
 RealNetworks, Inc Confidential 1

9

External Specification

Video and Audio Technologies

Codec Group
RealNetworks, Inc

September 11, 2007

Version 1.8

Summary
This document is the draft specification of RealVideo9 Codec.
RealVideo9 achieves new levels of compression performance at low as
well as high data rates. The improvements are due in part to 1/4 pixel
interpolation for motion estimation, the addition of 16x8,8x16 pixel
motion compensated blocks to the 8x8 and 16x16 blocks, medium
complexity motion estimation technique with better RD characteristics,
16x16 double transforms, better in-loop filter, efficient coding of 4x4
intra prediction modes, run length coding of MB-Types, and more
efficient variable length coding by symbol manipulation and adaptive
coding. The algorithm also benefits from black level filter, and noise
reduction pre-filtering. RealVideo9 does not need a post filter.

RealNetworks, Inc CONFIDENTIAL INFORMATION
Copyright © 2002-2007 RealNetworks, Inc. All rights reserved.

 RealNetworks, Inc Confidential 2

Revision History:

Revision Date Comment

1.0 9/18/02 Initial Decoder Specification

1.1 9/20/02 Improvements and Matching to RV8 Spec.

1.2 10/31/02 Fix Typos, Errors, and more Clarification based
on AcerAli_RV9_question.doc

1.3 Entropy coding Tables Fix

1.3 Deblocking Filter Fix

1.5 1/26/04 Dbl Xfrm Dynamic Range

1.6 7/26/05 Deblocking Filter fixes & notes

1.6 8/17/05 Unambiguous description of filter sets and
filters in the deblocking section.

1.7 06/19/07 Interlace Mode no longer supported.

 Removed draft watermark

1.8 09/06/07 Top and Bottom MV Truncation corrected
(Section 4.4).

 B Frame Deblocking RefQp correction
(Section 4.3.8.2)

 L2’& R2’filters should have +∆ && -∆ resp.
(Section 4.3.8.1.2)

 09/11/07 Define Integer & Subpel MV

 Define arithmetic ops

 Page Reformat

 RealNetworks, Inc Confidential 3

Table of Content

Table of Content 3

1 High Level Overview 5

2 Requirements, Objectives 6

3 Interface Specification 6

3.1 RealVideo DLL 6

3.2 Console Application 6

4 Algorithm Descriptions 7

4.1 Introduction 7

4.2 Overview 7
4.2.1 Picture Types 8
4.2.2 Picture Structure 9
4.2.3 Macroblock Structure 10

4.3 Core Compression Algorithm 10
4.3.1 Arithmetic operators 10
4.3.2 Macroblock Types 10
4.3.3 1/4 sub-pel prediction 11
4.3.4 Block sizes for Inter prediction 13
4.3.5 4x4 Intra Prediction 14
4.3.6 16x16 Intra Prediction 16
4.3.7 4x4 Transform 18

4.3.7.1 Exact integer transform instead of DCT 18
4.3.7.2 Double Transform 18

4.3.8 Quantization 18
4.3.8.1 Dynamic Range for Various Methods. 20

4.3.9 Deblocking filter 21
4.3.9.1 I and P Picture In-loop deblocking 21
4.3.9.1.1 Introduction: 21
4.3.9.1.2 Filter Structures: 27

4.3.9.2 B Picture Deblocking Filter 29
4.3.9.2.1 Introduction: 29
4.3.9.2.2 In Loop Filter for B-frames 29

4.4 B Frames 30

4.5 Reference Picture Resampling (RPR) 31

4.6 CPU Scalability 32

5 Bitstream Syntax 32

5.1 Stream Layer 32
5.1.1 SPO Flags 32

 RealNetworks, Inc Confidential 4

5.2 Slice Layer 33
5.2.1 ECC 34
5.2.2 PicSize Syntax 35

5.3 Macroblock Layer 36
5.3.1 Structured VLC code 36
5.3.2 MBType & DQuant 37

5.3.2.1 Intra Picture MB Type Syntax 37
5.3.2.2 Run Length coding of Skipped MB 38
5.3.2.3 Adaptive MB Type 38
5.3.2.4 DQuant 40

5.3.3 4x4 Intra Prediction Mode Coding 41
5.3.4 16x16 Intra Prediction Mode Coding 42
5.3.5 Motion Vectors 43

5.3.5.1 Prediction in P Frames 43
5.3.5.2 Prediction in B frames 43
5.3.5.3 Motion Vector Transmission 44

5.3.6 CBP (Coded Block Pattern) 45
5.3.6.1 CBP length and bit order 45
5.3.6.2 The structure of CBP code. 46
5.3.6.3 CBP descriptor. 46
5.3.6.4 8x8 descriptor and contexts. 47
5.3.6.5 Cr bits. 47

5.4 Block Layer 47
5.4.1 Block size, scan order, and types of coefficients. 47
5.4.2 The structure of the code. 48
5.4.3 4x4 and 2x2 block descriptors. 49
5.4.4 Level descriptors. 50
5.4.5 Sign bits. 50
5.4.6 Code Tables. 50

5.4.6.1 Partition of code tables based on Inter/Intra coding and
quantization step sizes. 50
5.4.6.2 Variable-length codes and code tables. 51
5.4.6.3 Code tables. 52

6 Performance Estimates 52

7 QA Test Procedures 52

8 References 53

9 Annex A 54

10 Annex B 56

10.1 Encoder Command line Interface 56

10.2 Decoder Command line Interface 58

 RealNetworks, Inc Confidential 5

1 High Level Overview
RealVideo9 represents major advances in compression performance.
RealVideo9 achieves new levels of compression performance at low as
well as high data rates. The improvements are due in part to 1/4 pixel
interpolation for motion estimation, the addition of 16x8 and 8x16
pixel motion compensated blocks to the 8x8 and 16x16 blocks, medium
complexity motion estimation technique with better RD characteristics,
16x16 double transforms, better in-loop filter, efficient coding of 4x4
intra prediction modes, run length coding, and more efficient variable
length coding by symbol manipulation and adaptive coding. RealVideo9
doesn’t need a post filter. RealVideo9 Decoder has built in CPU
scalability to ensure best possible Video Experience various hardware
configurations.

RealNetworks, Inc CONFIDENTIAL INFORMATION
Copyright © 1999-2002 RealNetworks, Inc. All rights reserved.

 RealNetworks, Inc Confidential 6

2 Requirements, Objectives
Minimum Decode Platform: 160x120 pixel, 7.5 fps decode on a Pentium™
200 MHz with 16 MB of memory.

Target bit rates: < 20 kbps, 30 kbps, 100 kbps, 500 kbps, 1-2 Mbps DVD
quality bit rates, HDTV bit rates, and above.

Target frame sizes: minimum frame size is 32x32, with particular
attention to the range CIF (352 x 288) to VGA Resolution (640 x 480).

Video quality requirements: A noticeable improvement in video quality
over RealVideo 8 at comparable data rates.

3 Interface Specification

3.1 RealVideo DLL

Decoder DLL will comply to the RealVideo back-end interface detailed in
Annex A. These interfaces might change for subsequent releases.

3.2 Console Application

A console application version of the codec will be available for
development and testing purposes. The encoder and decoder command line
arguments are listed in Annex B.

 RealNetworks, Inc Confidential 7

4 Algorithm Descriptions

As compression quality is still considered the most important
development area for improving the streaming video experience,
RealVideo9 delivers a quantum jump in compression efficiency.

4.1 Introduction

The RealVideo9 and RealVideo8 algorithm is largely based on H.26L or
the Joint Video Team proposal Mpeg4 part 10 / Advanced Video Codec,
which experiments have shown provides significant and very visible
coding gains over Mpeg4v2/H263+.
RealVideo9 deviates from 26L by:

• not performing the chroma DC coefficient manipulation (although a
lower chroma DC quantizer achieves almost the exact same result)

• not including the 8x4, and 4x8 motion compensated modes

• additional 4x4 intra prediction modes (These were proposed to JVT
and have been accepted in simplified form (mode 7))

• addition of B frames (26L now has generalised Bipredictive-frames)

• inloop filter definition and usage

• addition of an alternate VLC for coefficients.

• Double transform for Inter and Intra MBs.

• Quantizer Matrix for Double Transform.

• Improved Intra prediction mode coding.

• Adaptive MB Type coding.

• Allows RPR

Changes w.r.t. RealVideo8 are:

q Improved Intra mode coding
q Advanced Deblocking Filter
q No Post filter required
q Quarter Pel Motion Estimation (includes the Funny position)
q 16x8 and 8x16 motion compensation
q Double Transform for Inter 16x16
q New QP Matrix for Double Transform
q Optimized Entropy coding through explicit Super VLC quantizer.
q Adaptive MB Types
q Run length encoding of Skip Modes
q Better B Frame motion vector prediction
q Bidirectional MB Type for B frames
q New Picture Size scheme to allow splicing of Files.

4.2 Overview

RealVideo 9 is a hybrid predictive coder that uses temporal prediction
(motion compensation) and spatial prediction (intra-prediction),
transform-based residual coding and an inloop deblocking filter.
Figure 4.1 provides a high-level block diagram of the algorithm.

 RealNetworks, Inc Confidential 8

Figure 4.1: Block diagram of the RealVideo 9 decoder algorithm

The Incoming Bitstream describes how to reconstruct pictures in groups
of non-overlapping 16x16 pixels (macroblocks). For each macroblock,
the bitstream indicates whether Spatial Prediction or Temporal
Prediction is to be used. Once a prediction is formed, the image
residual is formed through the Coefficient Decoding, Dequantization and
Inverse Transform process. The prediction and residual are added and
stored in memory for use in future spatial prediction. Once the entire
picture has been reconstructed, an inloop deblocking filter is used to
remove blocking artifacts. This filtered image is then ready to be
rendered and, in addition, used for future temporal prediction.

The RealVideo 9 decoding algorithm is defined to reconstruct video
images in YUV 4:2:0 format. It is the function of the video renderer
(or equivalent player module) to format the picture to the appropriate
color space for display.

4.2.1 Picture Types

There are 3 picture types in RealVideo 9 – I-Pictures, P-Pictures and
B-Pictures.

I-Pictures are also referred to as Intra-Frames or Key Frames. They do
not use temporal prediction and, therefore, do not require other
decoded reference frames to be in the decoder for proper
reconstruction. I-Pictures provide entry or access points to the video
sequence.

P-Pictures use both spatial and temporal prediction. The temporal
prediction always uses one reference frame. That reference frame shall
always be the most previous reconstructed I-Picture or P-Picture.

B-Pictures use both spatial and temporal prediction. However, temporal
prediction uses up to 2 reference frames. These reference frames shall
always be the 2 most previous reconstructed I-Pictures or P-Pictures
that were found in the bitstream (i.e. in “bitstream” order, not
display order). Because the display time of one reference picture is
always before the B-Picture and the other is always after the B-
Picture, the placement of B-Pictures in the bitstream is not in display
order. Figure 4.2 provides an example of display and bitstream
ordering of I, P and B Pictures.

Temporal
Prediction

Spatial
Prediction

Dequantization Inverse
Transform

Coefficient
Decoding

Reconstructed
Frame Buffer

Deblocking
Filter

Incoming
Bitstream

Frame
Store

Decoded
Frame

 RealNetworks, Inc Confidential 9

(a)

(b)

Figure 4.2: (a) Display Order. (b) Bitstream and Decode Order

4.2.2 Picture Structure

Pictures are divided into non-overlapping 16x16 group of pixels called
macroblocks. For instance, a QCIF picture (176x144 pixels) is divided
into 99 macroblocks as indicated in Figure 4.3.

Figure 4.3: A picture with 11 x 9 macroblocks (QCIF picture)

When parsing and decoding the video bitstream macroblocks are scanned
from left to right starting at the top left of the picture. Once an
entire row of macroblocks are decoded the next row down proceeds.

I0 B1 B2 B3 P4 B5 B6 B7 P8

I0 B1 B2 B3 P4 B5 B6 B7 P8

9 macroblocks

11 macroblocks

176 pixels

144 pixels

Bitstream/Decode Order

Display Time

 RealNetworks, Inc Confidential 10

4.2.3 Macroblock Structure

The basic transform used for residual coding is a 4x4 2-D transform.
Figure 4.4 below indicate how a macroblock is divided into 4x4 regions
and the scanning order of these regions.

Figure 4.4: Macroblock scanning order of 4x4 blocks during residual
coding

4.3 Core Compression Algorithm

4.3.1 Arithmetic operators

The following arithmetic operators are defined as follows.

+ Addition

– Subtraction

* Multiplication
/ Integer division with truncation of the result toward zero.
>> Arithmetic right shift of a two’s complement integer

representation of binary digits. This function is defined
as / for positive integer values. This function is defined
as integer division with truncation to –inf for nagative
integer values.

