = 2^10 
Ixfrm Output = 11 bits 

4.3.9 Deblocking filter 
For I, P and B Pictures an in-loop deblocking filter is used.  (Note: 
since B Picture are never used as reference frames, deblocking is 
optional in the encoder & decoder)  

4.3.9.1 I and P Picture In-loop deblocking 
 
4.3.9.1.1 Introduction: 
After the reconstruction of a entire picture a conditional filtering of 
this picture takes place, that effects the boundaries of the 4x4 block 
structure. RV9 deblocking filter is designed to provide PSNR 
improvement as well high visual quality.  Thus there is no smoothing 
post-filter required for RV9. 
 
Deblocking Filter: 
The deblocking filter consists of 3 basic parts.  

• Determination of Block Strength. 
• Activity Measures 
• Filters 

 
Block Strength: 

First, each 4x4 luma block in a reconstructed macroblock is assigned a 
filtering Strength, which has the following value:  

 

4x4 block condition Strength 

Macro block is Intra-coded, or 
INTER_16x16 coded 

2 

4x4 Block is non INTRA, but has 
nonzero coefficients 

1 

The absolute difference between one 
of the motion vector components of 
the two adjacent 4x4 blocks (above 
and to the left) is at least one 
integer pixel (four ¼ pixels)*.  

1 

The adjacent (above and to the left) 
motion vectors refer to different 
reference frames (in B frames) 

See section 4.3.8.2 

Else 0 

• All blocks are checked. Eg. Four Motion vector. Even if the block 
and the adjacent block are inside the MB they have different MVs 
and thus are checked for motion vector difference. 

• Block Strengths are not additive. If multiple conditions apply, 
the highest number is set. 
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FilterSet Types: 
There are 3 FilterSet types.  
“Strong Filtered”,  
“Normal / Weak Filtered”,  
“Not Filtered”.  
The selection criterion is. 
 

4x4 block condition Filter Set 

Strength is 2 on at least one side 
of the 4x4 edge and is MB edge. 

“Strong Filtered” 

Strength > 0 on at least one side 
of the 4x4 edge  

“Normal / Weak Filtered” 

Else “Not Filtered” 

 
 

Edge Scan: 
Filtering takes place on each 4x4 block in the following order. 
 
 
 
 
 
 
 
 

1. Filter this Horizontal edge if marked as “Normal / Weak filtered”  
2. Filter this Vertical edge if marked as “Normal / Weak filtered”. 
3. Filter this Horizontal edge if marked as “Strong Filtered”. 
4. Filter this Vertical edge if marked as “Strong Filtered”. 

• Edges of a 4x4 block. 

• In essence the Vertical filter lags behind the Horizontal 
filter, and the “Strong filtered” edge lag behind the “Normal 
/ Weak filtered” edge. The design is such that 4x4 blocks are 
traversed from left to right and top to bottom on the whole 
image. But there are other ways to achieve bit exact results. 
By carefully analysing the dependencies you could traverse 
MB's from left to right.  

• Picture edges are not filtered. 

• Slice boundaries do not change the deblocking filter 
behaviour. All slices are assumed to be available during the 
deblocking stage. It is up to the decoder to fill in 
appropriate information if loss occurs as part of error 
concealment. Error concealment techniques are not normative. 

 
Activity Measures: 
After the strengths and FilterSet types have been selected based on 
coded information, further selection of filters, recursive depth and 
strengths in done based on local image properties. 
 
Block based Filter Decision:  Parameters Al and Ar: 
The type of filter (“Strong 5 Tap”, “Normal 4/3 Tap” or “Weak 2/3 Tap”) 
is made for each full edge of a 4x4 block by calculating a set of 
parameters (Al, Ar, b3SmoothLeft and b3SmoothRigh). 
 

1 

2 
4 

3 

4x4 Block 
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Al and Ar parameters select which filter to use and also the recursive 
depth of the filter, and are calculated using the following algorithm. 
 
 

1. Edge is marked with FilterSet “Strong Filtered” 

 
Figure 4.9: Filtering a vertical edge (dark line) 

 
Consider the above vertical edge show in Fig. 4.9. 

 
Compute: 

 deltaL[0] = L20 - L10; 
 deltaL[1] = L21 - L11; 
 deltaL[2] = L22 - L12; 
 deltaL[3] = L23 - L13; 
 deltaR[0] = R20 - R10; 
 deltaR[1] = R21 - R11; 
 deltaR[2] = R22 - R12; 
 deltaR[3] = R23 - R13; 
 
 Al = Ar = 3; 
 
 delta = deltaL[0]+deltaL[1]+deltaL[2]+deltaL[3]; 
 if (ABS(delta) >= beta) Al = 1; 
 delta = deltaR[0]+deltaR[1]+deltaR[2]+deltaR[3]; 
 if (ABS(delta) >= beta) Ar = 1; 
 

NOTE: The DeltaR[] and DeltaL[] calculated can be used 
again later for the actually filter calculation. 

 
 deltaL2[0] = L20 - L30; 
 deltaL2[1] = L21 - L31; 
 deltaL2[2] = L22 - L32; 
 deltaL2[3] = L23 - L33; 
 deltaR2[0] = R20 - R30; 
 deltaR2[1] = R21 - R31; 
 deltaR2[2] = R22 - R32; 
 deltaR2[3] = R23 - R33; 
 
 b3SmoothLeft = b3SmoothRight = true; 
 
 delta = deltaL2[0]+deltaL2[1]+deltaL2[2]+deltaL2[3]; 
 if (ABS(delta) >= beta2 && Al != 1) b3SmoothLeft = false; 
 delta = deltaR2[0]+deltaR2[1]+deltaR2[2]+deltaR2[3]; 
 if (ABS(delta) >= beta2 && Ar != 1) b3SmoothRight = false; 

L30 L20 R10 L10 R20 R30 

L31 L21 R11 L11 R21 R31 

L32 L22 R12 L12 R22 R32 

L33 L23 R13 L13 R23 R33 
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Where beta is 4*β and beta2 is either 3*β or 4*β.  beta2 is 4*β in 
the luma component when the number of pixels in the frame is less 

than or equal to 176*144.  β is a function of the MB QP and given 
as 

 

QP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

β 0 0 0 0 0 0 0 0 3 3 3 4 4 4 6 6 6 7 8 8 9 9 10 10 11 11 12 13 14 15 16 17 

 

 
Using Al, Ar, b3SmoothLeft and b3SmoothRight the table below 
shows the cases when each of the 3 filters are used. 
 

 

FilterSet == “Strong Filtered”  

Block  Al Ar Filter 

Al = 3 && Ar = 3 && 

b3SmoothLeft=true && b3SmoothRight=true 

Strong 5 Tap 

Al > 1 && Ar > 1  Normal 4/3 Tap 

Al or Ar >1 Weak 2/3 Tap 

Else none 

  
2. Edge is marked with FilterSet “Normal / Weak Filtered” 

 
Consider the above vertical edge show in Fig. 4.9. 

 
Compute: 

 deltaL[0] = L20 - L10; 
 deltaL[1] = L21 - L11; 
 deltaL[2] = L22 - L12; 
 deltaL[3] = L23 - L13; 
 deltaR[0] = R20 - R10; 
 deltaR[1] = R21 - R11; 
 deltaR[2] = R22 - R12; 
 deltaR[3] = R23 - R13; 
 
 Al = Ar = 3; 
 
 delta = deltaL[0]+deltaL[1]+deltaL[2]+deltaL[3]; 
 if (ABS(delta) >= beta) Al = 1; 
 delta = deltaR[0]+deltaR[1]+deltaR[2]+deltaR[3]; 
 if (ABS(delta) >= beta) Ar = 1; 

 
deltaL2[0] = L20 - L30; 

 deltaL2[1] = L21 - L31; 
 deltaL2[2] = L22 - L32; 
 deltaL2[3] = L23 - L33; 
 deltaR2[0] = R20 - R30; 
 deltaR2[1] = R21 - R31; 
 deltaR2[2] = R22 - R32; 
 deltaR2[3] = R23 - R33; 
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 (used later) 
 

NOTE: The DeltaR[] and DeltaL[] calculated can be used 
again later for the actually filter calculation.  

