

March 07, 2002 RealNetworks, Inc Confidential 1

 8

External Specification

Video and Audio Technologies

Codec Group
RealNetworks, Inc

October 20, 2006

Version 2.01

Summary
This document is the draft specification of RealVideo8 Codec.
RealVideo8 achieves new levels of compression performance at low as
well as high data rates. The improvements are due in part to 1/3 pixel
interpolation for motion estimation, 4x4 pixel block transforms,
additional 4x4 intra prediction modes, the addition of 16x16 intra
prediction, and more efficient variable length coding by symbol
manipulation. The algorithm also benefits from noise reduction pre-
filtering, an in-loop deblocking filter, and a matched post-filter.

RealNetworks, Inc CONFIDENTIAL INFORMATION
Copyright © 2002 RealNetworks, Inc. All rights reserved.

March 07, 2002 RealNetworks, Inc Confidential 2

Revision History:

Revision Date Comment
1.0 03/07/02 Decoder Specification, from Original Encoder +

Decoder Spec “Tromso External Specification
v10.doc”

2.0 09/19/02 RealVideo 8 Specification new improved
2.01 10/20/06 Typo fix in chroma interpolation filters

March 07, 2002 RealNetworks, Inc Confidential 3

Contributors:

Karl Lillevold
Greg Conklin
Yuriy Reznik
Neelesh Gokhale
Mitch Bodart
Gim Deisher
Tom GardosChris Lord
Bob Reese
Lily Yang

March 07, 2002 RealNetworks, Inc Confidential 4

Table of Content
TABLE OF CONTENT 4

1 HIGH LEVEL OVERVIEW 6

2 REQUIREMENTS, OBJECTIVES 6

3 INTERFACE SPECIFICATION 6
3.1 REALVIDEO DLL 6
3.2 CONSOLE APPLICATION 6

4 ALGORITHM DESCRIPTIONS 6
4.1 INTRODUCTION 7
4.2 OVERVIEW 7
4.2.1 Picture Types 8
4.2.2 Picture Structure 8
4.2.3 Macroblock Structure 9

4.3 CORE COMPRESSION ALGORITHM 9
4.3.1 Macroblock Types 9
4.3.2 1/3 sub-pel prediction 10
4.3.3 One VLC code 11
4.3.4 Block sizes for Inter prediction 12
4.3.5 Improved intra coding 13
4.3.6 16x16 Intra Coding 15
4.3.7 4x4 based transform 17
4.3.7.1 Exact integer transform instead of DCT 17
4.3.7.2 Double Transform 17

4.3.8 Quantization 18
4.3.8.1 Dynamic Range for Various Methods. 19

4.3.9 Deblocking / smoothing filters 19
4.3.9.1 In-loop deblocking 19
4.3.9.2 Combined smoothing/deblocking postfilter 20

4.4 B FRAMES 21
4.5 REFERENCE PICTURE RESAMPLING (RPR) 23
4.6 CPU SCALABILITY 23

5 BITSTREAM SYNTAX 23
5.1 PICTURE LAYER 23
5.1.1 SPO Flags 24

5.2 SLICE LAYER 24
5.2.1 ECC 26

5.3 MACROBLOCK LAYER 27
5.3.1 MB Mode (Macroblock Mode) 27
5.3.2 QP (Quantization Parameter) 28
5.3.3 4x4 Intra Prediction 28
5.3.4 16x16 Intra Prediction 32
5.3.5 Motion Vectors 32
5.3.6 CBP (Coded Block Pattern) 34
5.3.6.1 CBP length and bit order 34
5.3.6.2 The structure of CBP code. 34

March 07, 2002 RealNetworks, Inc Confidential 5

5.3.6.3 CBP descriptor. 35
5.3.6.4 8x8 descriptor and contexts. 35
5.3.6.5 Cr bits. 36

5.4 BLOCK LAYER 36
5.4.1 Block size, scan order, and types of coefficients. 36
5.4.2 The structure of the code. 36
5.4.3 4x4 and 2x2 block descriptors. 37
5.4.4 Level descriptors. 38
5.4.5 Sign bits. 39
5.4.6 Code Tables. 39
5.4.6.1 Partition of code tables based on Inter/Intra coding and
quantization step sizes. 39
5.4.6.2 Variable-length codes and code tables. 40
5.4.6.3 Code tables. 40