4.3.2 Macroblock Types
Each macroblock is given a categorization (macroblock type) that
indicates both the way prediction is done for that macroblock (e.g.
spatial or temporal) and the way residual transform is done (e.g.
single 4x4 transforms or a double transforms). The complete list of
macroblock types is given below in Table 4.1.

Y U V

1

5

2 3 4

6 7 8

9 10 11 12

13 14 15 16

17 18

19 20

21 22

23 24

 RealNetworks, Inc Confidential 11

TABLE 4.1: List of macroblock types

MB Types Description I-Pic P-Pic B-Pic
INTRA Intra, 16 4x4 predictions X X X
INTRA_16x16 Intra, 16x16 prediction, Dbl Xfm X X X
INTER Inter, 1MV X
INTER_16x16 Inter, 1MV, Dbl Xfrm X
INTER_16x8V Inter, 2MVs for 2 16x8 blocks X
INTER_8x16V Inter, 2MVs for 2 8x16 blocks X
INTER_4V Inter, 4MVs for 4 8x8 blocks X
SKIPPED Inter, no residual, MV=(0,0) X
FORWARD Fwd MV, 1MV X
BACKWARD Bwd MV, 1MV X
DIRECT Direct, Derived 2MV for 16x16

block
 X

BIDIR Fwd & Bwd MV for 16x16 block X
SKIPPED Direct, no residual, Derived MV

for 16x16 block
 X

4.3.3 1/4 sub-pel prediction

Motion vectors in RealVideo 9 are transmitted in 1/4 pixel units.
Motion vectors always point to reference picture relative to MB
position in the decoded picture. The integer Motion Vector for a
decoded 1/4 pixel motion vector is defined as the full pixel location
such that the resulting phase (subpel) is +ve and less than max phases.
When the motion vectors for a macroblock have been decoded the full-
pixel offset can be obtained by shifting right by 2 bits.

MVx_int = (MVx_luma >> 2)
MVy_int = (MVy_luma >> 2).

The “phase” or sub-pixel location can be obtained by extracting the 2
least significant bits.

MVx_sub = (MVx_luma & 3)
MVy_sub = (MVy_luma & 3).

The integer pixels used in the intrepolation are the actual pixels of
the reference picture and/or the padded pixels. The MV is illegal if it
requires pixels beyond the padded reference image.

For luma sub-pixel interpolation is calculated with a 6-tap filter. For
chroma, a 2-tap filter is used. In addition, one of the 16 interpolated
pixels, MVx_sub = 3, MVy_sub = 3, in the luma plane is created using a
stronger filter. The different horizontal and vertical filters are
illustrated in Table 4.2.

 RealNetworks, Inc Confidential 12

TABLE 4.2: Luma Horizontal and vertical motion compensation filters

(MVx_sub,
MVy_sub)

Horizontal, Vertical Filter, p0 = integer pixels,
t0 = temporary buffer, v0 = interpolated image

(0,0) t0 = p0
v0 = t0

(0,1) t0 = p0
v0 = (t-2 – 5t-1 + 52t0 + 20t1 – 5t2 + t3 + 32) >> 6

(0,2) t0 = p0
v0 = (t-2 – 5t-1 + 20t0 + 20t1 – 5t2 + t3 + 16) >> 5

(0,3) t0 = p0
v0 = (t-2 – 5t-1 + 20t0 + 52t1 – 5t2 + t3 + 32) >> 6

(1,0) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6
v0 = t0

(1,1) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6
v0 = (t-2 – 5t-1 + 52t0 + 20t1 – 5t2 + t3 + 32) >> 6

(1,2) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6
v0 = (t-2 – 5t-1 + 20t0 + 20t1 – 5t2 + t3 + 16) >> 5

(1,3) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6
v0 = (t-2 – 5t-1 + 20t0 + 52t1 – 5t2 + t3 + 32) >> 6

(2,0) t0 = (p-2 – 5p-1 + 20p0 + 20p1 – 5p2 + p3 + 16) >> 5
v0 = t0

(2,1) t0 = (p-2 – 5p-1 + 20p0 + 20p1 – 5p2 + p3 + 16) >> 5
v0 = (t-2 – 5t-1 + 52t0 + 20t1 – 5t2 + t3 + 32) >> 6

(2,2) t0 = (p-2 – 5p-1 + 20p0 + 20p1 – 5p2 + p3 + 16) >> 5
v0 = (t-2 – 5t-1 + 20t0 + 20t1 – 5t2 + t3 + 16) >> 5

(2,3) t0 = (p-2 – 5p-1 + 20p0 + 20p1 – 5p2 + p3 + 16) >> 5
v0 = (t-2 – 5t-1 + 20t0 + 52t1 – 5t2 + t3 + 32) >> 6

(3,0) t0 = (p-2 – 5p-1 + 20p0 + 52p1 – 5p2 + p3 + 32) >> 6
v0 = t0

(3,1) t0 = (p-2 – 5p-1 + 20p0 + 52p1 – 5p2 + p3 + 32) >> 6
v0 = (t-2 – 5t-1 + 52t0 + 20t1 – 5t2 + t3 + 32) >> 6

(3,2) t0 = (p-2 – 5p-1 + 20p0 + 52p1 – 5p2 + p3 + 32) >> 6
v0 = (t-2 – 5t-1 + 20t0 + 20t1 – 5t2 + t3 + 16) >> 5

(3,3) t0 = p0 + p1
v0 = (t0 + t1 + 2) >> 2

The value of t0 is clipped to 0-255 before calculating v0.The final
value of v0 is again clipped to the range 0-255.
Motion vectors for chroma motion compensation are derived from the
motion vectors for the luma. Specifically, the chroma MVs are
calculated as

 MVx_chroma = MVx_luma /2
 MVy_chroma = MVy_luma /2

Then the integer offset and sub-pixel location can be obtained by

MVx_chroma_int = (MVx_chroma >> 2)
MVy_chroma_int = (MVy_chroma >> 2).

MVx_chroma_sub = (MVx_chroma & 3)
MVy_chroma_sub = (MVy_chroma & 3).

 RealNetworks, Inc Confidential 13

Additionally, the size of motion compensation blocks are half the size,
horizontally and vertically, from those used in luma. Thus, motion
compensation block sizes for chroma include 8x8, 8x4, 4x8 and 4x4.
Chroma motion compensation filters are given in Table 4.3.

Note the rounding or addition factor for each sub-pixel location. In
addition, note that the (3,3) position is the same as the (2,2)
position.

TABLE 4.3: Chroma Horizontal and vertical motion compensation filters

(MVx_chroma_sub,
MVy_chroma_sub)

Filter (input py,x, output fy,x)

(0,0) f0,0 = p0,0
(0,1) f0,0 = (3p0,0 + p1,0 + 2) >> 2
(0,2) f0,0 = (p0,0 + p1,0) >> 1
(0,3) f0,0 = (p0,0 + 3p1,0 + 2) >> 2

(1,0) f0,0 = (3p0,0 + p0,1 + 1) >> 2
(1,1) f0,0 = (9p0,0 + 3p0,1 + 3p1,0 + p1,1 + 7) >> 4
(1,2) f0,0 = (3p0,0 + p0,1 + 3p1,0 + p1,1 + 4) >> 3
(1,3) f0,0 = (3p0,0 + p0,1 + 9p1,0 + 3p1,1 + 7) >> 4

(2,0) f0,0 = (p0,0 + p0,1 + 1) >> 1
(2,1) f0,0 = (3p0,0 + 3p0,1 + p1,0 + p1,1 + 4) >> 3
(2,2) f0,0 = (p0,0 + p0,1 + p1,0 + p1,1 + 1) >> 2
(2,3) f0,0 = (p0,0 + p0,1 + 3p1,0 + 3p1,1 + 4) >> 3

(3,0) f0,0 = (p0,0 + 3p0,1 + 1) >> 2
(3,1) f0,0 = (3p0,0 + 9p0,1 + p1,0 + 3p1,1 + 7) >> 4
(3,2) f0,0 = (p0,0 + 3p0,1 + p1,0 + 3p1,1 + 4) >> 3
(3,3) f0,0 = (p0,0 + p0,1 + p1,0 + p1,1 + 1) >> 2

The final value of f is clipped to the range 0-255.

4.3.4 Block sizes for Inter prediction

In this model it is possible to estimate motion and compensate motion
on 16x16, 16x8, 8x16 and 8x8 pixel block sizes. The encoder chooses one
motion compensation mode for each macroblock. Motion vectors off the
edge of the frame are allowed and used. The luma frame data is padded
by 16 on each side. Interpolation filter Taps Lengths of 6 and 2 exist
for RV9. A valid MV is defined such that the interpolation of that MV
is possible within the padded image.

 INTER INTER_16X8V INTER_8X16V INTER_4V
 INTER_16X16
 FORWARD
 BACKWARD
 DIRECT
 BIDIR

Figure 4.5: Motion compensation block sizes for Inter macroblocks

16 16

16
8

8

8

8

8 8 8 8

16

 RealNetworks, Inc Confidential 14

4.3.5 4x4 Intra Prediction

An improved advanced intra coding mode is used. Relative to the AIC
mode in H.263+, this version is 4x4 based, the prediction is done in
the spatial domain using one of nine prediction modes. DC prediction
(the average of the block above and to the left) mode is always
allowed. Two modes use simple spatial prediction (1) column based from
above, and (2) row based from the left. Additional prediction modes are
diagonal.

In figure 4.6 below, a 4x4 block is to be predicted (pixels labeled a
to p below). The pixels A to P and X from neighboring blocks and may
already decoded and used for prediction.

X A B C D E F G H
I a b c d
J e f g h
K i j k l
L m n o p
M
N
O
P

Figure 4.6: Predicted and predictor pixels

Under some situations pixels A,B,C,D or I,J,K,L or X are not available
for use at the decoder. These situations include

1. These pixels are located outside the picture boundary
2. These pixels belong to another independent slice

In these cases, modes that require these pixels will not be encountered
by the decoder. Similarly, pixels E,F,G,H or M,N,O,P may also not be
available for use at the decoder. These situations include the ones
above with the additional case

3. These pixels are located in parts of the current frame that
have yet to be decoded and reconstructed

In these situations the decoder shall use the value of D for pixels
E,F,G,H when they are not available. T he decoder shall use the value
of L for pixels M,N,O,P when they are not available. For example,
E,F,G,H are not valid for 4x4 blocks on the right edge of the 16x16 macroblock
except the top row when the macroblock is not at the right edge of the picture.
M,N,O,P are only valid for 4x4 blocks on the left edge of the 16x16 macroblock
except on the bottom row.

Mode 0:
Generally all pixels are predicted by (A+B+C+D+I+J+K+L+4)>>3. If four
of the pixels are outside the picture, the average of the remaining
four is used for prediction – i.e. (A+B+C+D+2)>>2 or (I+J+K+L+2)>>2.
If all 8 pixels are outside the picture the prediction for all pixels
in the block is set to 128. A block may therefore always be predicted
in this mode.

 RealNetworks, Inc Confidential 15

Mode 1:
If pixels A,B,C,D are inside the picture, a,e,i,m are predicted by A,
b,f,j,n by B etc.

Mode 2:
If pixels I,J,K,L are inside the picture, a,b,c,d are predicted by I,
e,f,g,h by J etc.

Mode 3 - 8:
These diagonal modes are used only if all A,B,C,D,I,J,K,L,X are inside
the picture.