 

Where beta is 4*β.  β is a function of the MB QP and given as 
 

QP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

β 0 0 0 0 0 0 0 0 3 3 3 4 4 4 6 6 6 7 8 8 9 9 10 10 11 11 12 13 14 15 16 17 

 

 

FilterSet == “Normal / Weak Filtered”  

Block  Al Ar Filter Type 

Al > 1 && Ar > 1  Normal 4/3 Tap 

Al or Ar >1 Weak 2/3 Tap 

Else none 

 
3. Edge is marked with FilterSet “Not Filtered”  

This edge is not filtered. 
 
 
Pixel Based Activity Measure: 
Once a filter type has been selected for a 4x4 block edge, various 
clipping conditions are determined for each of the 4 rows or columns of 
the vertical or horizontal edge being filtered. 
 
The alpha activity parameter is used to determine whether to keep the 
filtered pixel, clip it or to discard it -- all of which can be viewed 
as clipping functionality. 
 
Consider the set of eight pixels across a 4x4 block horizontal or 
vertical boundary shown in Fig. 4.10. 
 
 
 

 
 

Figure 4.9: Eight pixels across a horizontal or  
vertical edge (dark line) 

 
 

Each side of the edge has clip strength defined by Cl and Cr in the 
following way 
 
Cl  = ClipTbl[QP][strength_left] 
Cr  = ClipTbl[QP][strength_right] 
 
with ClipTbl defined below 

L3 L2 R1 L1 R2 R3 L4 R4 
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QP            0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

ClipTbb(qp,0) 0 0 0 0 0 0 0 0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 

ClipTbl(qp,1) 0 0 0 0 0 0 0 0 0 0  0  1  1  1  1  1  1  1  1  1  1  2  2  2  2  3  3  3  3  4  5  5 

ClipTbl(qp,2) 0 0 0 0 0 0 0 0 0 1  1  1  1  1  1  1  1  2  2  2  2  3  3  3  4  4  5  5  5  7  8  9 

 
  QP_Above 
     ---- Top Edge - 
QP_Left  | QP_4x4_Block  
 
The values of strength_left and strength_right defined as the 4x4 block 
Strength for the block to the left (or above) and the block to the 
right (or below) of the edge, respectively. The QP used to get these 
strengths are the QP's of the block to the left (QP_Left) or the block 
above (QP_Above). QP_4x4_Block is the QP of the block under 
consideration, thus is used for strength_right or strength_below (or 
above), aplha, beta etc.   
 
The below calculations of delta and N are used to determine the 
clipping bounds based on the type of filter. 
 
delta = (R1 - L1); 
N = ABS(delta)*alpha)>>7; 
 
with alpha determined using the Macro Block QP using the table below. 
 
QP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

α 128 128 128 128 128 128 128 128 128 128 122 96 75 59 47 37 29 23 18 15 13 11 10 9 8 7 6 5 4 3 2 1 

 
Filter Type ”Strong 5 Tap”: 

delta or N Clip 

delta = 0  C = 0 (effectively, no filtering) 

N = 0 C = 255 (effectively, no clipping) 

N = 1 C = (Cl + Cr + Al + Ar) / 2 

N > 1 C = 0 (effectively, no filtering) 

Filter Type “Normal 4/3 Tap”: 

delta or N Clip 

delta = 0  C = 0 (effectively, no filtering) 

N <= 2 C = (Cl + Cr + Al + Ar) / 2 

N >= 3 C = 0 (effectively, no filtering) 

Filter Type “Weak 2/3 Tap”: 

delta or N Clip 

delta = 0  C = 0 (effectively, no filtering) 

N <= 3 C = (Cl + Cr + Al + Ar) / 4 

N >= 4 C = 0 (effectively, no filtering) 
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Pixel based Recursive Depth decision: 
This too can be viewed as a clipping decision. You can filter all 4 
pixel of the block by the same filter structure and decide to keep or 

discard the filtered pixel based on β. 
 
Strong 5 Tap Filter: 
 3rd pel is not filtered for chroma.  
Normal 4/3 Tap Filter: 

 ABS(deltaL2)<= β 
 Then filter 2nd pixel on the Left. Same for right. 
Weak 2/3 Tap Filter: 

 ABS(deltaL2)<= β && Al>1 
 Then Filter the 2nd pixel on the Left. Same for right. 
 
4.3.9.1.2 Filter Structures: 
The following defines each of the three filters using the pixel 
notation from Fig. 4.9.  With L1’, L2’, L3’, R1’, R2’ and R3’ being the 
resulting filtered output 
 
Weak 2/3 Tap Filter 

∆ = Clip(-C, C, ((R1 – L1 + 1) >> 1) 

L1’ = Clip(0, 255, (L1+∆) ) 

R1’ = Clip(0, 255, (R1-∆) ) 
 

∆L = Clip(-Cl/2, Cl/2, (L3 + L1 - L2<<1 +∆) >> 1) 

L2’ = Clip(0, 255, (L2+∆L) ) 
 

∆R = Clip(-Cr/2, Cr/2, (R3 + R1 - R2<<1 -∆) >> 1) 

R2’ = Clip(0, 255, (R2+∆R) ) 

Note: ∆ from L1-R1 is used for L2 & R2. (Thus recursive filter) 
 
Normal 4/3 Tap Filter 

∆ = Clip(-C, C, ((R1 – L1) << 2 + (L2 – R2) + 4) >> 3) 

L1’ = Clip(0, 255, (L1+∆) ) 

R1’ = Clip(0, 255, (R1-∆) ) 
 

∆L = Clip(-Cl, Cl, (L3 + L1 - L2<<1 + ∆) >> 1) 

L2’ = Clip(0, 255, (L2+∆L) ) 
 

∆R = Clip(-Cr, Cr, (R3 + R1 - L2<<1 - ∆) >> 1) 

R2’ = Clip(0, 255, (R2+∆R) ) 

Note: ∆ from L1-R1 is used for L2 & R2. (Thus recursive filter) 
 

 
Strong 5 Tap Filter 

L1’’ = (25*L3 + 26*L2 + 26*L1 + 26*R1 + 25*R2 + D1) >> 7 
L1’ = Clip(-C, C, L1’’ – L1) + L1; 
 
R1’’ = (25*L2 + 26*L1 + 26*R1 + 26*R2 + 25*R3 + D2) >> 7 
R1’ = Clip(-C, C, R1’’ – R1) + R1; 
 
L2’’ = (25*L4 + 26*L3 + 26*L2 + 26*L1’ + 25*R1 + D1) >> 7 
L2’ = Clip(-C, C, L2’’ – L2) + L2; 
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Note: L1’ is used to calculate L2’’. 
 
R2’’ = (25*L1 + 26*R1’ + 26*R2 + 26*R3 + 25*R4 + D2) >> 7 
R2’ = Clip(-C, C, R2’’ – R2) + R2; 
Note: R1’ is used to calculate R2’’. 
 

If Luma 
L3’ = (        26*L4 + 51*L3 + 26*L2’ + 25*L1’ + 64) >> 7 
R3’ = (25*R1’ + 26*R2’ + 51*R3 + 26*R4         + 64) >> 7 
Note: No clipping for 3rd pel. 
Note: L1’ & L2’ are used for L3’. 
Note: R1’ & R2’ are used for R3’. 
 

 
Dither: 
The Strong 5 Tap Filter output is dithered by adding variable offset D1 
and D2 before down shifting and truncation. D1 and D2 value can be 
looked up by the relative position of the pixel in a 16x16 grid. The 
lookup index is simply the least significant nibble of the X or Y 
value. The appropriate Left or Right table is to be used.  
 
ditherL[16]= 
{ 64, 80, 32, 96, 48, 80, 64, 48, 80, 64, 80, 48, 96, 32, 80, 64 }; 
 
ditherR[16] =  
{ 64, 48, 96, 32, 80, 48, 48, 64, 64, 64, 80, 48, 32, 96, 48, 64 }; 
 
 
Comments: 

q The Basic Design of this filter is: 
o Block based decision of the Filter Structure 
o Pixel based clipping of the Filtered value.  

q There might not be a need to clamp the output of certain filters 
to 0-255 since they always produce output within 0-255. 

q Dither removes the Constant edge difference, which can be seen on 
high contrast displays even after filtering.  

q Weak 2/3 filter similar to Dither filters away the sharp edges of 
blocks, which would generally fail all activity tests for the 
“Normal or Weak Filtered” and “Strong Filtered” FilterSets. 

q Strong 5 tap filter has larger activity range with N<=1 thus 
clipping of the 5 tap output has been introduced for N=1.  

q alpha, beta have been detuned above QP=23 (already reflected in 

the tables). beta2 is 4β for video equal or smaller than QCifs and 

3β for all pictures larger than 176x144. 
The peculiar Filter Scan allows for the output of the Strong 5 Tap 
filter with Dither to be the last operation on the image. This retains 
the Dither and 3rd filtered pel which otherwise would require special 
code to retain. 
 