6 PERFORMANCE ESTIMATES 41
6.1 CPU UTILIZATION 41
6.1.1 Decoder Performance 41

7 QA TEST PROCEDURES 42

8 REFERENCES 42

9 ANNEX A 42

10 ANNEX B 44
10.1 ENCODER COMMAND LINE INTERFACE 44
10.2 DECODER COMMAND LINE INTERFACE 46

March 07, 2002 RealNetworks, Inc Confidential 6

1 High Level Overview

RealVideo8 represents major advances in compression performance.
RealVideo8 achieves new levels of compression performance at low as
well as high data rates. The improvements are due in part to 1/3 pixel
interpolation for motion estimation, 4x4 pixel block transforms,
additional 4x4 intra prediction modes, the addition of 16x16 intra
prediction, and more efficient variable length coding by symbol
manipulation. The algorithm also benefits from noise reduction pre-
filtering, an in-loop deblocking filter, and a matched post-filter.
RealVideo8 Decoder has built in CPU scalability to ensure best possible
Video Experience various hardware configurations.

2 Requirements, Objectives

Minimum Decode Platform: 160x120 pixel, 7.5 fps decode on a Pentium™
166 MHz with 16 MB of memory.

Target bit rates: < 20 kbps, 30 kbps, 100 kbps, 500 kbps, 1 Mbps

Target frame sizes: 32x32 to 2048x1152, with particular attention to
the range SQCIF (128x96) to Half-Horizontal CCIR-601 Resolution (360 x
480).

Video quality requirements: A noticeable improvement in video quality
over RealVideo G2 at comparable data rates.

3 Interface Specification

3.1 RealVideo DLL
Decoder DLL will comply to the RealVideo back-end interface detailed in
Annex A. These interfaces might change for subsequent releases.

3.2 Console Application
A console application version of the codec will be available for
development and testing purposes. The encoder and decoder command line
arguments are listed in Annex B.

4 Algorithm Descriptions
As compression quality is still considered the most important
development area for improving the streaming video experience,
RealVideo8 delivers a quantum jump in compression efficiency.

March 07, 2002 RealNetworks, Inc Confidential 7

4.1 Introduction

The RealVideo8 algorithm is largely based on H.26L[3][4] or now called
the Joint Video Team proposal Mpeg4 part 10 / Advanced Video Codec,
which experiments have shown provides significant and very visible
coding gains over H.263+. RealVideo8 deviates by:
• not performing the chroma DC coefficient manipulation
• not including the 16x8, 8x16, 8x4, 4x8 and 4x4 motion compensated

modes
• additional 4x4 intra prediction modes (These were proposed to JVT

and have been accepted in simplified form (mode 7))
• addition of B frames (26L now has generalised Bipredictive-frames)
• inloop filter definition and usage
• addition of an alternate VLC for coefficients

4.2 Overview
RealVideo 8 is a hybrid predictive coder that uses temporal prediction
(motion compensation) and spatial prediction (intra-prediction),
transform-based residual coding and an inloop deblocking filter.
Figure 4.1 provides a high-level block diagram of the algorithm.

Figure 4.1: Block diagram of the RealVideo 8 decoder algorithm

The Incoming Bitstream describes how to reconstruct pictures in groups
of non-overlapping 16x16 pixels (macroblocks). For each macroblock,
the bitstream indicates whether Spatial Prediction or Temporal
Prediction is to be used. Once a prediction is formed, the image
residual is formed through the Coefficient Decoding, Dequantization and
Inverse Transform process. The prediction and residual are added and
stored in memory for use in future spatial prediction. Once the entire
picture has been reconstructed, an inloop deblocking filter is used to
remove blocking artifacts. This filtered image is then ready to be
rendered (a post-filter is applied) and, in addition, used for future
temporal prediction.