Mode 3:
m is predicted by (L + 2K + J + 2) >> 2
i,n are predicted by (K + 2J + I + 2) >> 2
e,j,o are predicted by (J + 2I + X + 2) >> 2
a,f,k,l are predicted by (I + 2X + A + 2) >> 2
b,g,l are predicted by (X + 2A + B + 2) >> 2
c,h are predicted by (A + 2B + C + 2) >> 2
d is predicted by (B + 2C + D + 2) >> 2

Mode 4:
a is predicted by (A + 2B + C + I + 2J + K + 4) >> 3
b,e are predicted by (B + 2C + D + J + 2K + L + 4) >> 3
c,f,i are predicted by (C + 2D + E + K + 2L + M + 4) >> 3
d,g,j,m are predicted by (D + 2E + F + L + 2M + N + 4) >> 3
h,k,n are predicted by (E + 2F + G + M + 2N + O + 4) >> 3
l,o are predicted by (F + 2G + H + N + 2O + P + 4) >> 3
p is predicted by (G + H + O + P + 2) >> 2

Mode 5:
a,j are predicted by (X + A + 1) >> 1
b,k are predicted by (A + B + 1) >> 1
c,l are predicted by (B + C + 1) >> 1
d is predicted by (C + D + 1) >> 1
e,n are predicted by (I + 2X + A + 2) >> 2
f,o are predicted by (X + 2A + B + 2) >> 2
g,p are predicted by (A + 2B + C + 2) >> 2
h is predicted by (B + 2C + D + 2) >> 2
i is predicted by (X + 2I + J + 2) >> 2
m is predicted by (I + 2J + K + 2) >> 2

Mode 6:
a is predicted by (2A + 2B + J + 2K + L + 4) >> 3
b,i are predicted by (B + C + 1) >> 1
c,j are predicted by (C + D + 1) >> 1
d,k are predicted by (D + E + 1) >> 1
l is predicted by (E + F + 1) >> 1
e is predicted by (A + 2B + C + K + 2L + M + 4) >> 3
f,m are predicted by (B + 2C + D + 2) >> 2
g,n are predicted by (C + 2D + E + 2) >> 2
h,o are predicted by (D + 2E + F + 2) >> 2
p is predicted by (E + 2F + G + 2) >> 2

 RealNetworks, Inc Confidential 16

Mode 7:
a is predicted by (B + 2C + D + 2I + 2J + 4) >> 3
b is predicted by (C + 2D + E + I + 2J + K + 4) >> 3
c,e are predicted by (D + 2E + F + 2J + 2K + 4) >> 3
d,f are predicted by (E + 2F + G + J + 2K + L + 4) >> 3
g,i are predicted by (F + 2G + H + 2K +2L + 4) >> 3
h,j are predicted by (G + 3H + K + 3L + 4) >> 3
l,n are predicted by (L + 2M + N + 2) >> 2
m,k are predicted by (G + H + L + M + 2) >> 2
o is predicted by (M + N + 1) >> 1
p is predicted by (M + 2N + O + 2) >> 2

Mode 8:
a,g are predicted by (X + I + 1) >> 1
b,h are predicted by (I + 2X + A + 2) >> 2
c is predicted by (X + 2A + B + 2) >> 2
d is predicted by (A + 2B + C + 2) >> 2
e,k are predicted by (I + J + 1) >> 1
f,l are predicted by (X + 2I + J + 2) >> 2
i,o are predicted by (J + K + 1) >> 1
j,p are predicted by (I + 2J + K + 2) >> 2
m is predicted by (K + L + 1) >> 1
n is predicted by (J + 2K + L + 2) >> 2

Spatial prediction in chroma is also done on a 4x4 block basis using
the same prediction modes used for luma. No additional prediction mode
information is transmitted in the bitstream for chroma prediction.
Instead, the prediction modes for chroma are derived from the modes
used for luma.

For each chroma 4x4 block there are 4 4x4 blocks for the corresponding
location in luma. The prediction mode used for both chroma planes (U
and V) is the prediction mode used for the upper left of these luma 4x4
blocks.

4.3.6 16x16 Intra Prediction

For Intra16x16 macroblocks, one of four prediction modes are used to
form a 16x16 prediction for the entire macroblock. Three modes are
similar to modes 0 – 2 for 4x4 intra plus a new planar prediction mode.
The image residual of Intra16x16 macroblocks are Double Transformed
(see section QQ).

Define P(i,-1), i=0..15 to be the 16 pixels above the macroblock to be
predicted, and P(-1,j), j=0..15 to be the 16 pixels to the left of the
macroblock to be predicted.

Mode 0: DC Prediction
If all P(i,-1) and P(-1,i) are inside the picture and current slice
then all 256 pixels are predicted by

 15

 pred = ((∑ P(i,-1) + P(-1,i)) + 16) >> 5

 i=0

If P(i,-1) are inside the picture and current slice then all 256 pixels
are predicted by

 RealNetworks, Inc Confidential 17

 15

 pred = ((∑ P(i,-1)) + 8) >> 4

 i=0

If P(-1,i) are inside the picture and current slice then all 256 pixels
are predicted by

 15

 pred = ((∑ P(-1,i)) + 8) >> 4

 i=0

If all 32 pixels are outside the picture, the prediction for all pixels
in the block is set to 128. A block may therefore always be predicted
in this mode.

Mode 1: Vertical Prediction
If pixels P(i,-1), i=0..15 are inside the picture and current slice,
P(0,j), j=0..15 are predicted by P(0,-1) etc.

Mode 2: Horizontal Prediction
If pixels P(-1,j), j=0..15 are inside the picture and current slice,
P(i,0), i=0..15 are predicted by P(-1,0) etc.

Mode 3: Planar Prediction

This mode is used only if all P(i,-1), i=0..15 and P(-1,j),
j=0..15 are inside the picture and current slice. The following
calculations are performed:

 8

 H = ∑ i∙(P(7+i,-1) – P(7-i,-1))

 i=1

 8

 V = ∑ j∙(P(-1,7+j) – P(-1,7-j))

 j=1

 a = 16x(P(-1,15) + P(15,-1))

b = (H+(H>>2))>>4

c = (V+(V>>2))>>4

And finally the actual prediction:

pred(i,j) = (a + b∙(i-7) + c∙(j-7) + 16) >> 5

 RealNetworks, Inc Confidential 18

All calculations shall be integer. No divisions (only shifts) are
needed, and all calculations shall be within 16 bits.

For chroma the mode used is the mode chosen for luma, except when the
luma mode is 3 then mode 0 is used. Modes 0,1, and 2 are predicted in
the same way as luma except 8x8 blocks are used.

4.3.7 4x4 Transform

4.3.7.1 Exact integer transform instead of DCT
A 4x4 integer transform is used for image residuals. By having an
exact definition of the inverse transform, there is no encoder/decoder
mismatch. The transformation of the pixels a,b,c,d into four transform
coefficients is defined by:

A = 13a + 13b + 13c + 13d
B = 17a + 7b - 7c - 17d
C = 13a - 13b – 13c + 13d
D = 7a - 17b + 17c - 7d

The inverse transform is defined by:

a' = 13A + 17B + 13C + 7D
b' = 13A + 7B - 13C – 17D
c' = 13A – 7B – 13C + 17D
d' = 13A – 17B + 13C - 7D

The relationship between the transform in one dimension without
normalization is a’ = 676 x a. This is used in the quantization step
(see below). The actual transform is 2D and since it is a separable
transform, it implemented as a horizontal 1D transform followed by a
vertical 1D transform.

4.3.7.2 Double Transform
An additional 4x4 transform is used for the 16 DC coefficients of the
16 4x4 transforms inside a macroblock. The coefficients of this second
transform are coded and transmitted as a block in addition to the 16
4x4 luma blocks (each then having only 15 coefficients). Since we use
the same integer transform to DC coefficients, we have to perform
additional normalization to those coefficients, which implies a
division by 676. To avoid the division we performed normalization by
49/215 on the encoder side and 48/215 on the decoder side, which gives
sufficient accuracy.

4.3.8 Quantization
Quantization is table-based and designed in such a way that the bit
usage as a function of the quantization parameter is fairly linear. In
the encoder and decoder, the QP range 0-31 is mapped into the tables
A[QP] and B[QP], respectively, where the relationship between A[] and
B[] is:

 RealNetworks, Inc Confidential 19

A[QP] x B[QP] x 6762 = 234.

with

A(QP=0,..,31) = {620, 553, 492, 439, 391, 348, 310, 276, 246, 219, 195,
174, 155, 138, 123, 110, 98, 87, 78, 69, 62, 55, 49, 44, 39, 35,
31, 27, 24, 22, 19, 17}

B(QP=0,..,31) = {60, 67, 76, 85, 96, 108, 121, 136, 152, 171, 192, 216,

242, 272, 305, 341, 383, 432, 481, 544, 606, 683, 767, 854, 963,
1074, 1212, 1392, 1566, 1708, 1978, 2211}

Quantization of coefficient level K is performed as

LEVEL = (((K>>4) x A[QP]x32) >> 16) + f) >> 5,

where f is 5 for Inter macroblocks and 10 for Intra macroblocks.
Dequantization is defined as

K’ = ((LEVEL x B[QP]) + 8) >> 4.

For the coefficients of the second transform in INTRA_16x16 and
INTER_16x16 macroblocks quantization is performed as

LEVEL = (K x A[QP] + f)>>20,

where f is 0x55555. Dequantization is as above except that the three
lowest frequency coefficients are dequantized with a different
quantization level. These special coefficients are shown in Figure
4.7.

Figure 4.7: Second transform coefficients with lowered QP (shaded)

Specifically, these coefficients are dequantized using a different QP
value. This value is derived from the macroblock QP (used for the
other coefficients) using the two tables below. The first table is used for
Intra macroblocks, and the second table is used for Inter macroblocks.

luma_intra_quant_DC[32] =
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,17,18,18,18,19
,19,19,20,20,20,22,22,22,22}

luma_inter_quant_DC[32] =

{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,20,21
,21,22,23,23,23,24,24,24,24}

 c1

c4

c8

c10

c5

c7

c11

c14

c6

c12

c13

c15

c0

c2

c3

c9

 RealNetworks, Inc Confidential 20

Quantization is performed the same way for chroma as for luma, except
the QP value used is derived from the QP used for luma using the tables
below. The chroma DC coefficient (c0) is given an even lower QP than the
chroma AC coefficients (c1-c15).

chroma_QP_map_AC[32] =
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,17,18,19,20,20,21,22,
22,23,23,24,24,25,25};

chroma_QP_map_DC[32] =

{0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,15,16,17,18,18,19,20,20
,21,21,22,22,23,23};

After inverse transformation, the pixel values will then be 210 too
high, and a 10 bit downshift is needed as a part of the frame
reconstruction. The definition of the transform and quantization is
designed so that no overflow will occur with the use of 32-bit
arithmetic for input, output or intermediates. For exact precisions
see 4.3.7.1.

4.3.8.1 Dynamic Range for Various Methods.

A*B*676*676 = 2^34
Transform Input = 9 Bits per pixel
Double Xfrm input is DC coeff of 16 4x4 blocks normalized by 49/2^15.
So the input to the remaining chain is 11 bits.
Transform Intermediates = 13*13*4*4 * 2^9 = 21 Bits.
Transform Output = 21 Bits
(11 bits can represent normalized Xfrm at QP0)

Quant Input = 21Bits
Transform Coeff Value Reduced to 17 Bits and then saturated to 16 bits
during Quantization. (Corresponds to ½ LSB Granularity for Table A)
The down shift & saturation is not done for the double Xfrm.
Quant Output = 10 Bits. (signed)
(In case of Double Xfrm and SuperVLC, if the output exceeds 10Bits, the
Double transform is not done. The MB is recoded as INTRA MB)
Tranform + Quant normalization = 2^20

QVAL * B = Level * [A * B * 676 * 676] / [13 * 13] * 2^20 < 2^16
Dquant Input = 10 Bits
Dquant Intermediates = 16 Bits
Dquant Normalisation = 2^4
Dquant Output = Max 12 Bits

Ixfrm Input = 12 Bits
Ixfrm Intermediate = 13*13 * 2^12 < 2^20
Ixfrm Normalization = 2^10
Ixfrm Output = 9 bits

Double Xfrm

QVAL * B = Level * [A * B * 676 * 676] / [13 * 13] * 2^20 < 2^18
Dquant Input = 11 Bits
Dquant Intermediates = 18 Bits
Dquant Normalisation = 2^4
Dquant Output = Max 14 Bits

 RealNetworks, Inc Confidential 21

Ixfrm Input = 14 Bits
Ixfrm Intermediate = 13*13 * 2^14 < 2^22
Ixfrm Normalization = 2^10
Ixfrm Output = 11 bits

4.3.9 Deblocking filter
For I, P and B Pictures an in-loop deblocking filter is used. (Note:
since B Picture are never used as reference frames, deblocking is
optional in the encoder & decoder)

4.3.9.1 I and P Picture In-loop deblocking

4.3.9.1.1 Introduction:
After the reconstruction of a entire picture a conditional filtering of
this picture takes place, that effects the boundaries of the 4x4 block
structure. RV9 deblocking filter is designed to provide PSNR
improvement as well high visual quality. Thus there is no smoothing
post-filter required for RV9.

Deblocking Filter:
The deblocking filter consists of 3 basic parts.

• Determination of Block Strength.
• Activity Measures
• Filters

Block Strength:

First, each 4x4 luma block in a reconstructed macroblock is assigned a
filtering Strength, which has the following value:

4x4 block condition Strength

Macro block is Intra-coded, or
INTER_16x16 coded

2

4x4 Block is non INTRA, but has
nonzero coefficients

1

The absolute difference between one
of the motion vector components of
the two adjacent 4x4 blocks (above
and to the left) is at least one
integer pixel (four ¼ pixels)*.