Note: In a MB each 4x4 block numbered in raster scan, then block 12 bottom 
horizontal “Normal / Weak filtered” edge should have used clip value 
corresponding to block 12 & the clip value of the block below. Released RV9/10 
decoders & encoders do not use the clip value of the block below instead use 
block 12 clip value for Cr. Please see source code, as source code usage is, 
‘as is’ normative; change is under consideration for next revision. 
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4.3.9.2 B Picture Deblocking Filter 
4.3.9.2.1 Introduction: 
Since RV9 deblocking filter is highly complex and B-Frames are not used 
for prediction, 2 Deblocking filters for B-frames are provided. Only 
under conditions when CPU is unable to handle Full Frame rate video 
should this simple filter be used. The RV9 In-loop filter described 
above with the modifications described below provide a high visual 
quality for B-frames.  
 
4.3.9.2.2 In Loop Filter for B-frames 
 
In B-frames certain blocks are filtered because they reference 
different reference frames. Using the scheme as described in section 
4.3.8.1 these blocks are already tagged as to be filtered or not. Since 
this scheme will promote blocks to be filtered either by the strong or 
weak filter certain precautions have to be taken. The clipping strength 
of such a block is changed.  

• Use Strong filter but use clipping strength corresponding to the 
reference frame. 

• Use Normal filter but use the clipping strength of current frame 
QP and Strength = 2. 

The clipping strengths on only the side corresponding to the block will 
be changed. The strength of the adjacent side is calculated based on 
Original strength of this block and the current QP. 
 
 

4x4 block condition FilterSet Clipping 
Strength 

The adjacent motion vectors refer 
to different reference frames.  

RefDiff == true 

  

Edge set to be Filtered “Strong 
Filtered” 

QP Strength 2 

Edge not set to be Filtered “Normal / Weak 
Filtered” 

refQp Strength 2 

Else 0  
 
MBtype Adjacent MB type RefDiff 
Forward Not Forward True 
Backward Not Backward True 
Skipped 
Direct 
BiDir 

Forward 
Backward 

True 

Intra Any False 
Intra16x16 Any False 
 
 
Note: Use of Simple RV8 in-loop deblocking filter for B-frames (Luma 
only) is allowed for CPU scalability. 
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4.4 B Frames 

RV9 supports the B frame mode with Forward, Backward, Direct, and Bi-
predictive MB types . For the direct prediction mode the prediction 
type is determined by the reference macroblock prediction type (16x16 
or 8x8), and is 16x16 with zero motion vector when the reference 
macroblock is INTRA or SKIPPED. 
 
In B frames, there are five methods for motion compensating a 
macroblock - forward, backward, direct, Bi-predictive and skipped. 
Forward and backward macroblocks are estimated and differentially 
encoded in a similar fashion to 16x16 MV's in a P frame, except the 
reference picture that is used can be either the preceding or future P 
frame, respectively. 
 
A direct macroblock uses as a reference the motion vectors from the 
macroblock in the same spatial position in the future P frame. There 
may be one 16x16 motion vector, or four 8x8 motion vectors in the 
reference frame (if the reference macroblock is Intra coded, it is 
treated as a zero motion vector for these purposes). The forward and 
backward motion vectors are derived by scaling the reference motion 
vectors based on the relative distance between the B frame and the 
surrounding P frames. These derived motion vectors are then clipped to 
ensure that the referenced blocks can be interpolated within the padded 
image. The motion compensation prediction is formed by averaging the 
motion compensated block from the future P frame with the motion 
compensated block from the previous P frame. A weighted average is 
used, where the weighting factors are proportional to the temporal 
distance between the B frame and the corresponding P frame (iRatio0, 
iRatio1). The motion compensated residual is then transformed and 
coded. The chroma components are compensated with the same scaled 
motion vectors.  
 
The forward and backward motion vectors for direct mode macroblocks are 
calculated as follows. 

MVF = (TRB * MV) / TRD  

MVB = (TRB- TRD) * MV / TRD 

Implemented as: 

iRatio0 = (TRB  << TR_SHIFT) / TRD; 

MVFx = (iRatio0 * MVREFx + TR_RND) >> TR_SHIFT 

MVFy = (iRatio0 * MVREFy + TR_RND) >> TR_SHIFT 

MVBx = MVFx – MVREFx  

MVBy = MVFy – MVREFy  

TR_SHIFT = 14 

TR_RND   = (1 << (TR_SHIFT - 1) 

iRatio1 = ((TRD - TRB) << TR_SHIFT) / TRD; 

And Weighted Average: 

U32 v1 = (U32) pfi,j << 7; 
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U32 v2 = (U32) ppi,j << 7; 

U32 w = ((v1 * uRatio0) >> 16) + ((v2 * uRatio1) >> 16); 

pbi,j = (U8) ((w + 0x10) >> 5); 

pf = pixel from future reference frame 

pp = pixel from prev reference frame 

pb = predicted direct mode pixel 

(U32 is unsigned 32 bit integer. TR_SHIFT and TR_RND are constants 
required for the integer calulation of the ratios. Using any other 
scheme to get the ratio may not lead to bit exact reconstruction.) 

Where the vector component MVF is the forward motion vectors, MVB is the 
backward motion vector, and MVREF represents the motion vectors in the 
corresponding macroblock in the subsequent reference picture. TRD is the 
temporal distance between the temporally previous and next reference 
frame, and TRB is the temporal distance between the current frame and 
previous reference frame. Since RF <=1, no clipping is needed for MVF. 
Clipping is needed for MVB. The luma frame data is padded by 16 on each 
side, and the subpel interpolation filter is 6-tap.  

right edge: pos_x*4 + MVx < (width + 16-16-3)*4 

left edge: pos_x*4 + MVx > -(16-2)*4 

upper edge: pos_y*4 + MVy > -(16-2-3)*4 

bottom edge: pos_y*4 + MVy < (height + 16-16-3-3)*4 

assuming reference MV is ok. 

(Note: Additional 3 pel spacing is kept for top and bottom edge) 
 
In case the the corresponding macroblock in the subsequent reference 
picture is of type INTER_4V, four corresponding MVF and MVB’s are 
calculated and four 8x8 such blocks are averaged. 
 
A skipped macroblock in a B frame is motion compensated the same way as 
a direct macroblock, and it is understood that no transform 
coefficients are sent for the entire macroblock. 
 
In Bi-directional mode 2 motion vectors are differentially coded and 
transmitted (see section 5.3.4.1), one forward and one backward. Two 
predictions are interpolated based on these motion vectors. The final 
motion compensation is performed exactly like the Direct mode weighted 
average on these two predictions. iRatio0 and iRatio1 are set to 8192 
each. 
 

4.5 Reference Picture Resampling (RPR) 

RV9 supports RPR in a manner identical to RV8/RVG2. (H263+ based) 
Reference picture resampling allows an encoder and decoder to change 
image dimensions on a frame-by-frame basis, without having to generate 
a key frame. When a new image dimension is received the decoder simply 
interpolates/decimates the previous reference image to the new size 
before using it as a predictor for the next frame. The implementation 
is exactly like H263+ spec annexes O, P, and Q. All Edge displacement, 
Warping, and Fill parameters are zero. 
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At the slice level the Picture size is transmitted using a Variable 
length and Fixed length scheme for I / P / B frames. (see section 
5.2.2) 
RPR is normative to Rv9 compatibility and this mode could be found in 
Media encoded by others on the net since it is ON for all releases of 
RV9 encoders. RPR is an encoder choice and be disabled if so required 
for closed loop implementations. 

4.6 CPU Scalability 

Based on experiments the following Decoder CPU scalability is allowed.  
§ Simpler In Loop Filter for B-Frames 
§ Disable De-Blocking in B-Frames.  
§ Snap to Integer Motion Vectors in B-frames. 
§ Dropping B-frames. 

5 Bitstream Syntax 
This is the specification of the bitstream syntax. The bitstream is not 
based on any standard and is not forward or backward compatible with 
other RealVideo Codecs. 

5.1 Stream Layer 

For RealVideo the SPO (or codec opaque data) is used to signal global 
stream parameters. There is no Picture Header for RealVideo but the 
slice layer header has been kept. Every picture starts with a Slice 
Header. 