The RealVideo 8 decoding algorithm is defined to reconstruct video
images in YUV 4:2:0 format. It is the function of the video renderer
(or equivalent player module) to format the picture to the appropriate
color space for display.

Temporal
Prediction

Spatial
Prediction

Dequantization Inverse
Transform

Coefficient
Decoding

Reconstructed
Frame Buffer

Deblocking
Filter

Incoming
Bitstream

Frame
Store

Decoded
Frame

March 07, 2002 RealNetworks, Inc Confidential 8

4.2.1 Picture Types

There are 3 picture types in RealVideo 8 – I-Pictures, P-Pictures and
B-Pictures.

I-Pictures are also referred to as Intra-Frames or Key Frames. They do
not use temporal prediction and, therefore, do not require other
decoded reference frames to be in the decoder for proper
reconstruction. I-Pictures provide entry or access points to the video
sequence.

P-Pictures use both spatial and temporal prediction. The temporal
prediction always uses one reference frame. That reference frame shall
always be the most previous reconstructed I-Picture or P-Picture.

B-Pictures use both spatial and temporal prediction. However, temporal
prediction uses up to 2 reference frames. These reference frames shall
always be the 2 most previous reconstructed I-Pictures or P-Pictures
that were found in the bitstream (i.e. in “bitstream” order, not
display order). Because the display time of one reference picture is
always before the B-Picture and the other is always after the B-
Picture, the placement of B-Pictures in the bitstream is not in display
order. Figure 4.2 provides an example of display and bitstream
ordering of I, P and B Pictures.

(a)

(b)

Figure 4.2: (a) Display Order. (b) Bitstream and Decode Order

4.2.2 Picture Structure

Pictures are divided into non-overlapping 16x16 group of pixels called
macroblocks. For instance, a QCIF picture (176x144 pixels) is divided
into 99 macroblocks as indicated in Figure 4.3.

I0 B1 B2 B3 P4 B5 B6 B7 P8

I0 B1 B2 B3 P4 B5 B6 B7 P8

Bitstream/Decode Order

Display Time

March 07, 2002 RealNetworks, Inc Confidential 9

Figure 4.3: A picture with 11 x 9 macroblocks (QCIF picture)

When parsing and decoding the video bitstream macroblocks are scanned
from left to right starting at the top left of the picture. Once an
entire row of macroblocks are decoded the next row down proceeds.

4.2.3 Macroblock Structure

The basic transform used for residual coding is a 4x4 2-D transform.
Figure 4.4 below indicate how a macroblock is divided into 4x4 regions
and the scanning order of these regions.

Figure 4.4: Macroblock scanning order of 4x4 blocks during residual
coding

4.3 Core Compression Algorithm

4.3.1 Macroblock Types

Each macroblock is given a categorization (macroblock type) that
indicates both the way prediction is done for that macroblock (e.g.
spatial or temporal) and the way residual transform is done (e.g.
single 4x4 transforms or a double transforms). The complete list of
macroblock types is given below in Table 4.1.

TABLE 4.1: List of macroblock types

Y U V

1

5

2 3 4

6 7 8

9 10 11 12

13 14 15 16

17 18

19 20

21 22

23 24

9 macroblocks

11 macroblocks

176 pixels

144 pixels

March 07, 2002 RealNetworks, Inc Confidential 10

MB Types Description I-Pic P-Pic B-Pic
INTRA Intra, 16 4x4 predictions X X X
INTRA_16x16 Intra, 16x16 prediction, Dbl Xfm X X X
INTER Inter, 1MV X
INTER_4V Inter, 4MVs for 4 8x8 blocks X
SKIPPED Inter, no residual, MV=(0,0) X
FORWARD Fwd MV, 1MV X
BACKWARD Bwd MV, 1MV X
DIRECT Direct, Derived 2MV for 16x16

block
 X

SKIPPED Direct, no residual, Derived MV
for 16x16 block

 X

4.3.2 1/3 sub-pel prediction

Motion vectors in RealVideo 8 are transmitted in 1/3 pixel units. When
the motion vectors for a macroblock have been decoded the full-pixel
offset can be obtained by dividing by 3.