1

The adjacent (above and to the left)
motion vectors refer to different
reference frames (in B frames)

See section 4.3.8.2

Else 0

• All blocks are checked. Eg. Four Motion vector. Even if the block
and the adjacent block are inside the MB they have different MVs
and thus are checked for motion vector difference.

• Block Strengths are not additive. If multiple conditions apply,
the highest number is set.

 RealNetworks, Inc Confidential 22

FilterSet Types:
There are 3 FilterSet types.
“Strong Filtered”,
“Normal / Weak Filtered”,
“Not Filtered”.
The selection criterion is.

4x4 block condition Filter Set

Strength is 2 on at least one side
of the 4x4 edge and is MB edge.

“Strong Filtered”

Strength > 0 on at least one side
of the 4x4 edge

“Normal / Weak Filtered”

Else “Not Filtered”

Edge Scan:
Filtering takes place on each 4x4 block in the following order.

1. Filter this Horizontal edge if marked as “Normal / Weak filtered”
2. Filter this Vertical edge if marked as “Normal / Weak filtered”.
3. Filter this Horizontal edge if marked as “Strong Filtered”.
4. Filter this Vertical edge if marked as “Strong Filtered”.

• Edges of a 4x4 block.

• In essence the Vertical filter lags behind the Horizontal
filter, and the “Strong filtered” edge lag behind the “Normal
/ Weak filtered” edge. The design is such that 4x4 blocks are
traversed from left to right and top to bottom on the whole
image. But there are other ways to achieve bit exact results.
By carefully analysing the dependencies you could traverse
MB's from left to right.

• Picture edges are not filtered.

• Slice boundaries do not change the deblocking filter
behaviour. All slices are assumed to be available during the
deblocking stage. It is up to the decoder to fill in
appropriate information if loss occurs as part of error
concealment. Error concealment techniques are not normative.

Activity Measures:
After the strengths and FilterSet types have been selected based on
coded information, further selection of filters, recursive depth and
strengths in done based on local image properties.

Block based Filter Decision: Parameters Al and Ar:
The type of filter (“Strong 5 Tap”, “Normal 4/3 Tap” or “Weak 2/3 Tap”)
is made for each full edge of a 4x4 block by calculating a set of
parameters (Al, Ar, b3SmoothLeft and b3SmoothRigh).

1

2
4

3

4x4 Block

 RealNetworks, Inc Confidential 23

Al and Ar parameters select which filter to use and also the recursive
depth of the filter, and are calculated using the following algorithm.

1. Edge is marked with FilterSet “Strong Filtered”

Figure 4.9: Filtering a vertical edge (dark line)

Consider the above vertical edge show in Fig. 4.9.

Compute:

 deltaL[0] = L20 - L10;
 deltaL[1] = L21 - L11;
 deltaL[2] = L22 - L12;
 deltaL[3] = L23 - L13;
 deltaR[0] = R20 - R10;
 deltaR[1] = R21 - R11;
 deltaR[2] = R22 - R12;
 deltaR[3] = R23 - R13;

 Al = Ar = 3;

 delta = deltaL[0]+deltaL[1]+deltaL[2]+deltaL[3];
 if (ABS(delta) >= beta) Al = 1;
 delta = deltaR[0]+deltaR[1]+deltaR[2]+deltaR[3];
 if (ABS(delta) >= beta) Ar = 1;

NOTE: The DeltaR[] and DeltaL[] calculated can be used
again later for the actually filter calculation.

 deltaL2[0] = L20 - L30;
 deltaL2[1] = L21 - L31;
 deltaL2[2] = L22 - L32;
 deltaL2[3] = L23 - L33;
 deltaR2[0] = R20 - R30;
 deltaR2[1] = R21 - R31;
 deltaR2[2] = R22 - R32;
 deltaR2[3] = R23 - R33;

 b3SmoothLeft = b3SmoothRight = true;

 delta = deltaL2[0]+deltaL2[1]+deltaL2[2]+deltaL2[3];
 if (ABS(delta) >= beta2 && Al != 1) b3SmoothLeft = false;
 delta = deltaR2[0]+deltaR2[1]+deltaR2[2]+deltaR2[3];
 if (ABS(delta) >= beta2 && Ar != 1) b3SmoothRight = false;

L30 L20 R10 L10 R20 R30

L31 L21 R11 L11 R21 R31

L32 L22 R12 L12 R22 R32

L33 L23 R13 L13 R23 R33

 RealNetworks, Inc Confidential 24

Where beta is 4*β and beta2 is either 3*β or 4*β. beta2 is 4*β in
the luma component when the number of pixels in the frame is less

than or equal to 176*144. β is a function of the MB QP and given
as

QP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

β 0 0 0 0 0 0 0 0 3 3 3 4 4 4 6 6 6 7 8 8 9 9 10 10 11 11 12 13 14 15 16 17

Using Al, Ar, b3SmoothLeft and b3SmoothRight the table below
shows the cases when each of the 3 filters are used.

FilterSet == “Strong Filtered”

Block Al Ar Filter

Al = 3 && Ar = 3 &&

b3SmoothLeft=true && b3SmoothRight=true

Strong 5 Tap

Al > 1 && Ar > 1 Normal 4/3 Tap

Al or Ar >1 Weak 2/3 Tap

Else none

2. Edge is marked with FilterSet “Normal / Weak Filtered”

Consider the above vertical edge show in Fig. 4.9.

Compute:

 deltaL[0] = L20 - L10;
 deltaL[1] = L21 - L11;
 deltaL[2] = L22 - L12;
 deltaL[3] = L23 - L13;
 deltaR[0] = R20 - R10;
 deltaR[1] = R21 - R11;
 deltaR[2] = R22 - R12;
 deltaR[3] = R23 - R13;

 Al = Ar = 3;

 delta = deltaL[0]+deltaL[1]+deltaL[2]+deltaL[3];
 if (ABS(delta) >= beta) Al = 1;
 delta = deltaR[0]+deltaR[1]+deltaR[2]+deltaR[3];
 if (ABS(delta) >= beta) Ar = 1;

deltaL2[0] = L20 - L30;

 deltaL2[1] = L21 - L31;
 deltaL2[2] = L22 - L32;
 deltaL2[3] = L23 - L33;
 deltaR2[0] = R20 - R30;
 deltaR2[1] = R21 - R31;
 deltaR2[2] = R22 - R32;
 deltaR2[3] = R23 - R33;

 RealNetworks, Inc Confidential 25

 (used later)

NOTE: The DeltaR[] and DeltaL[] calculated can be used
again later for the actually filter calculation.

Where beta is 4*β. β is a function of the MB QP and given as

QP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

β 0 0 0 0 0 0 0 0 3 3 3 4 4 4 6 6 6 7 8 8 9 9 10 10 11 11 12 13 14 15 16 17

FilterSet == “Normal / Weak Filtered”

Block Al Ar Filter Type

Al > 1 && Ar > 1 Normal 4/3 Tap

Al or Ar >1 Weak 2/3 Tap

Else none

3. Edge is marked with FilterSet “Not Filtered”

This edge is not filtered.

Pixel Based Activity Measure:
Once a filter type has been selected for a 4x4 block edge, various
clipping conditions are determined for each of the 4 rows or columns of
the vertical or horizontal edge being filtered.

The alpha activity parameter is used to determine whether to keep the
filtered pixel, clip it or to discard it -- all of which can be viewed
as clipping functionality.

Consider the set of eight pixels across a 4x4 block horizontal or
vertical boundary shown in Fig. 4.10.

Figure 4.9: Eight pixels across a horizontal or
vertical edge (dark line)

Each side of the edge has clip strength defined by Cl and Cr in the
following way

Cl = ClipTbl[QP][strength_left]
Cr = ClipTbl[QP][strength_right]

with ClipTbl defined below

L3 L2 R1 L1 R2 R3 L4 R4

 RealNetworks, Inc Confidential 26

QP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ClipTbb(qp,0) 0 0 0 0 0 0 0 0 0 0

ClipTbl(qp,1) 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 3 4 5 5

ClipTbl(qp,2) 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 5 7 8 9

 QP_Above
 ---- Top Edge -
QP_Left | QP_4x4_Block

The values of strength_left and strength_right defined as the 4x4 block
Strength for the block to the left (or above) and the block to the
right (or below) of the edge, respectively. The QP used to get these
strengths are the QP's of the block to the left (QP_Left) or the block
above (QP_Above). QP_4x4_Block is the QP of the block under
consideration, thus is used for strength_right or strength_below (or
above), aplha, beta etc.

The below calculations of delta and N are used to determine the
clipping bounds based on the type of filter.

delta = (R1 - L1);
N = ABS(delta)*alpha)>>7;

with alpha determined using the Macro Block QP using the table below.

QP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

α 128 128 128 128 128 128 128 128 128 128 122 96 75 59 47 37 29 23 18 15 13 11 10 9 8 7 6 5 4 3 2 1

Filter Type ”Strong 5 Tap”:

delta or N Clip

delta = 0 C = 0 (effectively, no filtering)

N = 0 C = 255 (effectively, no clipping)

N = 1 C = (Cl + Cr + Al + Ar) / 2

N > 1 C = 0 (effectively, no filtering)

Filter Type “Normal 4/3 Tap”:

delta or N Clip

delta = 0 C = 0 (effectively, no filtering)

N <= 2 C = (Cl + Cr + Al + Ar) / 2

N >= 3 C = 0 (effectively, no filtering)

Filter Type “Weak 2/3 Tap”:

delta or N Clip

delta = 0 C = 0 (effectively, no filtering)

N <= 3 C = (Cl + Cr + Al + Ar) / 4

N >= 4 C = 0 (effectively, no filtering)

 RealNetworks, Inc Confidential 27

Pixel based Recursive Depth decision:
This too can be viewed as a clipping decision. You can filter all 4
pixel of the block by the same filter structure and decide to keep or

discard the filtered pixel based on β.

Strong 5 Tap Filter:
 3rd pel is not filtered for chroma.
Normal 4/3 Tap Filter:

 ABS(deltaL2)<= β
 Then filter 2nd pixel on the Left. Same for right.
Weak 2/3 Tap Filter:

 ABS(deltaL2)<= β && Al>1
 Then Filter the 2nd pixel on the Left. Same for right.

4.3.9.1.2 Filter Structures:
The following defines each of the three filters using the pixel
notation from Fig. 4.9. With L1’, L2’, L3’, R1’, R2’ and R3’ being the
resulting filtered output

Weak 2/3 Tap Filter

∆ = Clip(-C, C, ((R1 – L1 + 1) >> 1)

L1’ = Clip(0, 255, (L1+∆))

R1’ = Clip(0, 255, (R1-∆))

∆L = Clip(-Cl/2, Cl/2, (L3 + L1 - L2<<1 +∆) >> 1)

L2’ = Clip(0, 255, (L2+∆L))

∆R = Clip(-Cr/2, Cr/2, (R3 + R1 - R2<<1 -∆) >> 1)

R2’ = Clip(0, 255, (R2+∆R))

Note: ∆ from L1-R1 is used for L2 & R2. (Thus recursive filter)

Normal 4/3 Tap Filter

∆ = Clip(-C, C, ((R1 – L1) << 2 + (L2 – R2) + 4) >> 3)

L1’ = Clip(0, 255, (L1+∆))

R1’ = Clip(0, 255, (R1-∆))

∆L = Clip(-Cl, Cl, (L3 + L1 - L2<<1 + ∆) >> 1)

L2’ = Clip(0, 255, (L2+∆L))

∆R = Clip(-Cr, Cr, (R3 + R1 - L2<<1 - ∆) >> 1)

R2’ = Clip(0, 255, (R2+∆R))

Note: ∆ from L1-R1 is used for L2 & R2. (Thus recursive filter)

Strong 5 Tap Filter

L1’’ = (25*L3 + 26*L2 + 26*L1 + 26*R1 + 25*R2 + D1) >> 7
L1’ = Clip(-C, C, L1’’ – L1) + L1;

R1’’ = (25*L2 + 26*L1 + 26*R1 + 26*R2 + 25*R3 + D2) >> 7
R1’ = Clip(-C, C, R1’’ – R1) + R1;

L2’’ = (25*L4 + 26*L3 + 26*L2 + 26*L1’ + 25*R1 + D1) >> 7
L2’ = Clip(-C, C, L2’’ – L2) + L2;

 RealNetworks, Inc Confidential 28

Note: L1’ is used to calculate L2’’.

R2’’ = (25*L1 + 26*R1’ + 26*R2 + 26*R3 + 25*R4 + D2) >> 7
R2’ = Clip(-C, C, R2’’ – R2) + R2;
Note: R1’ is used to calculate R2’’.