Every stream is initialized with 
 

• 32 bit SPO FLAG 

• 32 bit Bitsream Version 

5.1.1 SPO Flags 
The set of 32 SPO Flags are used to indicate stream level options.  
Since RealVideo 9 has few optional stream-level modes, only a few SPO 
flags are useful. 
 
TABLE 5.1: SPO Flags 
Name Mask Description 
RV40_SPO_FLAG_SLICEMODE 0x00000020 When equal to 1, indicates 

that slices are in use*. 
RV40_SPO_FLAG_BFRAMES 0x00001000 When equal to 1, indicates 

that the stream may contain 
B-Frames*. 

RV40_SPO_FLAG_FRUFLAG 0x00080000 When equal to 1, indicates 
that FRU should not be 
applied on this stream. 

RV40_SPO_FLAG_MULTIPASS 0x00400000 When equal to 1, indicates 
the content was encoded with 
multipass**. 

RV40_SPO_FLAG_VBR_ENCODE 0x01000000 When equal to 1, indicates 
the content was encoded using 
VBR**. 
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* For all RealVideo 9 streams this flag is set to 1. 
** These flags are merely informational and do not affect the decoding 
process. 

5.2  Slice Layer 

Once the stream has been initialized, the RealVideo data is received as 
a series of slices that follow the syntax given in Figure 5.1.  The 
Slice Header is indicated in this diagram as the first 10 fields of 
every slice. 

 
 

Figure 5.1: Slice Layer syntax 
 

Slice Layer 

ECC 

PicCodType 

SQUANT 

BitStreamVersion 

Reserved 

OSV Quant 

Deblock PassThru 

RV TR 

PicSize 

MBA 

MB Layer 

Slice 
Header 
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Each slice in the bitstream is corresponds to a independently decodable 
section.  Thus, prediction across a slice boundary is not allowed.  
Motion vector prediction and intra mode prediction behaves as if the 
area outside the current slice is outside the picture. 
 
TABLE 5.1: Slice Header field lengths 
Field Length Description 
ECC 1 0 if slice contains picture data 

1 if slice contains ECC information 
PicCodType 2 (00) = RV_INTRAPIC 

(01) = RV_FORCED_INTRAPIC 
(10) = RV_INTERPIC 
(11) = RV_TRUEBPIC 

SQUANT  5 Initial Slice Quantization Parameter 
Bitstream Version 1 Reserved – always zero. 

Reserved 1 Reserved 
OSV Quant 2 Super VLC Quantizer 
Deblock PassThru 1 0 if deblocking filter is to be used 

1 if deblocking filter is to be disabled 
RV TR 13 Temporal reference (in units of millisecs) 
PicSize Var Decoded Picture size. 
MBA Var MBA_NumMBs= (width + 15)>>4 * (height + 15)>>4 - 1 

MBA_FieldWidth  
47 
98 
395 
1583 
6335 
9215 
 
6 
7 
9 
11 
13 
14 
 
SQCIF, QCIF, CIF, 4CIF, 16CIF, 2048x1152 

 

5.2.1  ECC 
 
When ECC bit is set the decoder shall skip that slice. ECC Packets 
contains forward error correction data and is not normative to the 
decoder. Layers above the decoder should perform the error correction 
and consume these packets.  
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5.2.2  PicSize Syntax 
 
PicSize(PicCodType) { Bits 
if(PicCodType == RV_INTERPIC || PicCodType == RV_TRUEBPIC) {  

use_prev_width 1 
if(!use_prev_width) GetDimensions()  

} else {  
GetDimensions()  

}  
  
GetDimensions() {  

width_code 3 
width = RPR_Width[width_code]  
if(width == 0) {  

width = explicit_dimension() Var 
}   
height_code Var 3-4 
height = RPR_Height[height_code]  
if(height == 0) {  

height = explicit_dimension() Var 
}  
PicWidth = width  
PicHeight = height  

}  
  
explicit_dimension() {  

Dimension = 0  
do {  

dim_code 8 
Dimension = Dimension + dim_code * 4;  

} while(dim_code == 0xff)  
return Dimension  
}  

 
width_code Width height_code Height 
000 160 000 120 
001 176 001 132 
010 240 010 144 
011 320 011 240 
100 352 100 288 
101 640 101 480 
110 704 1100 180 
111 0 1101 360 
  1110 576 
  1111 0 
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5.3  Macroblock Layer 

 

Figure 5.2: Macroblock Layer 

 

5.3.1 Structured VLC code 
 
RealVideo 9 uses a structured variable-length code table to code some 
the information in the video sequence.  The structure of this VLC is 
shown in Table 5.2. 

MB Layer 

MBType_QP() 

Intra Prediction 

Motion Vectors 

CBP 

Block Layer 
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 TABLE 5.2: Structured VLC 

VLC Structure Code number (N) Explicit 
1 0 1 

1 0 0 1 0 x0 1 

2 0 1 1 

3 0 0 0 0 1 

4 0 0 0 1 1 

5 0 1 0 0 1 

0 x1 0 x0 1 

6 0 1 0 1 1 

7 0 0 0 0 0 0 1 

8 0 0 0 0 0 1 1 

0 x2 0 x1 0 x0 1 
… 

… … 

 
In Table 5.2 xn take values 0 or 1.   
 
When code number is known, the regular structure of the table makes it 
easy to create a codeword bit by bit.  Similarly, a decoder may easily 
read bit by bit until the last "1" which gives the end of the codeword. 
 
The structured VLC is used in two places. 

1. Representation of the number of consecutive SKIPPED macroblocks 
2. Representation of motion vectors (in 1/4 pixel units) 

 

5.3.2 MBType & DQuant 
MBType_QP() { Bits 

if(PicCodType == RV_INTRAPIC) {  
IntraMBtype()  

} else {  
RLESkip_MB(SkipLeft)  

}  
}  

 
 

5.3.2.1 Intra Picture MB Type Syntax 

 
IntraMBtype() { Bits 

mbtype_intra_16x16 1 
if(!mbtype_intra_16x16) {  

mbtype_intra 1 
if(!mbtype_intra) {  

dquant(PrevQP) Var 
mbtype_bit 1 

}  
}  

}  
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5.3.2.2 Run Length coding of Skipped MB 
 
RLESkip_MB (SkipLeft) { Bits 

if(SkipLeft) {  
SkipLeft--  

} else {  
skip_run Var 
SkipLeft = VLC(skip_run)  

}  
if(SkipLeft) mbtype = Skipped  
else {  

AdaptiveMBType()  
}  

}  

 

5.3.2.3 Adaptive MB Type 
The MB type for P and B-Frames are adaptively mapped to variable length 
codes as described below and signaled using a special VLC table. 
 
 

 
 

Figure 5.3: Macroblocks used to decode the macroblock type of 
macroblock E (shaded) 

 
Decoding of the current macroblock type (macroblock E in Fig. 5.3) is 
based on neighboring macroblock types (macroblock s A, B, C, D). 
 
The most probable mode near MB E is calculated by building a histogram 
of the MB types A, B, C, and D. If any is unavailable it is not 
considered for building the histogram.  If a neighboring macroblock is 
a SKIPPED MB then in P-Frames it is considered a INTER MB and in B-
Frames it is considered a Direct MB. 
 
The MB Type with the largest frequency and the lowest Histogram Index 
(see Table 5.3) is the mostProbableType.  Given the mostProbableType 
the appropriate VLC table is selected and used to read the MB type for 
the current macroblock. 

A B C 

E D 
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TABLE 5.3: Macroblock types and Histogram Index 

MB Types Description Pic 
Types 

Histogram 
Index. 

INTRA Intra, 4x4 prediction I/P/B 0 

INTRA_16X16 Intra, 16x16 prediction, Dbl Xfm I/P/B 1 

INTER Inter, 1MV, 16x16 P 2 

INTER_4V Inter, 4MV, 8x8 P 3 

FORWARD Fwd MV, 1MV, 16x16 B 4 

BACKWARD Bwd MV, 1MV, 16x16 B 5 

DIRECT Direct, Derived 2MV, 16x16  B 6 

INTER_16X16 Inter, 1MV, 16x16, Dbl Xfrm P 7 

INTER_8X16V Inter, 2MV, 8x16 P 8 

BIDIR Fwd & Bwd MV, 2MV, 16x16 B 9 

INTER_16X8V Inter, 2MV, 16x8 P 10 

 
 
Tables 5.4 and 5.5 give the VLC codewords for P-Frames and B-Frames for 
each possible mostProbableType. 
 