MVx_int = (MVx_luma / 3)
MVy_int = (MVy_luma / 3).

The “phase” or sub-pixel location can be obtained as follows.

MVx_sub = (MVx_luma – MVx_int*3)
MVy_sub = (MVy_luma - MVy_int*3).

For luma sub-pixel interpolation is calculated with a 4-tap filter. For
chroma, a 2-tap filter is used. In addition, one of the 9 interpolated
pixels, MVx_sub = 2, MVy_sub = 2, in the luma plane is created using a
stronger filter. Thus, using 1/3–pel prediction instead of ½-pel
prediction has two advantages
§ more accurate motion estimation
§ automatic adaptation of, and a larger variation in filter strength
The different horizontal and vertical filters are illustrated in Table
4.2.

TABLE 4.2: Luma Horizontal and vertical motion compensation filters
(MVx_sub,
MVy_sub)

Horizontal, Vertical Filter pi,j = inter pixels,
ti,j = temporary buffer, yi,j = interpolated image
Note: (i,j) = coordinates x,y pair and not row,column pair

(0,0) ti,j = pi,j
yi,j = ti,j

(0,1) ti,j = pi,j
yi,j = (–1ti,j-1 + 12ti,j + 6ti,j+1 – 1ti,j+2 + 8) >> 4

(0,2) ti,j = pi,j
yi,j = (-1ti,j-1 + 6ti,j + 12ti,j+1 – 1ti,j+2 + 8) >> 4

(1,0) ti,j = (–1pi-1,j + 12pi,j + 6pi+1,j – 1pi+2,j + 8) >> 4
yi,j = ti,j

(1,1) ti,j = (-1pi-1,j + 12pi,j + 6pi+1,j – 1pi+2,j)
yi,j = (–1ti,j-1 + 12ti,j + 6ti,j+1 – 1ti,j+2 + 128) >> 8

(1,2) ti,j = (–1pi-1,j + 12pi,j + 6pi+1,j – 1pi+2,j)
yi,j = (-1ti,j-1 + 6ti,j + 12ti,j+1 – 1ti,j+2 + 128) >> 8

(2,0) ti,j = (–1pi-1,j + 6pi,j + 12pi+1,j – 1pi+2,j + 8) >> 4

March 07, 2002 RealNetworks, Inc Confidential 11

yi,j = ti,j
(2,1) ti,j = (–1pi-1,j + 6pi,j + 12pi+1,j – 1pi+2,j)

yi,j = (–1ti,j-1 + 12ti,j + 6ti,j+1 – 1ti,j+2 + 128) >> 8
(2,2) ti,j = (-0pi-1,j + 6pi,j + 9pi+1,j +1pi+2,j)

yi,j = (-0ti,j-1 + 6ti,j + 9ti,j+1 +1ti,j+2 + 128) >> 8

The final value of y clipped to 0-255.

Motion vectors for chroma motion compensation are derived from the
motion vectors for the luma. Specifically, the chroma MVs are
calculated as

 MVx_chroma = MVx_luma >> 1
 MVy_chroma = MVy_luma >> 1

Then the integer offset and sub-pixel location can be obtained by

MVx_chroma_int = (MVx_chroma / 3)
MVy_chroma_int = (MVy_chroma / 3).

MVx_chroma_sub = (MVx_chroma – MVx_chroma_int*3)
MVy_chroma_sub = (MVy_chroma – MVy_chroma_int*3).

Additionally, the size of motion compensation blocks are half the size,
horizontally and vertically, from those used in luma. Thus, motion
compensation block sizes for chroma include 8x8, 8x4, 4x8 and 4x4.
Chroma motion compensation filters are given in Table 4.3.

Note when these filters are used for chroma, the drift due to rounding
errors is much smaller than in H.263, and the rounding control
mechanism (RCONTROL) that was added to H.263+ is not needed.