If Luma
L3’ = (26*L4 + 51*L3 + 26*L2’ + 25*L1’ + 64) >> 7
R3’ = (25*R1’ + 26*R2’ + 51*R3 + 26*R4 + 64) >> 7
Note: No clipping for 3rd pel.
Note: L1’ & L2’ are used for L3’.
Note: R1’ & R2’ are used for R3’.

Dither:
The Strong 5 Tap Filter output is dithered by adding variable offset D1
and D2 before down shifting and truncation. D1 and D2 value can be
looked up by the relative position of the pixel in a 16x16 grid. The
lookup index is simply the least significant nibble of the X or Y
value. The appropriate Left or Right table is to be used.

ditherL[16]=
{ 64, 80, 32, 96, 48, 80, 64, 48, 80, 64, 80, 48, 96, 32, 80, 64 };

ditherR[16] =
{ 64, 48, 96, 32, 80, 48, 48, 64, 64, 64, 80, 48, 32, 96, 48, 64 };

Comments:

q The Basic Design of this filter is:
o Block based decision of the Filter Structure
o Pixel based clipping of the Filtered value.

q There might not be a need to clamp the output of certain filters
to 0-255 since they always produce output within 0-255.

q Dither removes the Constant edge difference, which can be seen on
high contrast displays even after filtering.

q Weak 2/3 filter similar to Dither filters away the sharp edges of
blocks, which would generally fail all activity tests for the
“Normal or Weak Filtered” and “Strong Filtered” FilterSets.

q Strong 5 tap filter has larger activity range with N<=1 thus
clipping of the 5 tap output has been introduced for N=1.

q alpha, beta have been detuned above QP=23 (already reflected in

the tables). beta2 is 4β for video equal or smaller than QCifs and

3β for all pictures larger than 176x144.
The peculiar Filter Scan allows for the output of the Strong 5 Tap
filter with Dither to be the last operation on the image. This retains
the Dither and 3rd filtered pel which otherwise would require special
code to retain.

Note: In a MB each 4x4 block numbered in raster scan, then block 12 bottom
horizontal “Normal / Weak filtered” edge should have used clip value
corresponding to block 12 & the clip value of the block below. Released RV9/10
decoders & encoders do not use the clip value of the block below instead use
block 12 clip value for Cr. Please see source code, as source code usage is,
‘as is’ normative; change is under consideration for next revision.

 RealNetworks, Inc Confidential 29

4.3.9.2 B Picture Deblocking Filter
4.3.9.2.1 Introduction:
Since RV9 deblocking filter is highly complex and B-Frames are not used
for prediction, 2 Deblocking filters for B-frames are provided. Only
under conditions when CPU is unable to handle Full Frame rate video
should this simple filter be used. The RV9 In-loop filter described
above with the modifications described below provide a high visual
quality for B-frames.

4.3.9.2.2 In Loop Filter for B-frames

In B-frames certain blocks are filtered because they reference
different reference frames. Using the scheme as described in section
4.3.8.1 these blocks are already tagged as to be filtered or not. Since
this scheme will promote blocks to be filtered either by the strong or
weak filter certain precautions have to be taken. The clipping strength
of such a block is changed.

• Use Strong filter but use clipping strength corresponding to the
reference frame.

• Use Normal filter but use the clipping strength of current frame
QP and Strength = 2.

The clipping strengths on only the side corresponding to the block will
be changed. The strength of the adjacent side is calculated based on
Original strength of this block and the current QP.

4x4 block condition FilterSet Clipping
Strength

The adjacent motion vectors refer
to different reference frames.

RefDiff == true

Edge set to be Filtered “Strong
Filtered”

QP Strength 2

Edge not set to be Filtered “Normal / Weak
Filtered”

refQp Strength 2

Else 0

MBtype Adjacent MB type RefDiff
Forward Not Forward True
Backward Not Backward True
Skipped
Direct
BiDir

Forward
Backward

True

Intra Any False
Intra16x16 Any False

Note: Use of Simple RV8 in-loop deblocking filter for B-frames (Luma
only) is allowed for CPU scalability.

 RealNetworks, Inc Confidential 30

4.4 B Frames

RV9 supports the B frame mode with Forward, Backward, Direct, and Bi-
predictive MB types . For the direct prediction mode the prediction
type is determined by the reference macroblock prediction type (16x16
or 8x8), and is 16x16 with zero motion vector when the reference
macroblock is INTRA or SKIPPED.

In B frames, there are five methods for motion compensating a
macroblock - forward, backward, direct, Bi-predictive and skipped.
Forward and backward macroblocks are estimated and differentially
encoded in a similar fashion to 16x16 MV's in a P frame, except the
reference picture that is used can be either the preceding or future P
frame, respectively.

A direct macroblock uses as a reference the motion vectors from the
macroblock in the same spatial position in the future P frame. There
may be one 16x16 motion vector, or four 8x8 motion vectors in the
reference frame (if the reference macroblock is Intra coded, it is
treated as a zero motion vector for these purposes). The forward and
backward motion vectors are derived by scaling the reference motion
vectors based on the relative distance between the B frame and the
surrounding P frames. These derived motion vectors are then clipped to
ensure that the referenced blocks can be interpolated within the padded
image. The motion compensation prediction is formed by averaging the
motion compensated block from the future P frame with the motion
compensated block from the previous P frame. A weighted average is
used, where the weighting factors are proportional to the temporal
distance between the B frame and the corresponding P frame (iRatio0,
iRatio1). The motion compensated residual is then transformed and
coded. The chroma components are compensated with the same scaled
motion vectors.

The forward and backward motion vectors for direct mode macroblocks are
calculated as follows.

MVF = (TRB * MV) / TRD

MVB = (TRB- TRD) * MV / TRD

Implemented as:

iRatio0 = (TRB << TR_SHIFT) / TRD;

MVFx = (iRatio0 * MVREFx + TR_RND) >> TR_SHIFT

MVFy = (iRatio0 * MVREFy + TR_RND) >> TR_SHIFT

MVBx = MVFx – MVREFx

MVBy = MVFy – MVREFy

TR_SHIFT = 14

TR_RND = (1 << (TR_SHIFT - 1)

iRatio1 = ((TRD - TRB) << TR_SHIFT) / TRD;

And Weighted Average:

U32 v1 = (U32) pfi,j << 7;

 RealNetworks, Inc Confidential 31

U32 v2 = (U32) ppi,j << 7;

U32 w = ((v1 * uRatio0) >> 16) + ((v2 * uRatio1) >> 16);

pbi,j = (U8) ((w + 0x10) >> 5);

pf = pixel from future reference frame

pp = pixel from prev reference frame

pb = predicted direct mode pixel

(U32 is unsigned 32 bit integer. TR_SHIFT and TR_RND are constants
required for the integer calulation of the ratios. Using any other
scheme to get the ratio may not lead to bit exact reconstruction.)

Where the vector component MVF is the forward motion vectors, MVB is the
backward motion vector, and MVREF represents the motion vectors in the
corresponding macroblock in the subsequent reference picture. TRD is the
temporal distance between the temporally previous and next reference
frame, and TRB is the temporal distance between the current frame and
previous reference frame. Since RF <=1, no clipping is needed for MVF.
Clipping is needed for MVB. The luma frame data is padded by 16 on each
side, and the subpel interpolation filter is 6-tap.

right edge: pos_x*4 + MVx < (width + 16-16-3)*4

left edge: pos_x*4 + MVx > -(16-2)*4

upper edge: pos_y*4 + MVy > -(16-2-3)*4

bottom edge: pos_y*4 + MVy < (height + 16-16-3-3)*4

assuming reference MV is ok.

(Note: Additional 3 pel spacing is kept for top and bottom edge)

In case the the corresponding macroblock in the subsequent reference
picture is of type INTER_4V, four corresponding MVF and MVB’s are
calculated and four 8x8 such blocks are averaged.

A skipped macroblock in a B frame is motion compensated the same way as
a direct macroblock, and it is understood that no transform
coefficients are sent for the entire macroblock.

In Bi-directional mode 2 motion vectors are differentially coded and
transmitted (see section 5.3.4.1), one forward and one backward. Two
predictions are interpolated based on these motion vectors. The final
motion compensation is performed exactly like the Direct mode weighted
average on these two predictions. iRatio0 and iRatio1 are set to 8192
each.

4.5 Reference Picture Resampling (RPR)

RV9 supports RPR in a manner identical to RV8/RVG2. (H263+ based)
Reference picture resampling allows an encoder and decoder to change
image dimensions on a frame-by-frame basis, without having to generate
a key frame. When a new image dimension is received the decoder simply
interpolates/decimates the previous reference image to the new size
before using it as a predictor for the next frame. The implementation
is exactly like H263+ spec annexes O, P, and Q. All Edge displacement,
Warping, and Fill parameters are zero.

 RealNetworks, Inc Confidential 32

At the slice level the Picture size is transmitted using a Variable
length and Fixed length scheme for I / P / B frames. (see section
5.2.2)
RPR is normative to Rv9 compatibility and this mode could be found in
Media encoded by others on the net since it is ON for all releases of
RV9 encoders. RPR is an encoder choice and be disabled if so required
for closed loop implementations.

4.6 CPU Scalability

Based on experiments the following Decoder CPU scalability is allowed.
§ Simpler In Loop Filter for B-Frames
§ Disable De-Blocking in B-Frames.
§ Snap to Integer Motion Vectors in B-frames.
§ Dropping B-frames.

5 Bitstream Syntax
This is the specification of the bitstream syntax. The bitstream is not
based on any standard and is not forward or backward compatible with
other RealVideo Codecs.

5.1 Stream Layer

For RealVideo the SPO (or codec opaque data) is used to signal global
stream parameters. There is no Picture Header for RealVideo but the
slice layer header has been kept. Every picture starts with a Slice
Header.

Every stream is initialized with

• 32 bit SPO FLAG

• 32 bit Bitsream Version

5.1.1 SPO Flags
The set of 32 SPO Flags are used to indicate stream level options.
Since RealVideo 9 has few optional stream-level modes, only a few SPO
flags are useful.

TABLE 5.1: SPO Flags
Name Mask Description
RV40_SPO_FLAG_SLICEMODE 0x00000020 When equal to 1, indicates

that slices are in use*.
RV40_SPO_FLAG_BFRAMES 0x00001000 When equal to 1, indicates

that the stream may contain
B-Frames*.

RV40_SPO_FLAG_FRUFLAG 0x00080000 When equal to 1, indicates
that FRU should not be
applied on this stream.

RV40_SPO_FLAG_MULTIPASS 0x00400000 When equal to 1, indicates
the content was encoded with
multipass**.

RV40_SPO_FLAG_VBR_ENCODE 0x01000000 When equal to 1, indicates
the content was encoded using
VBR**.

 RealNetworks, Inc Confidential 33

* For all RealVideo 9 streams this flag is set to 1.
** These flags are merely informational and do not affect the decoding
process.

5.2 Slice Layer

Once the stream has been initialized, the RealVideo data is received as
a series of slices that follow the syntax given in Figure 5.1. The
Slice Header is indicated in this diagram as the first 10 fields of
every slice.

Figure 5.1: Slice Layer syntax

Slice Layer

ECC

PicCodType

SQUANT

BitStreamVersion

Reserved

OSV Quant

Deblock PassThru

RV TR

PicSize

MBA

MB Layer

Slice
Header

 RealNetworks, Inc Confidential 34

Each slice in the bitstream is corresponds to a independently decodable
section. Thus, prediction across a slice boundary is not allowed.
Motion vector prediction and intra mode prediction behaves as if the
area outside the current slice is outside the picture.

TABLE 5.1: Slice Header field lengths
Field Length Description
ECC 1 0 if slice contains picture data

1 if slice contains ECC information
PicCodType 2 (00) = RV_INTRAPIC

(01) = RV_FORCED_INTRAPIC
(10) = RV_INTERPIC
(11) = RV_TRUEBPIC

SQUANT 5 Initial Slice Quantization Parameter
Bitstream Version 1 Reserved – always zero.

Reserved 1 Reserved
OSV Quant 2 Super VLC Quantizer
Deblock PassThru 1 0 if deblocking filter is to be used

1 if deblocking filter is to be disabled
RV TR 13 Temporal reference (in units of millisecs)
PicSize Var Decoded Picture size.
MBA Var MBA_NumMBs= (width + 15)>>4 * (height + 15)>>4 - 1

MBA_FieldWidth
47
98
395
1583
6335
9215

6
7
9
11
13
14

SQCIF, QCIF, CIF, 4CIF, 16CIF, 2048x1152

5.2.1 ECC

When ECC bit is set the decoder shall skip that slice. ECC Packets
contains forward error correction data and is not normative to the
decoder. Layers above the decoder should perform the error correction
and consume these packets.