 TABLE 5.4: VLC codes for MB Types in P-Frames 

VLC code for mostProbableType MB Type for 
macroblock E Intra Intra16x16 Inter Inter_4V 

INTRA 1 001 01101 1001 
INTRA_16x16 01 1 0101 10001 

INTER 001 01 1 01 
INTER_4V 000001 0000001 0100 00 

INTER_16X8V 00001 000001 001 101 
INTER_8X16V 0001 00001 000 11 
INTER_16x16 0000001 0001 0111 100001 

DQUANT 0000000 0000000 01100 100000 
 

VLC code for mostProbableType MB Type for 
macroblock E Inter16x8 Inter8x16 Inter16 

INTRA 00001 00001 000001 
INTRA_16x16 000001 000001 001 

INTER 1 1 01 
INTER_4V 0001 0001 0000001 

INTER_16X8V 01 001 00001 
INTER_8X16V 001 01 0001 
INTER_16x16 0000001 0000001 1 

DQUANT 0000000 0000000 0000000 
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 TABLE 5.5: VLC codes for MB Types in B-Frames 

VLC code for mostProbableType MB Type for 
macroblock E Intra Intra16x16 Forward 

INTRA 01 0001 000001 
INTRA_16x16 101 1 0001 
FORWARD 00 001 1 
BACKWARD 11 01 01 
BIDIR 10001 000001 00001 
DIRECT 1001 00001 001 
DQUANT 10000 000000 000000 

 
VLC code for mostProbableType MB Type for 

macroblock E Backward Bi-Direct Direct 
INTRA 01001 000001 000001 

INTRA_16x16 001 00001 00001 
FORWARD 000 001 001 
BACKWARD 1 01 1 
BIDIR 0101 0001 0001 
DIRECT 011 1 01 
DQUANT 01000 000000 000000 

 
 
 
AdaptiveMBType () { Bits 

mb_code Var 
if(mb_code == DQuant) {  

mb_code Var 
dquant(PrevQP) Var 

}  
}  

 

5.3.2.4 DQuant  
dquant(PrevQP) { Bits 

use_delta_QP 1 
if(use_delta_QP) {  

delta_QP 1 
dquant = gNewTAB_DQUANT_MQ[PrevQP][delta_QP];  
QP = PrevQP + dquant  

} else {  
QP 5 

}  
}  

 
Dquant Table (gNewTAB_DQUANT_MQ) 

PrevQP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

δ=0 0 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2 

δ=1 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 

PrevQP 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

δ=0 -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 

δ=1 2 2 2 2 2 3 3 3 3 3 3 3 3 2 1 -5 
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5.3.3  4x4 Intra Prediction Mode Coding 
The signaling of the 4x4 intra prediction mode only occurs for INTRA 
4x4 type macroblocks.  A single VLC codeword can represent 1, 2 or 4 
individual intra prediction modes.  However, a single VLC codeword 
cannot represent intra prediction modes located on different rows of 
the macroblock.  Therefore, in the bitstream a single row of intra 
prediction mode can be represented in the following combinations. 
 

1. [4 Mode VLC] 
2. [2 Mode VLC] [2 Mode VLC] 
3. [2 Mode VLC] [1 Mode VLC] [1 Mode VLC] 
4. [1 Mode VLC] [2 Mode VLC] [1 Mode VLC] 
5. [1 Mode VLC] [1 Mode VLC] [2 Mode VLC] 
6. [1 Mode VLC] [1 Mode VLC] [1 Mode VLC] [1 Mode VLC] 

 
Four intra prediction modes are coded in one VLC codeword only when (a) 
it is the top row of a macroblock and (b) this macroblock is on the top 
edge of the image or current slice.  This VLC table is listed as 
aic_top_vlc[index]. 
 
Two intra prediction modes are coded in one VLC only if surrounding 
intra prediction modes are of a specific combination.  In Fig. 5.4 
below, modes a and b are being considered whether they are to be 
decoded as a single codeword.   
In case of INTRA_16x16 the 4x4 block in consideration A, B, or C is 
given the mode number same as the INTRA_16x16 prediction mode (see 
Table5.7). In case of other MB mtypes, A, B, C are given mode number 0.  
When surrounding modes A, B and C are known, their combination is 
searched in Table 5.5.  If the specific combination of A, B, and C are 
found, then a single VLC table, specified by Table Number is used to 
decode both a and b, together.  These 20 VLC tables are listed as 
aic_2mode_vlc[Table Numebr][index]. 
 
 

 
 

Figure 5.4: 4x4 Intra Prediction modes to be decoded (shaded) and 
The 4x4 prediction modes used to determine VLC table used 

 
If A, B and C do not match the available patterns in Table 5.6, a 
single mode is decoded. VLC tables given in aic_1mode_vlc[A][B] are 
used to code this mode. The VLC table used in this case is listed as 
aic_1mode_vlc[A][B]. 
 
The scan of coded intra prediction modes then moves left to the next 
one to be decoded.  Once a row is finished, the scan proceeds to the 
next row of prediction modes. 
 
 
 
 
 

B C 

a A b 
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TABLE 5.6: Intra prediction mode  
pattern for decoding two intra  
prediction modes as a single VLC  
codeword 
Pattern Table 

Number 
A B C  
0 0 0 0 
1 0 0 1 
2 0 0 2 
0 1 1 3 
1 1 1 4 
2 1 1 5 
5 1 1 6 
6 1 1 7 
0 2 2 8 
1 2 2 9 
2 2 2 10 
7 2 2 11 
2 7 2 12 
2 2 7 13 
8 2 2 14 
2 8 2 15 
2 2 8 16 
1 1 2 17 
1 1 6 18 
2 2 1 19 

 
 

5.3.4  16x16 Intra Prediction Mode Coding 
The signaling of the16x16 intra prediction mode only occurs for INTRA 
16x16 type macroblocks. The prediction mode for the 16x16 macroblock is 
coded as a 2-bit FLC as shown in Table 5.7. 
 
 

TABLE 5.7: VLC codewords used for the  
intra prediction mode of a Intra16  
macroblock. 

VLC 
Codeword 

Prediction Mode 

00 DC 
01 Vertical, from above 
10 Horizontal, from left 
11 Planar 
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5.3.5 Motion Vectors 

5.3.5.1  Prediction in P Frames 
 
Motion vectors are differentially encoded from a predictor motion 
vector. The predictor is found in a way very similar to the description 
in H.263+, including how to handle the cases where the block size 
chosen for the current macroblock is larger than the block size for one 
or more of the surrounding macroblocks. With no special edge conditions 
the predictor is the median of the motion vectors to the left, above, 
and above right, relative to the current block. See Fig. 5.5 for 
details. If the macroblock is coded in 8x8 mode, the median candidates 
for block 0 are found in the blocks marked with boldface numbers. If 
the macroblock is coded in 16x16 mode, the candidates are found from 
the blocks in italic. 
 
If there is no block above and to the right of the current block, a 
candidate is instead found above and to the left, or just to the left 
if above and to the left does not exist. This is different from H.263+, 
where the zero vector is used in this case. If there is no block above, 
the block to the left is used. If there is no block to the left, the 
zero vector is used. Motion vectors are restricted to values which can 
be interpolated from the padded picture. The reference pictures must be 
padded 16 pixels beyond the edges (eight for chroma planes) by 
replicating the edge pixels. 
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Figure 5.5: Motion vector prediction 

5.3.5.2  Prediction in B frames 

 
Motion vectors in B-Frames are only predicted from available motion 
vectors of neighboring macroblocks that use the same reference frame. 
The algorithm for determining neighboring macroblocks is the same as 
used in P-Frame MV prediction.  Namely, If the Above-Right MV is 
unavailable due to slice or picture edges, the Above-Left MV is 
checked.  
 
Therefore, 
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• The MV predictor for a Backward MB type can only consider  
o MVs from neighboring Backward MB types or  
o “backward” MVs from neighboring Bi-Direct MB types 

• The MV predictor for a Forward MB type can only consider  
o MVs from neighboring Forward MB types or  
o “forward” MVs from neighboring Bi-Direct MB types 

• The “backward” MV predictor for a Bi-Direct MB type can only 
consider  

o MVs from neighboring Backward MB types or  
o “backwards” MVs from neighboring Bi-Direct MB types 

• The “forward” MV predictor for a B-Direct MB type can only 
consider  

o MVs from neighboring Forward MB types or  
o “forwards” MVs from neighboring Bi-Direct MB types 

 
Depending on number of neighboring motion vectors which pass this 
criteria, a median, average or copy of the motion vectors from those 
macroblocks is used as the predictor. 
 