TABLE 4.3: Chroma Horizontal and vertical motion compensation filters
(MVx_chroma_sub,
MVy_chroma_sub)

Filter (input py,x, output fy,x)

(0,0) fi,j = pi,j
(0,1) fi,j = (5pi,j + 3pi,j+1 + 4) >> 3
(0,2) fi,j = (3pi,j + 5pi,j+1 + 4) >> 3
(1,0) fi,j = (5pi,j + 3pi+1,j + 4) >> 3
(1,1) fi,j = (25pi,j + 15pi+1,j + 15pi,j+1 + 9pi+1,j+1 + 32) >> 6
(1,2) fi,j = (15pi,j + 9pi+1,j + 25pi,j+1 + 15pi+1,j+1 + 32) >> 6
(2,0) fi,j = (3pi,j + 5pi+1,j + 4) >> 3
(2,1) fi,j = (15pi,j + 25pi+1,j + 9i,j+1 + 15pi+1,j+1 + 32) >> 6
(2,2) fi,j = (9pi,j + 15pi+1,j + 15pi,j+1 + 25pi+1,j+1 + 32) >> 6

The final value of f clipped to 0-255.

4.3.3 One VLC code
Previous standards-based codecs used different variable-length (VLC)
and fixed-length (FLC) code tables for different coding parameters
where the VLCs and FLCs were matched to the statistics of the
parameters to be coded. This algorithm uses one variable-length code
table to code all the information in the video sequence. To achieve a
high coding efficiency, the coding model has been designed so that the

March 07, 2002 RealNetworks, Inc Confidential 12

symbols match the statistics of this single VLC. The particular VLC
that is used has a regular structure:

VLC in compressed
form

Code number (N) Explicit
codeword

Inf
o

L
1 0 1 1

1 0 0 1 0 3 0 x0 1
2 0 1 1 1 3
3 0 0 0 0 1 00 5
4 0 0 0 1 1 01 5
5 0 1 0 0 1 10 5

0 x1 0 x0 1

6 0 1 0 1 1 11 5
7 0 0 0 0 0 0 1 000 7
8 0 0 0 0 0 1 1 001 7

0 x2 0 x1 0 x0 1
…

… … … …
Table 1 The one and only VLC

The table of codewords may be written in the following compressed form.

1
0 x0 1

0 x1 0 x0 1
0 x2 0 x1 0 x0 1

0 x3 0 x2 0 x1 0 x0 1
.................

where xn take values 0 or 1. We will sometimes refer to a codeword with
its length in bits (L) and INFO = xn .. x1 x0 . Notice that the number
of bits in INFO is L/2 (division by truncation).

When L and INFO is known, the regular structure of the table makes it
easy to create a codeword bit by bit. Similarly, a decoder may easily
read bit by bit until the last "1" which gives the end of the codeword.
L and INFO is then readily available. For each parameter to be coded,
there is a conversion rule from the parameter value to the code number
(or L and INFO). Table 3 lists the connection between code number and
most of the parameters used in the present coding method.

RealVideo8 uses alternative VLC coding for coefficient information. See
Block Layer Description.

4.3.4 Block sizes for Inter prediction

In this model it is possible to estimate motion and compensate motion
on 16x16, and 8x8 pixel block sizes. The encoder chooses one motion
compensation mode for each macroblock. Motion vectors off the edge of
the frame are allowed and used. A valid MV is defined such that the
interpolation of that MV is possible within the padded image.

March 07, 2002 RealNetworks, Inc Confidential 13

 INTER INTER_4V
 INTER_16X16
 FORWARD
 BACKWARD
 DIRECT

Figure 4.5: Motion compensation block sizes for Inter macroblocks

4.3.5 Improved intra coding
An improved advanced intra coding mode is used. Relative to the AIC
mode in H.263+, this version is 4x4 based, the prediction is done in
the spatial domain using one of nine prediction modes. There are six
additional prediction modes relative to the AIC mode in H.263+. These
additional prediction modes are diagonal. The other modes are (1) the
average of the block above and to the left, (2) column based from
above, and (3) row based from the left. See below for a detailed
description. In the reference model, the choice of coding mode is based
on SAD.