 RealNetworks, Inc Confidential 35

5.2.2 PicSize Syntax

PicSize(PicCodType) { Bits
if(PicCodType == RV_INTERPIC || PicCodType == RV_TRUEBPIC) {

use_prev_width 1
if(!use_prev_width) GetDimensions()

} else {
GetDimensions()

}

GetDimensions() {

width_code 3
width = RPR_Width[width_code]
if(width == 0) {

width = explicit_dimension() Var
}
height_code Var 3-4
height = RPR_Height[height_code]
if(height == 0) {

height = explicit_dimension() Var
}
PicWidth = width
PicHeight = height

}

explicit_dimension() {

Dimension = 0
do {

dim_code 8
Dimension = Dimension + dim_code * 4;

} while(dim_code == 0xff)
return Dimension
}

width_code Width height_code Height
000 160 000 120
001 176 001 132
010 240 010 144
011 320 011 240
100 352 100 288
101 640 101 480
110 704 1100 180
111 0 1101 360
 1110 576
 1111 0

 RealNetworks, Inc Confidential 36

5.3 Macroblock Layer

Figure 5.2: Macroblock Layer

5.3.1 Structured VLC code

RealVideo 9 uses a structured variable-length code table to code some
the information in the video sequence. The structure of this VLC is
shown in Table 5.2.

MB Layer

MBType_QP()

Intra Prediction

Motion Vectors

CBP

Block Layer

 RealNetworks, Inc Confidential 37

 TABLE 5.2: Structured VLC

VLC Structure Code number (N) Explicit
1 0 1

1 0 0 1 0 x0 1

2 0 1 1

3 0 0 0 0 1

4 0 0 0 1 1

5 0 1 0 0 1

0 x1 0 x0 1

6 0 1 0 1 1

7 0 0 0 0 0 0 1

8 0 0 0 0 0 1 1

0 x2 0 x1 0 x0 1
…

… …

In Table 5.2 xn take values 0 or 1.

When code number is known, the regular structure of the table makes it
easy to create a codeword bit by bit. Similarly, a decoder may easily
read bit by bit until the last "1" which gives the end of the codeword.

The structured VLC is used in two places.

1. Representation of the number of consecutive SKIPPED macroblocks
2. Representation of motion vectors (in 1/4 pixel units)

5.3.2 MBType & DQuant
MBType_QP() { Bits

if(PicCodType == RV_INTRAPIC) {
IntraMBtype()

} else {
RLESkip_MB(SkipLeft)

}
}

5.3.2.1 Intra Picture MB Type Syntax

IntraMBtype() { Bits

mbtype_intra_16x16 1
if(!mbtype_intra_16x16) {

mbtype_intra 1
if(!mbtype_intra) {

dquant(PrevQP) Var
mbtype_bit 1

}
}

}

 RealNetworks, Inc Confidential 38

5.3.2.2 Run Length coding of Skipped MB

RLESkip_MB (SkipLeft) { Bits

if(SkipLeft) {
SkipLeft--

} else {
skip_run Var
SkipLeft = VLC(skip_run)

}
if(SkipLeft) mbtype = Skipped
else {

AdaptiveMBType()
}

}

5.3.2.3 Adaptive MB Type
The MB type for P and B-Frames are adaptively mapped to variable length
codes as described below and signaled using a special VLC table.

Figure 5.3: Macroblocks used to decode the macroblock type of
macroblock E (shaded)

Decoding of the current macroblock type (macroblock E in Fig. 5.3) is
based on neighboring macroblock types (macroblock s A, B, C, D).

The most probable mode near MB E is calculated by building a histogram
of the MB types A, B, C, and D. If any is unavailable it is not
considered for building the histogram. If a neighboring macroblock is
a SKIPPED MB then in P-Frames it is considered a INTER MB and in B-
Frames it is considered a Direct MB.

The MB Type with the largest frequency and the lowest Histogram Index
(see Table 5.3) is the mostProbableType. Given the mostProbableType
the appropriate VLC table is selected and used to read the MB type for
the current macroblock.

A B C

E D

 RealNetworks, Inc Confidential 39

TABLE 5.3: Macroblock types and Histogram Index

MB Types Description Pic
Types

Histogram
Index.

INTRA Intra, 4x4 prediction I/P/B 0

INTRA_16X16 Intra, 16x16 prediction, Dbl Xfm I/P/B 1

INTER Inter, 1MV, 16x16 P 2

INTER_4V Inter, 4MV, 8x8 P 3

FORWARD Fwd MV, 1MV, 16x16 B 4

BACKWARD Bwd MV, 1MV, 16x16 B 5

DIRECT Direct, Derived 2MV, 16x16 B 6

INTER_16X16 Inter, 1MV, 16x16, Dbl Xfrm P 7

INTER_8X16V Inter, 2MV, 8x16 P 8

BIDIR Fwd & Bwd MV, 2MV, 16x16 B 9

INTER_16X8V Inter, 2MV, 16x8 P 10

Tables 5.4 and 5.5 give the VLC codewords for P-Frames and B-Frames for
each possible mostProbableType.

 TABLE 5.4: VLC codes for MB Types in P-Frames

VLC code for mostProbableType MB Type for
macroblock E Intra Intra16x16 Inter Inter_4V

INTRA 1 001 01101 1001
INTRA_16x16 01 1 0101 10001

INTER 001 01 1 01
INTER_4V 000001 0000001 0100 00

INTER_16X8V 00001 000001 001 101
INTER_8X16V 0001 00001 000 11
INTER_16x16 0000001 0001 0111 100001

DQUANT 0000000 0000000 01100 100000

VLC code for mostProbableType MB Type for
macroblock E Inter16x8 Inter8x16 Inter16

INTRA 00001 00001 000001
INTRA_16x16 000001 000001 001

INTER 1 1 01
INTER_4V 0001 0001 0000001

INTER_16X8V 01 001 00001
INTER_8X16V 001 01 0001
INTER_16x16 0000001 0000001 1

DQUANT 0000000 0000000 0000000

 RealNetworks, Inc Confidential 40

 TABLE 5.5: VLC codes for MB Types in B-Frames

VLC code for mostProbableType MB Type for
macroblock E Intra Intra16x16 Forward

INTRA 01 0001 000001
INTRA_16x16 101 1 0001
FORWARD 00 001 1
BACKWARD 11 01 01
BIDIR 10001 000001 00001
DIRECT 1001 00001 001
DQUANT 10000 000000 000000

VLC code for mostProbableType MB Type for

macroblock E Backward Bi-Direct Direct
INTRA 01001 000001 000001

INTRA_16x16 001 00001 00001
FORWARD 000 001 001
BACKWARD 1 01 1
BIDIR 0101 0001 0001
DIRECT 011 1 01
DQUANT 01000 000000 000000

AdaptiveMBType () { Bits

mb_code Var
if(mb_code == DQuant) {

mb_code Var
dquant(PrevQP) Var

}
}

5.3.2.4 DQuant
dquant(PrevQP) { Bits

use_delta_QP 1
if(use_delta_QP) {

delta_QP 1
dquant = gNewTAB_DQUANT_MQ[PrevQP][delta_QP];
QP = PrevQP + dquant

} else {
QP 5

}
}

Dquant Table (gNewTAB_DQUANT_MQ)

PrevQP 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

δ=0 0 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 -2 -2 -2 -2

δ=1 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2

PrevQP 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

δ=0 -2 -2 -2 -2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3

δ=1 2 2 2 2 2 3 3 3 3 3 3 3 3 2 1 -5

 RealNetworks, Inc Confidential 41

5.3.3 4x4 Intra Prediction Mode Coding
The signaling of the 4x4 intra prediction mode only occurs for INTRA
4x4 type macroblocks. A single VLC codeword can represent 1, 2 or 4
individual intra prediction modes. However, a single VLC codeword
cannot represent intra prediction modes located on different rows of
the macroblock. Therefore, in the bitstream a single row of intra
prediction mode can be represented in the following combinations.

1. [4 Mode VLC]
2. [2 Mode VLC] [2 Mode VLC]
3. [2 Mode VLC] [1 Mode VLC] [1 Mode VLC]
4. [1 Mode VLC] [2 Mode VLC] [1 Mode VLC]
5. [1 Mode VLC] [1 Mode VLC] [2 Mode VLC]
6. [1 Mode VLC] [1 Mode VLC] [1 Mode VLC] [1 Mode VLC]

Four intra prediction modes are coded in one VLC codeword only when (a)
it is the top row of a macroblock and (b) this macroblock is on the top
edge of the image or current slice. This VLC table is listed as
aic_top_vlc[index].

Two intra prediction modes are coded in one VLC only if surrounding
intra prediction modes are of a specific combination. In Fig. 5.4
below, modes a and b are being considered whether they are to be
decoded as a single codeword.
In case of INTRA_16x16 the 4x4 block in consideration A, B, or C is
given the mode number same as the INTRA_16x16 prediction mode (see
Table5.7). In case of other MB mtypes, A, B, C are given mode number 0.
When surrounding modes A, B and C are known, their combination is
searched in Table 5.5. If the specific combination of A, B, and C are
found, then a single VLC table, specified by Table Number is used to
decode both a and b, together. These 20 VLC tables are listed as
aic_2mode_vlc[Table Numebr][index].

Figure 5.4: 4x4 Intra Prediction modes to be decoded (shaded) and
The 4x4 prediction modes used to determine VLC table used

If A, B and C do not match the available patterns in Table 5.6, a
single mode is decoded. VLC tables given in aic_1mode_vlc[A][B] are
used to code this mode. The VLC table used in this case is listed as
aic_1mode_vlc[A][B].

The scan of coded intra prediction modes then moves left to the next
one to be decoded. Once a row is finished, the scan proceeds to the
next row of prediction modes.

B C

a A b

 RealNetworks, Inc Confidential 42

TABLE 5.6: Intra prediction mode
pattern for decoding two intra
prediction modes as a single VLC
codeword
Pattern Table

Number
A B C
0 0 0 0
1 0 0 1
2 0 0 2
0 1 1 3
1 1 1 4
2 1 1 5
5 1 1 6
6 1 1 7
0 2 2 8
1 2 2 9
2 2 2 10
7 2 2 11
2 7 2 12
2 2 7 13
8 2 2 14
2 8 2 15
2 2 8 16
1 1 2 17
1 1 6 18
2 2 1 19

5.3.4 16x16 Intra Prediction Mode Coding
The signaling of the16x16 intra prediction mode only occurs for INTRA
16x16 type macroblocks. The prediction mode for the 16x16 macroblock is
coded as a 2-bit FLC as shown in Table 5.7.

TABLE 5.7: VLC codewords used for the
intra prediction mode of a Intra16
macroblock.

VLC
Codeword

Prediction Mode

00 DC
01 Vertical, from above
10 Horizontal, from left
11 Planar

 RealNetworks, Inc Confidential 43

5.3.5 Motion Vectors

5.3.5.1 Prediction in P Frames

Motion vectors are differentially encoded from a predictor motion
vector. The predictor is found in a way very similar to the description
in H.263+, including how to handle the cases where the block size
chosen for the current macroblock is larger than the block size for one
or more of the surrounding macroblocks. With no special edge conditions
the predictor is the median of the motion vectors to the left, above,
and above right, relative to the current block. See Fig. 5.5 for
details. If the macroblock is coded in 8x8 mode, the median candidates
for block 0 are found in the blocks marked with boldface numbers. If
the macroblock is coded in 16x16 mode, the candidates are found from
the blocks in italic.

If there is no block above and to the right of the current block, a
candidate is instead found above and to the left, or just to the left
if above and to the left does not exist. This is different from H.263+,
where the zero vector is used in this case. If there is no block above,
the block to the left is used. If there is no block to the left, the
zero vector is used. Motion vectors are restricted to values which can
be interpolated from the padded picture. The reference pictures must be
padded 16 pixels beyond the edges (eight for chroma planes) by
replicating the edge pixels.

2

0

3

1

 0 1 2 3

 4 5 6 7

 8 9 10 11

 12 13 14 15

 0 1 2 3

 4 5 6 7

 8 9 10 11

 12 13 14 15

 0 1 2 3

 4 5 6 7

 8 9 10 11

 12 13 14 15

Figure 5.5: Motion vector prediction

5.3.5.2 Prediction in B frames

Motion vectors in B-Frames are only predicted from available motion
vectors of neighboring macroblocks that use the same reference frame.
The algorithm for determining neighboring macroblocks is the same as
used in P-Frame MV prediction. Namely, If the Above-Right MV is
unavailable due to slice or picture edges, the Above-Left MV is
checked.