 
 TABLE 5.8: MV prediction in B-frames 

Number of MVs Prediction Type 
3 Median 
2 Average 
1 Copy 
0 0 

 
 

5.3.5.3  Motion Vector Transmission   
Depending on the MB type, from 0 to 4 motion vectors need to be 
transmitted. Each motion vector is transmitted as a horizontal and 
vertical component. The horizontal component is transmitted first, then 
the vertical component, followed by the next vector. If more than one 
motion vector is to be sent, the transmission order is upper left block 
first, and then a regular right to left scanning, as shown in Fig. 5.6. 
See Table 5.9 for which code numbers to use. 
 
 

 

Figure 5.6: Motion vector transmission order 
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TABLE 5.9: Motion Vector codewords 
N Vector 
0 0 

1 1 
2 -1 

3 2 

4 -2 
5 3 

6 -3 

7 4 
8 -4 

9 5 

10 -5 
11 6 

12 -6 

: : 

 

5.3.6 CBP (Coded Block Pattern) 

5.3.6.1 CBP length and bit order 
CBP contains 24 bits representing 16 luminance blocks and 4 * 2 
chrominance blocks in a macroblock. Bits that are set to 1 correspond 
to coded 4x4 blocks, bits that are set to 0 correspond to skipped 
(empty) blocks. The following diagram gives the correspondence between 
bits and luma/chroma blocks. 
 
           Y    Cr       Cb  

 
 
 
 
 

 
 
 
 

B0 
 

B1 
 

B2 
 

B3 

B4 B5 B6 B7 

B8 B9 B10 B11 

B12 B13 B14 B15 

B16 
 

B17 
 

B18 B19 

B20 
 

B21 
 

B22 B23 
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5.3.6.2 The structure of CBP code. 
The overall structure of CBP code is presented below.  
 
 
 
 
 
 
 
 
 
 
 
 
The main CBP object, CBP descriptor is transmitted first using one of 
the canonic Huffman codes (see Section 5.4.6) corresponding to the 
current macro-block type, and quantizer step size. 
 
In turn, values of the components of CBP descriptor indicate the 
presence of the subsequent code objects: 8x8 descriptors and CR bits.  
Among these, 8x8 descriptors are transmitted first, using context-
dependent canonic Huffman codes. CR bits required by the CBP descriptor 
are transmitted directly. 
 
Below we describe each of these CBP code objects in details. 
 
 

5.3.6.3 CBP descriptor.  
CBP descriptor has the following components: 
 
 
 
 
 
 
 
Composition rule: 
    Cbp_dsc = ((((((C0* 3 + C1) * 3 + C2) * 3 + C3) * 2 + Y0) * 2 + Y1) * 2 
+ Y2) * 2 + Y3; 
 
 
Mappings between the CBP bits and descriptor’s components are 
established as follows: 

Y0 
 

Y1 
 

Y2 Y3 

C0 
 

C1 
 

C2 C3 

 

C0-C3     Y0-Y3 

Luma 8x8 descriptors 

                 CBP descriptor 

   Input CBP bits  

Cr bits (when Cr!=Cb) 

 

B0-B23 

 

Ctx 
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5.3.6.4 8x8 descriptor and contexts. 
Each 8x8 descriptor is represented by a non-zero group of 4 bits 
[B0,B1,B4,B5],  [B2, B3, B6, B7], [B8,B9,B12,B13], or [B10,B11,B14,B15] in CBP.  
 
 
 
 
 
 
Composition rule:  
     8x8_dsc = ((B0 * 2 + B1) * 2 + B2) * 2 + B3; 
 
There are 4 different tables describing 8x8 descriptors based on their 
context: 
     Ctx = Y0 + Y1 + Y2 + Y3 –1; 
where Y0-Y3  are the corresponding Y components of the CBP descriptor.  

5.3.6.5 Cr bits. 

Cr bits are transmitted every time when any of the C0-C3 CBP descriptor 
components is set to 1. 
 

5.4 Block Layer 

5.4.1 Block size, scan order, and types of coefficients. 

Quantized DCT transform coefficients are encoded in blocks of 16 
coefficients each, corresponding to their original 4x4 layout: 
 
 
 
 
 
 
 
 
 
 
 

Y0, Y1, Y2, Y3 
 

[B0,B1,B4,B5],  [B2, B3, B6, B7], [B8,B9,B12,B13], 
[B10,B11,B14,B15] 

0 All 4 bits  = 0  

1 at least 1 bit != 0  (8x8 descriptor to follow) 

C0, C1, C2, C3 
 

[B16,B20],  [B17, B21], [B18, B22], [B19,B23] 

0 both (Cr,Cb) bits  = 0  

1 only 1 bit (Cr or Cb) = 1 (extra bit to follow) 

2 both (Cr,Cb) bits = 1 

B0 
 

B1 
 

B2 B3 

C0 
 

C1 
 

C2 
 

C3 

C4 C5 C6 C7 

C8 C9 C10 C11 

C12 C13 C14 C15 
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The following types of coefficients are encoded using separate groups 
of tables: 

1. Luma coefficients from Inter-coded 4x4 blocks  
2. Chroma coefficients from Inter-coded 4x4 blocks 
3. Luma coefficients from 4x4-transformed Intra blocks  
4. Chroma coefficients from 4x4-transformed Intra blocks 
5. Luma DC coefficients from 16x16-transformed Intra blocks 
6. Chroma DC coefficients from 16x16-transformed Intra blocks 
7. Luma DC-removed coefficients from 16x16 transformed Intra blocks 
8. Chroma DC-removed coefficients from 16x16 transformed Intra 

blocks. 
 
To simplify the processing in the last two cases (dc-removed 
coefficients) the encoding is still done assuming there is a full 4x4 
matrix of the coefficients, but the actual code tables are designed 
such that coefficient C0 is always 0. 
 

5.4.2 The structure of the code. 
The code for each block of 16 coefficients has the following structure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The main code object, 4x4 block descriptor is transmitted first. Based 
on the values of its components, subsequent code objects: 2x2 
descriptors, level descriptors, and sign bits may follow.  
 
The order of these code objects follows the natural order of components 
in descriptors. E.g. if 4x4 descriptor indicates that there is a large 
DC coefficient, then, the next code object is its Level descriptor. If 
the level descriptor is not sufficient to represent the absolute value 

 

L4-L5               [C2,C3,C6,C7] 
                        [C8,C12,C9,C13] 
                        [C10,C11,C14,C15]   2x2 descriptors 

L0-L3 

              4x4 block descriptor 

Input coefficients  

Level descriptors 

Extra bits 

                     Sign bits 

 

C0-C15 

Extension codes for large 
coefficients 

For all non-zero 
coefficients 
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of this coefficient exactly, it will indicate how many Extra bits will 
follow. The Sign bit is transmitted right after. 
 
Below we describe each of these objects in details. 
 

5.4.3 4x4 and 2x2 block descriptors. 
 

4x4 and 2x2 descriptors have the following components:  
 
 
 
 
 
 

 
 
 
 
 

 
Composition rules:  

4x4_dsc = ((((L0 * 3 + L1) * 3 + L2) * 3 + L3) * 2 + L4) * 2 + L5) * 2 + L6; 
2x2_dsc = ((L0 * 3 + L1) * 3 + L2) * 3 + L3;   

 
 
Mappings between coefficients’ values and descriptor’s components: 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
The encoding of 2x2 descriptors for L4 and L5 blocks is done using the 
same tables (with an inverse scan order of coefficients in the L5 
block). The 2x2 descriptor for block L6 is encoded using separate 
tables. 

L0 
 

L1 
 

L2 L3 

 
       L4 

 
        L5 

 
       L6 

L0 
 

L1 
 

L2 L3 

L0 
 

C0, C2, C8, C10 
 

0 0 

1 +1,-1 

2 +2,-2 

3 >2,<-2 (escape code) 

L1, L3, L3 
 

C1, C4,  C5,   C3,   C6,  C7,  
C12, C9, C13, C11, C14, C15 

0 0 
1 +1,-1 

2 >1, <-1 (escape code) 

L4, L5, L6 
 

[C2, C3, C6, C7], [C8,C12,C9,C13], 
[C10,C11,C14,C15] 

0 0 (all 4 coefficients = 0) 

2 !0 (escape code) 
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5.4.4 Level descriptors. 