A 4x4 block is to be coded (pixels labeled a to p below). The pixels A
to P and X from neighboring blocks are already decoded and may be used
for prediction. “//” means division with rounding.
X A B C D E F G H
I a b c d
J e f g h
K i j k l
L m n o p
M
N
O
P

Under some situations pixels A,B,C,D or I,J,K,L or X are not available
for use at the decoder. These situations include

1. These pixels are located outside the picture boundary
2. These pixels belong to another independent slice

In these cases, modes that require these pixels will not be encountered
by the decoder. Similarly, pixels E,F,G,H or M,N,O,P may also not be
available for use at the decoder. These situations include the ones
above with the additional case

3. These pixels are located in parts of the current frame that
have yet to be decoded and reconstructed

In these situations the decoder shall use the value of D for pixels
E,F,G,H when they are not available. T he decoder shall use the value
of L for pixels M,N,O,P when they are not available. For example,

16

16
8

8

8 8

March 07, 2002 RealNetworks, Inc Confidential 14

E,F,G,H are not valid for 4x4 blocks on the right edge of the 16x16 macroblock
except the top row when the macroblock is not at the right edge of the picture.
M,N,O,P are only valid for 4x4 blocks on the left edge of the 16x16 macroblock
except on the bottom row.

Mode 0:
Generally all pixels are predicted by (A+B+C+D+I+J+K+L)//8. If four of
the pixels are outside the picture, the average of the remaining four
is used for prediction. If all 8 pixels are outside the picture the
prediction for all pixels in the block is set to 128. A block may
therefore always be predicted in this mode.
Mode 1:
If pixels A,B,C,D are inside the picture, a,e,i,m are predicted by A,
b,f,j,n by B etc.
Mode 2:
If pixels I,J,K,L are inside the picture, a,b,c,d are predicted by I,
e,f,g,h by J etc.
Mode 3:
This mode is used only if all A,B,C,D,I,J,K,L,X are inside the picture.
This is a diagonal prediction.
m is predicted by (L+2K+J)//4
i,n are predicted by (K+2J+I)//4
e,j,o are predicted by (J+2I+X)//4
a,f,k,l are predicted by (I+2X+A)//4
b,g,l are predicted by (X+2A+B)//4
c,h are predicted by (A+2B+C)//4
d is predicted by (B+2C+D)//4

Mode 4 - 8:
These diagonal modes are used only if all A,B,C,D,I,J,K,L,X are inside
the picture. When E,F,G,H are not valid predictors D is used instead.
When M,N,O,P are not valid predictors L is used instead. E,F,G,H are
not valid for 4x4 blocks on the right edge of the 16x16 macroblock
except the top row right edge block when the macroblock is not at the
right edge of the picture. M,N,O,P are only valid for 4x4 blocks on the
left edge of the 16x16 macroblock which are not on the bottom row.

Mode 4:
a is predicted by (A+2B+C+I+2J+K)//8
b,e are predicted by (B+2C+D+J+2K+L)//8
c,f,i are predicted by (C+2D+E+K+2L+M)//8
d,g,j,m are predicted by (D+2E+F+L+2M+N)//8
h,k,n are predicted by (E+2F+G+M+2N+O)//8
l,o are predicted by (F+2G+H+N+2O+P)//8
p is predicted by (G+H+O+P)//4

March 07, 2002 RealNetworks, Inc Confidential 15

Mode 5:
a,j are predicted by (X+A)//2
b,k are predicted by (A+B)//2
c,l are predicted by (B+C)//2
d is predicted by (C+D)//2
e,n are predicted by (I+2X+A)//4
f,o are predicted by (X+2A+B)//4
g,p are predicted by (A+2B+C)//4
h is predicted by (B+2C+D)//4
i is predicted by (X+2I+J)//4
m is predicted by (I+2J+K)//4

Mode 6:
a is predicted by (2A+2B+J+2K+L)//8
b,i are predicted by (B+C)//2
c,j are predicted by (C+D)//2
d,k are predicted by (D+E)//2
l is predicted by (E+F)//2
e is predicted by (A+2B+C+K+2L+M)//8
f,m are predicted by (B+2C+D)//4
g,n are predicted by (C+2D+E)//4
h,o are predicted by (D+2E+F)//4
p is predicted by (E+2F+G)//4