Therefore,

 RealNetworks, Inc Confidential 44

• The MV predictor for a Backward MB type can only consider
o MVs from neighboring Backward MB types or
o “backward” MVs from neighboring Bi-Direct MB types

• The MV predictor for a Forward MB type can only consider
o MVs from neighboring Forward MB types or
o “forward” MVs from neighboring Bi-Direct MB types

• The “backward” MV predictor for a Bi-Direct MB type can only
consider

o MVs from neighboring Backward MB types or
o “backwards” MVs from neighboring Bi-Direct MB types

• The “forward” MV predictor for a B-Direct MB type can only
consider

o MVs from neighboring Forward MB types or
o “forwards” MVs from neighboring Bi-Direct MB types

Depending on number of neighboring motion vectors which pass this
criteria, a median, average or copy of the motion vectors from those
macroblocks is used as the predictor.

 TABLE 5.8: MV prediction in B-frames

Number of MVs Prediction Type
3 Median
2 Average
1 Copy
0 0

5.3.5.3 Motion Vector Transmission
Depending on the MB type, from 0 to 4 motion vectors need to be
transmitted. Each motion vector is transmitted as a horizontal and
vertical component. The horizontal component is transmitted first, then
the vertical component, followed by the next vector. If more than one
motion vector is to be sent, the transmission order is upper left block
first, and then a regular right to left scanning, as shown in Fig. 5.6.
See Table 5.9 for which code numbers to use.

Figure 5.6: Motion vector transmission order

16 16

16
8

8

8

8

8 8 8 8

16 1
1

1
1

2

2
2

3 4

 RealNetworks, Inc Confidential 45

TABLE 5.9: Motion Vector codewords
N Vector
0 0

1 1
2 -1

3 2

4 -2
5 3

6 -3

7 4
8 -4

9 5

10 -5
11 6

12 -6

: :

5.3.6 CBP (Coded Block Pattern)

5.3.6.1 CBP length and bit order
CBP contains 24 bits representing 16 luminance blocks and 4 * 2
chrominance blocks in a macroblock. Bits that are set to 1 correspond
to coded 4x4 blocks, bits that are set to 0 correspond to skipped
(empty) blocks. The following diagram gives the correspondence between
bits and luma/chroma blocks.

 Y Cr Cb

B0

B1

B2

B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

B16

B17

B18 B19

B20

B21

B22 B23

 RealNetworks, Inc Confidential 46

5.3.6.2 The structure of CBP code.
The overall structure of CBP code is presented below.

The main CBP object, CBP descriptor is transmitted first using one of
the canonic Huffman codes (see Section 5.4.6) corresponding to the
current macro-block type, and quantizer step size.

In turn, values of the components of CBP descriptor indicate the
presence of the subsequent code objects: 8x8 descriptors and CR bits.
Among these, 8x8 descriptors are transmitted first, using context-
dependent canonic Huffman codes. CR bits required by the CBP descriptor
are transmitted directly.

Below we describe each of these CBP code objects in details.

5.3.6.3 CBP descriptor.
CBP descriptor has the following components:

Composition rule:
 Cbp_dsc = ((((((C0* 3 + C1) * 3 + C2) * 3 + C3) * 2 + Y0) * 2 + Y1) * 2
+ Y2) * 2 + Y3;

Mappings between the CBP bits and descriptor’s components are
established as follows:

Y0

Y1

Y2 Y3

C0

C1

C2 C3

C0-C3 Y0-Y3

Luma 8x8 descriptors

 CBP descriptor

 Input CBP bits

Cr bits (when Cr!=Cb)

B0-B23

Ctx

 RealNetworks, Inc Confidential 47

5.3.6.4 8x8 descriptor and contexts.
Each 8x8 descriptor is represented by a non-zero group of 4 bits
[B0,B1,B4,B5], [B2, B3, B6, B7], [B8,B9,B12,B13], or [B10,B11,B14,B15] in CBP.

Composition rule:
 8x8_dsc = ((B0 * 2 + B1) * 2 + B2) * 2 + B3;

There are 4 different tables describing 8x8 descriptors based on their
context:
 Ctx = Y0 + Y1 + Y2 + Y3 –1;
where Y0-Y3 are the corresponding Y components of the CBP descriptor.

5.3.6.5 Cr bits.

Cr bits are transmitted every time when any of the C0-C3 CBP descriptor
components is set to 1.

5.4 Block Layer

5.4.1 Block size, scan order, and types of coefficients.

Quantized DCT transform coefficients are encoded in blocks of 16
coefficients each, corresponding to their original 4x4 layout:

Y0, Y1, Y2, Y3

[B0,B1,B4,B5], [B2, B3, B6, B7], [B8,B9,B12,B13],
[B10,B11,B14,B15]

0 All 4 bits = 0

1 at least 1 bit != 0 (8x8 descriptor to follow)

C0, C1, C2, C3

[B16,B20], [B17, B21], [B18, B22], [B19,B23]

0 both (Cr,Cb) bits = 0

1 only 1 bit (Cr or Cb) = 1 (extra bit to follow)

2 both (Cr,Cb) bits = 1

B0

B1

B2 B3

C0

C1

C2

C3

C4 C5 C6 C7

C8 C9 C10 C11

C12 C13 C14 C15

 RealNetworks, Inc Confidential 48

The following types of coefficients are encoded using separate groups
of tables:

1. Luma coefficients from Inter-coded 4x4 blocks
2. Chroma coefficients from Inter-coded 4x4 blocks
3. Luma coefficients from 4x4-transformed Intra blocks
4. Chroma coefficients from 4x4-transformed Intra blocks
5. Luma DC coefficients from 16x16-transformed Intra blocks
6. Chroma DC coefficients from 16x16-transformed Intra blocks
7. Luma DC-removed coefficients from 16x16 transformed Intra blocks
8. Chroma DC-removed coefficients from 16x16 transformed Intra

blocks.

To simplify the processing in the last two cases (dc-removed
coefficients) the encoding is still done assuming there is a full 4x4
matrix of the coefficients, but the actual code tables are designed
such that coefficient C0 is always 0.

5.4.2 The structure of the code.
The code for each block of 16 coefficients has the following structure:

The main code object, 4x4 block descriptor is transmitted first. Based
on the values of its components, subsequent code objects: 2x2
descriptors, level descriptors, and sign bits may follow.

The order of these code objects follows the natural order of components
in descriptors. E.g. if 4x4 descriptor indicates that there is a large
DC coefficient, then, the next code object is its Level descriptor. If
the level descriptor is not sufficient to represent the absolute value

L4-L5 [C2,C3,C6,C7]
 [C8,C12,C9,C13]
 [C10,C11,C14,C15] 2x2 descriptors

L0-L3

 4x4 block descriptor

Input coefficients

Level descriptors

Extra bits

 Sign bits

C0-C15

Extension codes for large
coefficients

For all non-zero
coefficients

 RealNetworks, Inc Confidential 49

of this coefficient exactly, it will indicate how many Extra bits will
follow. The Sign bit is transmitted right after.

Below we describe each of these objects in details.

5.4.3 4x4 and 2x2 block descriptors.

4x4 and 2x2 descriptors have the following components:

Composition rules:

4x4_dsc = ((((L0 * 3 + L1) * 3 + L2) * 3 + L3) * 2 + L4) * 2 + L5) * 2 + L6;
2x2_dsc = ((L0 * 3 + L1) * 3 + L2) * 3 + L3;

Mappings between coefficients’ values and descriptor’s components:

The encoding of 2x2 descriptors for L4 and L5 blocks is done using the
same tables (with an inverse scan order of coefficients in the L5
block). The 2x2 descriptor for block L6 is encoded using separate
tables.

L0

L1

L2 L3

 L4

 L5

 L6

L0

L1

L2 L3

L0

C0, C2, C8, C10

0 0

1 +1,-1

2 +2,-2

3 >2,<-2 (escape code)

L1, L3, L3

C1, C4, C5, C3, C6, C7,
C12, C9, C13, C11, C14, C15

0 0
1 +1,-1

2 >1, <-1 (escape code)

L4, L5, L6

[C2, C3, C6, C7], [C8,C12,C9,C13],
[C10,C11,C14,C15]

0 0 (all 4 coefficients = 0)

2 !0 (escape code)

 RealNetworks, Inc Confidential 50

5.4.4 Level descriptors.

When coefficients are large (which is signalized by escape codes in 4x4
or 2x2 descriptors), their absolute residual values are transmitted
using additional level descriptors and extension bits as specified
below:

5.4.5 Sign bits.
Sign bits are transmitted for all non-zero coefficients following the
description of their absolute values (by the corresponding combination
of 4x4, 2x2, or level descriptors).

Encoding of all non-zero DCT coefficients is done in the order as they
appear in 4x4 and 2x2 descriptors.

5.4.6 Code Tables.

5.4.6.1 Partition of code tables based on Inter/Intra
coding and quantization step sizes.

The tables for all code components are separate for Inter- and Intra-
coded macroblocks. Additionally, different code tables are used based
on QP values used to encode macroblocks. The mappings between QPs and
indices of code tables are provided below.

Level descriptors Extra bits Absolute residual values

0-22 0 0-22

23 1 23-24

24 2 25-28

25 3 29-36

26 4 37-52

27 5 53-84

28 6 85-148

29 7 149-276

30 8 277-532

 RealNetworks, Inc Confidential 51

Note: Intra Qp 30 currently uses region 0 in source code , (it should have been 4). Source code usage is
as is normative. Change is under consideration for next revision.

5.4.6.2 Variable-length codes and code tables.
Variable length codes represent sequences of bits packed in bytes such
that earlier bits correspond to the leftmost (more significant) digits
within a byte.

Encoding and decoding algorithms discussed herein employ Canonic
Huffman Codes (see, e.g., A.Moffat, and A.Turpin, "On the
Implementation of Minimum-Redundancy Prefix Codes", IEEE Transactions
on Communications, 45(10): 1200-1207, 1997).

For the description of such codes we will only specify code lengths.
The reconstruction of the corresponding codewords can be accomplished
using the following algorithm.

/*
 * Given: n – the number of codes, and len[] – code lengths
* Produces: code[] – canonic Huffman codewords
*/
make_code (int n, unsigned char *len, unsigned int *code)
{
 unsigned int leaves [MAX_DEPTH+1], start [MAX_DEPTH+2];
 register int i;

 /* count the number of leaves on each level: */
 for (i = 0; i <= MAX_DEPTH; i++) leaves [i] = 0;
 for (i = 0; i < n; i++) leaves [len [i]]++;

 /* set start codes for each level: */
 start [1] = 0;
 for (i = 1; i <= MAX_DEPTH; i++)
 start [i + 1] = (start [i] + leaves [i]) * 2;

 /* assign codewords: */
 for (i = 0; i < n; i++)
 code [i] = start [len [i]]++;
}

QP range partition for Intra-
coded macroblocks

Region # QP range

0 0-9

1 10-15

2 16-19

3 20-24

4 25-29

0 30

QP range partition for Inter-
coded macroblocks

Region # QP range

0 0-6

1 7-10

2 11-14

3 15-18

4 19-22

5 23-26

6 27-30

 RealNetworks, Inc Confidential 52

5.4.6.3 Code tables.
The following tables represent lengths of the canonic Huffman codes for
all the above described components of codes for transform coefficients
and CBP types.

/* intra tables: */
char intra_cbp[MAX_INTRA_QP_REGIONS][2][MAX_CBP] = {};
char intra_8x8_dsc[MAX_INTRA_QP_REGIONS][2][4][MAX_8x8_DSC] = {};
char intra_luma_4x4_dsc[MAX_INTRA_QP_REGIONS][3][MAX_4x4_DSC] = {};
char intra_luma_2x2_dsc[MAX_INTRA_QP_REGIONS][2][MAX_2x2_DSC] = {};
char intra_chroma_4x4_dsc[MAX_INTRA_QP_REGIONS][MAX_4x4_DSC] = {};
char intra_chroma_2x2_dsc[MAX_INTRA_QP_REGIONS][2][MAX_2x2_DSC] = {};
char intra_level_dsc[MAX_INTRA_QP_REGIONS][MAX_LEVEL_DSC] = {};

/* inter tables: */
char inter_cbp[MAX_INTER_QP_REGIONS][MAX_CBP] = {};
char inter_8x8_dsc[MAX_INTER_QP_REGIONS][4][MAX_8x8_DSC] = {};
char inter_luma_4x4_dsc[MAX_INTER_QP_REGIONS][MAX_4x4_DSC] = {};
char inter_luma_2x2_dsc[MAX_INTER_QP_REGIONS][2][MAX_2x2_DSC] = {};
char inter_chroma_4x4_dsc[MAX_INTER_QP_REGIONS][MAX_4x4_DSC] = {};
char inter_chroma_2x2_dsc[MAX_INTER_QP_REGIONS][2][MAX_2x2_DSC] = {};
char inter_level_dsc[MAX_INTER_QP_REGIONS][MAX_LEVEL_DSC] = {};

6 Performance Estimates
Pls See
https://rarvcode-video.helixcommunity.org/

7 QA Test Procedures
Every implementation of RV9 should pass the TCK.
https://helixcommunity.org/projects/rarvcode-tck/

 RealNetworks, Inc Confidential 53

8 References
[1] ISO/IEC 14496-2, "Information technology - Generic coding of

audio-visual objects: Visual,", March 1999.
[2] G. Sullivan and T. Wiegand, “Rate-Distortion Optimization for

Video Compression,” IEEE Signal Processing Magazine, Vol. 15, No. 6,
Nov. 1998.