When coefficients are large (which is signalized by escape codes in 4x4 
or 2x2 descriptors), their absolute residual values are transmitted 
using additional level descriptors and extension bits as specified 
below: 
 

 
 

5.4.5 Sign bits. 
Sign bits are transmitted for all non-zero coefficients following the 
description of their absolute values (by the corresponding combination 
of 4x4, 2x2, or level descriptors). 
 
Encoding of all non-zero DCT coefficients is done in the order as they 
appear in 4x4 and 2x2 descriptors.  
 
 

5.4.6 Code Tables. 

5.4.6.1 Partition of code tables based on Inter/Intra 
coding and quantization step sizes. 

 
The tables for all code components are separate for Inter- and Intra- 
coded macroblocks. Additionally, different code tables are used based 
on QP values used to encode macroblocks. The mappings between QPs and 
indices of code tables are provided below. 
 

Level descriptors Extra bits Absolute residual values 

0-22 0 0-22 

23 1 23-24 

24 2 25-28 

25 3 29-36 

26 4 37-52 

27 5 53-84 

28 6 85-148 

29 7 149-276 

30 8 277-532 



 

 RealNetworks, Inc Confidential 51 

 
 
Note: Intra  Qp 30 currently uses region  0 in source code , (it should have been 4).  Source code usage is 
as is normative. Change is under consideration for next revision. 

5.4.6.2 Variable-length codes and code tables. 
Variable length codes represent sequences of bits packed in bytes such 
that earlier bits correspond to the leftmost (more significant) digits 
within a byte.  
 
Encoding and decoding algorithms discussed herein employ Canonic 
Huffman Codes (see, e.g., A.Moffat, and A.Turpin, "On the 
Implementation of Minimum-Redundancy Prefix Codes", IEEE Transactions 
on Communications, 45(10): 1200-1207, 1997).  
 
For the description of such codes we will only specify code lengths. 
The reconstruction of the corresponding codewords can be accomplished 
using the following algorithm. 
 
/* 
 * Given:    n – the number of codes, and len[] – code lengths 
* Produces: code[] – canonic Huffman codewords  
*/ 
make_code (int n, unsigned char *len, unsigned int *code) 
{ 
    unsigned int leaves [MAX_DEPTH+1], start [MAX_DEPTH+2]; 
    register int i; 
 
    /* count the number of leaves on each level: */ 
    for (i = 0; i <= MAX_DEPTH; i++) leaves [i] = 0; 
    for (i = 0; i < n; i++) leaves [len [i]]++; 
 
    /* set start codes for each level: */ 
    start [1] = 0; 
    for (i = 1; i <= MAX_DEPTH; i++) 
        start [i + 1] = (start [i] + leaves [i]) * 2;  
 
    /* assign codewords: */ 
    for (i = 0; i < n; i++) 
        code [i] = start [len [i]]++; 
} 

QP range partition for Intra-
coded macroblocks 

Region # QP range 

0 0-9 

1 10-15 

2 16-19 

3 20-24 

4 25-29 

0 30 

QP range partition for Inter-
coded macroblocks  

Region # QP range 

0 0-6 

1 7-10 

2 11-14 

3 15-18 

4 19-22 

5 23-26 

6 27-30 
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5.4.6.3 Code tables. 
The following tables represent lengths of the canonic Huffman codes for 
all the above described components of codes for transform coefficients 
and CBP types. 
 
/* intra tables: */ 
char intra_cbp[MAX_INTRA_QP_REGIONS][2][MAX_CBP] = {}; 
char intra_8x8_dsc[MAX_INTRA_QP_REGIONS][2][4][MAX_8x8_DSC] = {}; 
char intra_luma_4x4_dsc[MAX_INTRA_QP_REGIONS][3][MAX_4x4_DSC] = {}; 
char intra_luma_2x2_dsc[MAX_INTRA_QP_REGIONS][2][MAX_2x2_DSC] = {}; 
char intra_chroma_4x4_dsc[MAX_INTRA_QP_REGIONS][MAX_4x4_DSC] = {}; 
char intra_chroma_2x2_dsc[MAX_INTRA_QP_REGIONS][2][MAX_2x2_DSC] = {}; 
char intra_level_dsc[MAX_INTRA_QP_REGIONS][MAX_LEVEL_DSC] = {}; 
 
/* inter tables: */ 
char inter_cbp[MAX_INTER_QP_REGIONS][MAX_CBP] = {}; 
char inter_8x8_dsc[MAX_INTER_QP_REGIONS][4][MAX_8x8_DSC] = {}; 
char inter_luma_4x4_dsc[MAX_INTER_QP_REGIONS][MAX_4x4_DSC] = {}; 
char inter_luma_2x2_dsc[MAX_INTER_QP_REGIONS][2][MAX_2x2_DSC] = {}; 
char inter_chroma_4x4_dsc[MAX_INTER_QP_REGIONS][MAX_4x4_DSC] = {}; 
char inter_chroma_2x2_dsc[MAX_INTER_QP_REGIONS][2][MAX_2x2_DSC] = {}; 
char inter_level_dsc[MAX_INTER_QP_REGIONS][MAX_LEVEL_DSC] = {}; 
 

6 Performance Estimates 
Pls See  
https://rarvcode-video.helixcommunity.org/ 

7 QA Test Procedures 
Every implementation of RV9 should pass the TCK. 
https://helixcommunity.org/projects/rarvcode-tck/ 
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9 Annex A 
RealVideo Decoders are Split into 2 parts, RealVideo Frontend and 
the decoder Backend. 
 
RealVideo Frontend: Exposes the RealMedia Codec Interface. 
 The Frontend handles all the Initialization, pre-post filtering, 
frame-rate up sampling, statistics, and scalability decisions. 
 
RealVideo Backend: Exposes the Hive/PIA Codec Interface. 
 The Backend decodes the Bitstream. The Backend maybe referred to 
as ILVC in general or in RV8 by codename “Tromsø” to refer to 
specific algorithms. 

 
Back End Interface: 

 
RV20toYUV420Init (RV10_INIT *prv10Init, void **decoderState)  
RV20toYUV420Free (void *global)     
RV20toYUV420Transform ( 

UCHAR     *pRV20Packets, 
UCHAR     *pDecodedFrameBuffer, 
void      *pInputParams, // H263DecoderInParams 
void      *pOutputParams, // H263DecoderOutParams 
void      *global ) 

RV20toYUV420CustomMessage ( 
PIA_Custom_Message_ID *msg_id, void *global 
) 

The RV20toYUV420CustomMessage function exposes decoder interfaces 
that are specific to the "ILVC" decoder.  These interfaces are defined  
in "ilvcmsg.h". 

 
RV20toYUV420HiveMessage (ULONG32 *msg_id, void *global) 
The RV20toYUV420HiveMessage function exposes decoder interfaces that  

may be applicable to a variety of decoders, not just to "ILVC". The 
'msg' parameter points to a ULONG32 that identifies a particular 
interface or feature.  This ULONG32 is actually the first member in a 
larger struct, similar to the PIA_Custom_Message_ID usage.  See 
"hivervi.h" for a complete list of supported messages. 

 
typedef struct tagRV10_INIT 
{ 

UINT16 outtype; 
UINT16 pels; 
UINT16 lines; 
UINT16 nPadWidth;  
/* number of columns of padding on right to get 16 x 16 block*/ 
UINT16 nPadHeight;  
/* number of rows of padding on bottom to get 16 x 16 block*/ 
UINT16 pad_to_32;    
// to keep struct member alignment independent of compiler options 
ULONG32 ulInvariants;     
// ulInvariants specifies the invariant picture header bits -- SPO 
LONG32 packetization; 
ULONG32 ulStreamVersion; 

} RV10_INIT; 
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typedef struct tag_H263DecoderInParams 
{ 

ULONG32 dataLength; 
LONG32    bInterpolateImage; 
ULONG32 numDataSegments; 
PNCODEC_SEGMENTINFO *pDataSegments; 
ULONG32 flags; 
// 'flags' should be initialized by the front-end before each 
// invocation to decompress a frame.  It is not updated by the 
// decoder. 
// If it contains RV_DECODE_MORE_FRAMES, it informs the decoder 
// that it is being called to extract the second or subsequent 
// frame that the decoder is emitting for a given input frame. 
// The front-end should set this only in response to seeing 
// an RV_DECODE_MORE_FRAMES indication in H263DecoderOutParams. 
// If it contains RV_DECODE_DONT_DRAW, it informs the decoder 
// that it should decode the image (in order to produce a valid 
// reference frame for subsequent decoding), but that no image 
// should be returned.  This provides a "hurry-up" mechanism. 
ULONG32 timestamp; 

} H263DecoderInParams; 
 
typedef struct tag_H263DecoderOutParams 
{ 

ULONG32 numFrames; 
ULONG32 notes; 
//'notes' is assigned by the transform function during each call to 
// decompress a frame.  If upon return the notes parameter contains 
// the indication RV_DECODE_MORE_FRAMES, then the front-end 
// should invoke the decoder again to decompress the same image. 
// For this additional invocation, the front-end should first set 
// the RV_DECODE_MORE_FRAMES bit in the 'H263DecoderInParams.flags' 
// member, to indicate to the decoder that it is being invoked to 
// extract the next frame. 
// The front-end should continue invoking the decoder until the 
// RV_DECODE_MORE_FRAMES bit is not set in the 'notes' member. 
// For each invocation to decompress a frame in the same 
// "MORE_FRAMES" 
// loop, the front-end should send in the same input image. 
// 
// If the decoder has no frames to return for display, 'numFrames' 
// will be set to zero.  To avoid redundancy, the decoder does  
// *not* set the RV_DECODE_DONT_DRAW bit in 'notes' in this case. 
 
ULONG32 timestamp; 
// The 'temporal_offset' parameter is used in conjunction with the 
// RV_DECODE_MORE_FRAMES note, to assist the front-end in 
// determining when to display each returned frame. 
// If the decoder sets this to T upon return, the front-end should 
// attempt to display the returned image T milliseconds relative to 
// the front-end's idea of the presentation time corresponding to 
// the input image. 
// Be aware that this is a signed value, and will typically be 
// negative. 
 
ULONG32 width; 
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ULONG32 height; 
// Width and height of the returned frame. 
// This is the width and the height as signalled in the bitstream. 

} H263DecoderOutParams; 
 

10 Annex B 

10.1 Encoder Command line Interface 

Usage:  tromsoe infile [options] 
In the following syntax descriptions, arglist is a comma-separated list 
of the form \"arg[=value],arg[=value],...\". Some arguments take 
values, some do not.  If arglist contains any whitespace, it must be 
enclosed in quotes. For example,  -d  4,l=mylog.txt,a  specifies the 
debug level to be 4, that the debug log file is named \"mylog.txt\", 
and that the file should be  opened in append mode rather than being 
overwritten. 
 
Infile Specify raw YUV12 input file 
-a letter,arglist Enable a specific H.263 annex. 

Letter letter is mandatory and must be the 
first argument in arglist.  It is 
the annex's upper case letter. 
For some annexes, this letter 
argument takes a value, as described 
below. The remaining elements of 
arglist are specific to each annex.  
For annexes that can be applied on a 
per-layer basis, arglist can contain 
\"l=<level>\", indicating the option 
is being applied to the given level. 

K[=<bytes_per_slice>] Slice Structured Mode [default slice 
size is 512] 

O Add a new scalability layer.  First 
O option describes layer 0, second 
layer 1, etc (deprecated). Options 
include: 

w=<width> Layer width  [default: layer 0 QCIF, 
layer n prev] (deprecated) 

h=<height> Layer height [default: layer 0 QCIF, 
layer n prev] (deprecated) 

p=profile String profile of 'P's, 'B's and '-
's [default \"P\"] 

r=<ref_layer> [default: 0 for layer 0, n - 1 for 
layer n] (deprecated) 

-z Reserved 
-b <image_range> Images to encode [encode all by 

default] 
 <image_range> is <m>-<n>: 
 3-5 means frames 3, 4 and 5 
 4-  means frames 4 and beyond 
 -5 means frames 0 through 5 
 7 means frames 0 through 7 
-c <cpu_usage> Specify CPU scalability setting. 

cpu_usage is a number between 0 and 
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100 
-d arglist Specify debugging output. 

<level> Detail level.  Use -1 to suppress. 
[default is 0] 

l=logfile Output file for debug messages. 
[default is stdout] 

a Append to logfile. [default is to 
overwrite] 

-f arglist Specify format of compressed output 
file. 

r Use raw format. [default] 
x Use extended raw format. 

-h Display this command line help and 
exit. 

-i arglist Specify input file format. 
w=<width> Source image width [default is 176] 
h=<height> Source image height [default is 144] 
fps=<frame_rate> Source frame rate [default is 30 

fps] (deprecated) 
sf=<skip_factor> Source frames to skip between each 

encoded frame [0] 
pcf=<clock_freq> Picture clock frequency [default is 

29.97] (deprecated) 
par=par_description Pixel aspect ratio.  par_description 

is a string (deprecated) 
-m <speed> Specify machine clock rate in MHz. 
-r mode,arglist Specify data rate control for non-I 

frames. 
mode mode is mandatory and must be the 

first argument in arglist.  It is 
one of the following strings: 

q[=<qual>] Use PIA_RCM_QUALITY with the given 
quality [5000]. 

Q[=<qp>] Map fixed QP into PIA_RCM_QUALITY 
[5000]. 

fs=<frame_size> (deprecated) 
fd (deprecated) 

q=<quality> Specifies minimum quality level in 
range 0 .. 10000. 
[default is 0]. 

fps=<frame_rate> (deprecated) 
d=<data_rate> (deprecated) 
kb=<data_rate> (deprecated) 
B=<QP>   Use the given QP for B frames 
l=<layer> (deprecated) 

-k mode,arglist Specify rate control for I frames. 
mode   mode is mandatory and must be the 

first argument in arglist.  It is 
one of the following strings: 

i=<interval> 
interval = 0 
interval > 0 

Specify key frame period. 
Use PIA_KFCM_AUTO. 
Use PIA_KFCM_INTERVAL, with the 
given interval. 

a Use PIA_RCM_AUTO rate control [this 
is the default]. 
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q[=<quality>] Use PIA_RCM_QUALITY with the given 
quality [5000]. 

fs=<frame_size> Use method PIA_RCM_FRAME_SIZE with 
the given target frame size (in 
bytes). (deprecated) 

q=<quality> Specifies quality level in range 0 
.. 10000. [default is 5000 for mode 
PIA_RCM_QUALITY, else 0]. 

l=<layer> (deprecated) 
-o outfile Specify output file.  Output 

suppressed if unspecified. 
-q Quiet mode (no summary statistics). 
-v Verbose mode.  Displays progress 

messages and statistics about the 
compressed bitstream to stdout. 

 

10.2 Decoder Command line Interface 

Usage:  tromsod infile [options] 
In the following syntax descriptions, arglist is a comma-separated list 
of the form \"arg[=value],arg[=value],...\".  Some arguments take 
values, some do not.  If arglist contains any whitespace, it must be 
enclosed in quotes. For example,  -d  4,l=mylog.txt,a  specifies the 
debug level to be 4, that the debug log file is named \"mylog.txt\", 
and that the file should be opened in append mode rather than being 
overwritten. 
infile Specify TROMSO bitstream input file. 
-b <image_range> Images to decode [decode all by 

default] 
<image_range> is <m>-<n>: 
3-5 means frames 3, 4 and 5 
4-  means frames 4 and beyond 
-5 means frames 0 through 5 
7 means frames 0 through 7 

-d arglist Specify debugging output. 
<level> Detail level.  Use -1 to suppress. 

[default is 0] 
l=logfile Output file for debug messages. 

[default is stdout] 
a Append to logfile. [default is to 

overwrite] 
-e arglist Specify post filtering options 

smoothing Smoothing [default is off] 
(deprecated) 

-f arglist Specify display attributes 
(deprecated) 

-h Display this command line help and 
exit. 

-i arglist Specify input file format. 
w=<width> Compressed image width [default is 

176] 
h=<height> Compressed image height [default is 

144] 
-l Enable latency mode [default is off] 
-m <speed> Specify machine clock rate in MHz. 
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(WIN32 IA only) 
-o outfile Specify output file.  Output 

suppressed if unspecified. 
-p Enable smoothing postfilter [default 

is off] (deprecated) 
-q Quiet mode.  Suppresses display of 

summary information. 
-v Verbose mode.  Displays progress 

messages to stdout. 
-x arglist Specify packet loss characteristics. 

<percent> Percent packet loss [default is 0]. 
 