[3] G. Bjontegaard, “Response to Call for Proposals for H.26L,” Q15-
F-11, ITU-T Advanced Video Meeting, Seoul, Nov. 98,
ftp://standard.pictel.com/video-site/9811_Seo/q15f11.doc .

[4] G. Bjontegaard, “Enhancement of the Telenor proposal for H.26L,”
Q15-G-25, ITU-T Advanced Video Meeting, Monterey, Feb. 99,
ftp://standard.pictel.com/video-site/9902_Mon/q15g25.doc .

[5] G. Bjontegaard, “Adding Intra mode suitable for coding of flat
regions,” COM-16 D.360, ITU-T Advanced Video Meeting, Geneva, Feb.
2000, ftp://standard.pictel.com/video-
site/0002_Gen/Telenor_intra.doc.

[6] Gary Sullivan, “Draft Text of Recommendation H.263 Version 2
(“H.263+”) for Decision”

[7] Gregory J. Conklin, Gary S. Greenbaum, Karl O. Lillevold, Alan F.
Lippman and Yuriy A. Reznik, “Video Coding for Streaming Media
Delivery on the Internet,” IEEE Transactions on Circuits and Systems
for Video Technology.

 RealNetworks, Inc Confidential 54

9 Annex A
RealVideo Decoders are Split into 2 parts, RealVideo Frontend and
the decoder Backend.

RealVideo Frontend: Exposes the RealMedia Codec Interface.
 The Frontend handles all the Initialization, pre-post filtering,
frame-rate up sampling, statistics, and scalability decisions.

RealVideo Backend: Exposes the Hive/PIA Codec Interface.
 The Backend decodes the Bitstream. The Backend maybe referred to
as ILVC in general or in RV8 by codename “Tromsø” to refer to
specific algorithms.

Back End Interface:

RV20toYUV420Init (RV10_INIT *prv10Init, void **decoderState)
RV20toYUV420Free (void *global)
RV20toYUV420Transform (

UCHAR *pRV20Packets,
UCHAR *pDecodedFrameBuffer,
void *pInputParams, // H263DecoderInParams
void *pOutputParams, // H263DecoderOutParams
void *global)

RV20toYUV420CustomMessage (
PIA_Custom_Message_ID *msg_id, void *global
)

The RV20toYUV420CustomMessage function exposes decoder interfaces
that are specific to the "ILVC" decoder. These interfaces are defined
in "ilvcmsg.h".

RV20toYUV420HiveMessage (ULONG32 *msg_id, void *global)
The RV20toYUV420HiveMessage function exposes decoder interfaces that

may be applicable to a variety of decoders, not just to "ILVC". The
'msg' parameter points to a ULONG32 that identifies a particular
interface or feature. This ULONG32 is actually the first member in a
larger struct, similar to the PIA_Custom_Message_ID usage. See
"hivervi.h" for a complete list of supported messages.

typedef struct tagRV10_INIT
{

UINT16 outtype;
UINT16 pels;
UINT16 lines;
UINT16 nPadWidth;
/* number of columns of padding on right to get 16 x 16 block*/
UINT16 nPadHeight;
/* number of rows of padding on bottom to get 16 x 16 block*/
UINT16 pad_to_32;
// to keep struct member alignment independent of compiler options
ULONG32 ulInvariants;
// ulInvariants specifies the invariant picture header bits -- SPO
LONG32 packetization;
ULONG32 ulStreamVersion;

} RV10_INIT;

 RealNetworks, Inc Confidential 55

typedef struct tag_H263DecoderInParams
{

ULONG32 dataLength;
LONG32 bInterpolateImage;
ULONG32 numDataSegments;
PNCODEC_SEGMENTINFO *pDataSegments;
ULONG32 flags;
// 'flags' should be initialized by the front-end before each
// invocation to decompress a frame. It is not updated by the
// decoder.
// If it contains RV_DECODE_MORE_FRAMES, it informs the decoder
// that it is being called to extract the second or subsequent
// frame that the decoder is emitting for a given input frame.
// The front-end should set this only in response to seeing
// an RV_DECODE_MORE_FRAMES indication in H263DecoderOutParams.
// If it contains RV_DECODE_DONT_DRAW, it informs the decoder
// that it should decode the image (in order to produce a valid
// reference frame for subsequent decoding), but that no image
// should be returned. This provides a "hurry-up" mechanism.
ULONG32 timestamp;

} H263DecoderInParams;

typedef struct tag_H263DecoderOutParams
{

ULONG32 numFrames;
ULONG32 notes;
//'notes' is assigned by the transform function during each call to
// decompress a frame. If upon return the notes parameter contains
// the indication RV_DECODE_MORE_FRAMES, then the front-end
// should invoke the decoder again to decompress the same image.
// For this additional invocation, the front-end should first set
// the RV_DECODE_MORE_FRAMES bit in the 'H263DecoderInParams.flags'
// member, to indicate to the decoder that it is being invoked to
// extract the next frame.
// The front-end should continue invoking the decoder until the
// RV_DECODE_MORE_FRAMES bit is not set in the 'notes' member.
// For each invocation to decompress a frame in the same
// "MORE_FRAMES"
// loop, the front-end should send in the same input image.
//
// If the decoder has no frames to return for display, 'numFrames'
// will be set to zero. To avoid redundancy, the decoder does
// *not* set the RV_DECODE_DONT_DRAW bit in 'notes' in this case.

ULONG32 timestamp;
// The 'temporal_offset' parameter is used in conjunction with the
// RV_DECODE_MORE_FRAMES note, to assist the front-end in
// determining when to display each returned frame.
// If the decoder sets this to T upon return, the front-end should
// attempt to display the returned image T milliseconds relative to
// the front-end's idea of the presentation time corresponding to
// the input image.
// Be aware that this is a signed value, and will typically be
// negative.

ULONG32 width;

 RealNetworks, Inc Confidential 56

ULONG32 height;
// Width and height of the returned frame.
// This is the width and the height as signalled in the bitstream.

} H263DecoderOutParams;

10 Annex B

10.1 Encoder Command line Interface

Usage: tromsoe infile [options]
In the following syntax descriptions, arglist is a comma-separated list
of the form \"arg[=value],arg[=value],...\". Some arguments take
values, some do not. If arglist contains any whitespace, it must be
enclosed in quotes. For example, -d 4,l=mylog.txt,a specifies the
debug level to be 4, that the debug log file is named \"mylog.txt\",
and that the file should be opened in append mode rather than being
overwritten.

Infile Specify raw YUV12 input file
-a letter,arglist Enable a specific H.263 annex.

Letter letter is mandatory and must be the
first argument in arglist. It is
the annex's upper case letter.
For some annexes, this letter
argument takes a value, as described
below. The remaining elements of
arglist are specific to each annex.
For annexes that can be applied on a
per-layer basis, arglist can contain
\"l=<level>\", indicating the option
is being applied to the given level.

K[=<bytes_per_slice>] Slice Structured Mode [default slice
size is 512]

O Add a new scalability layer. First
O option describes layer 0, second
layer 1, etc (deprecated). Options
include:

w=<width> Layer width [default: layer 0 QCIF,
layer n prev] (deprecated)

h=<height> Layer height [default: layer 0 QCIF,
layer n prev] (deprecated)

p=profile String profile of 'P's, 'B's and '-
's [default \"P\"]

r=<ref_layer> [default: 0 for layer 0, n - 1 for
layer n] (deprecated)

-z Reserved
-b <image_range> Images to encode [encode all by

default]
 <image_range> is <m>-<n>:
 3-5 means frames 3, 4 and 5
 4- means frames 4 and beyond
 -5 means frames 0 through 5
 7 means frames 0 through 7
-c <cpu_usage> Specify CPU scalability setting.

cpu_usage is a number between 0 and

 RealNetworks, Inc Confidential 57

100
-d arglist Specify debugging output.

<level> Detail level. Use -1 to suppress.
[default is 0]

l=logfile Output file for debug messages.
[default is stdout]

a Append to logfile. [default is to
overwrite]

-f arglist Specify format of compressed output
file.

r Use raw format. [default]
x Use extended raw format.

-h Display this command line help and
exit.

-i arglist Specify input file format.
w=<width> Source image width [default is 176]
h=<height> Source image height [default is 144]
fps=<frame_rate> Source frame rate [default is 30

fps] (deprecated)
sf=<skip_factor> Source frames to skip between each

encoded frame [0]
pcf=<clock_freq> Picture clock frequency [default is

29.97] (deprecated)
par=par_description Pixel aspect ratio. par_description

is a string (deprecated)
-m <speed> Specify machine clock rate in MHz.
-r mode,arglist Specify data rate control for non-I

frames.
mode mode is mandatory and must be the

first argument in arglist. It is
one of the following strings:

q[=<qual>] Use PIA_RCM_QUALITY with the given
quality [5000].

Q[=<qp>] Map fixed QP into PIA_RCM_QUALITY
[5000].

fs=<frame_size> (deprecated)
fd (deprecated)

q=<quality> Specifies minimum quality level in
range 0 .. 10000.
[default is 0].

fps=<frame_rate> (deprecated)
d=<data_rate> (deprecated)
kb=<data_rate> (deprecated)
B=<QP> Use the given QP for B frames
l=<layer> (deprecated)

-k mode,arglist Specify rate control for I frames.
mode mode is mandatory and must be the

first argument in arglist. It is
one of the following strings:

i=<interval>
interval = 0
interval > 0

Specify key frame period.
Use PIA_KFCM_AUTO.
Use PIA_KFCM_INTERVAL, with the
given interval.

a Use PIA_RCM_AUTO rate control [this
is the default].

 RealNetworks, Inc Confidential 58

q[=<quality>] Use PIA_RCM_QUALITY with the given
quality [5000].

fs=<frame_size> Use method PIA_RCM_FRAME_SIZE with
the given target frame size (in
bytes). (deprecated)

q=<quality> Specifies quality level in range 0
.. 10000. [default is 5000 for mode
PIA_RCM_QUALITY, else 0].

l=<layer> (deprecated)
-o outfile Specify output file. Output

suppressed if unspecified.
-q Quiet mode (no summary statistics).
-v Verbose mode. Displays progress

messages and statistics about the
compressed bitstream to stdout.

10.2 Decoder Command line Interface

Usage: tromsod infile [options]
In the following syntax descriptions, arglist is a comma-separated list
of the form \"arg[=value],arg[=value],...\". Some arguments take
values, some do not. If arglist contains any whitespace, it must be
enclosed in quotes. For example, -d 4,l=mylog.txt,a specifies the
debug level to be 4, that the debug log file is named \"mylog.txt\",
and that the file should be opened in append mode rather than being
overwritten.
infile Specify TROMSO bitstream input file.
-b <image_range> Images to decode [decode all by

default]
<image_range> is <m>-<n>:
3-5 means frames 3, 4 and 5
4- means frames 4 and beyond
-5 means frames 0 through 5
7 means frames 0 through 7

-d arglist Specify debugging output.
<level> Detail level. Use -1 to suppress.

[default is 0]
l=logfile Output file for debug messages.

[default is stdout]
a Append to logfile. [default is to

overwrite]
-e arglist Specify post filtering options

smoothing Smoothing [default is off]
(deprecated)

-f arglist Specify display attributes
(deprecated)

-h Display this command line help and
exit.

-i arglist Specify input file format.
w=<width> Compressed image width [default is

176]
h=<height> Compressed image height [default is

144]
-l Enable latency mode [default is off]
-m <speed> Specify machine clock rate in MHz.

 RealNetworks, Inc Confidential 59

(WIN32 IA only)
-o outfile Specify output file. Output

suppressed if unspecified.
-p Enable smoothing postfilter [default

is off] (deprecated)
-q Quiet mode. Suppresses display of

summary information.
-v Verbose mode. Displays progress

messages to stdout.
-x arglist Specify packet loss characteristics.

<percent> Percent packet loss [default is 0].