Mode 7:
a is predicted by (B+2C+D+2I+2J)//8
b is predicted by (C+2D+E+I+2J+K)//8
c,e are predicted by (D+2E+F+2J+2K)//8
d,f are predicted by (E+2F+G+J+2K+L)//8
g,i are predicted by (F+2G+H+2K+2L)//8
h,j are predicted by (G+3H+K+3L)//8
l,n are predicted by (L+2M+N)//4
m,k are predicted by (G+H+L+M)//4
o is predicted by (M+N)//2
p is predicted by (M+2N+O)//4

Mode 8:
a,g are predicted by (X+I)//2
b,h are predicted by (I+2X+A)//4
c is predicted by (X+2A+B)//4
d is predicted by (A+2B+C)//4
e,k are predicted by (I+J)//2
f,l are predicted by (X+2I+J)//4
i,o are predicted by (J+K)//2
j,p are predicted by (I+2J+K)//4
m is predicted by (K+L)//2
n is predicted by (J+2K+L)//4

For chroma blocks the mode used is the mode of the corresponding upper
left luma block.

4.3.6 16x16 Intra Coding

For Intra16x16 macroblocks, one of four prediction modes are used to
form a 16x16 prediction for the entire macroblock. Three modes are
similar to modes 0 – 2 for 4x4 intra plus a new planar prediction mode.
The image residual of Intra16x16 macroblocks are Double Transformed
(see section QQ).

March 07, 2002 RealNetworks, Inc Confidential 16

Define P(i,-1), i=0..15 to be the 16 pixels above the macroblock to be
predicted, and P(-1,j), j=0..15 to be the 16 pixels to the left of the
macroblock to be predicted.

Mode 0: DC Prediction
If all P(i,-1) and P(-1,i) are inside the picture and current slice
then all 256 pixels are predicted by

 15
 pred = ((∑ P(i,-1) + P(-1,i)) + 16) >> 5
 i=0

If P(i,-1) are inside the picture and current slice then all 256 pixels
are predicted by

 15
 pred = ((∑ P(i,-1)) + 8) >> 4
 i=0

If P(-1,i) are inside the picture and current slice then all 256 pixels
are predicted by

 15
 pred = ((∑ P(-1,i)) + 8) >> 4
 i=0

If all 32 pixels are outside the picture, the prediction for all pixels
in the block is set to 128. A block may therefore always be predicted
in this mode.

Mode 1: Vertical Prediction
If pixels P(i,-1), i=0..15 are inside the picture and current slice,
P(0,j), j=0..15 are predicted by P(0,-1) etc.

Mode 2: Horizontal Prediction
If pixels P(-1,j), j=0..15 are inside the picture and current slice,
P(i,0), i=0..15 are predicted by P(-1,0) etc.

Mode 3: Planar Prediction

This mode is used only if all P(i,-1), i=0..15 and P(-1,j),
j=0..15 are inside the picture and current slice. The following
calculations are performed:

 8
 H = ∑ i·(P(7+i,-1) – P(7-i,-1))
 i=1

 8
 V = ∑ j·(P(-1,7+j) – P(-1,7-j))

March 07, 2002 RealNetworks, Inc Confidential 17

 j=1

 a = 16x(P(-1,15) + P(15,-1))

b = (H+(H>>2))>>4
c = (V+(V>>2))>>4

And finally the actual prediction:

pred(i,j) = (a + b·(i-7) + c·(j-7) + 16) >> 5

All calculations shall be integer. No divisions (only shifts) are
needed, and all calculations shall be within 16 bits.

For chroma the mode used is the mode chosen for luma, except when the
luma mode is 3 then mode 0 is used. Modes 0,1, and 2 are predicted in
the same way as luma except 8x8 blocks are used.

4.3.7 4x4 based transform

For the transform to the frequency domain of the residual after INTRA
coding or motion prediction, a 4x4 pixel block transform is used
instead of the H.263+ 8x8 pixel block size. The transform is defined in
section 4.3.7.1.

4.3.7.1 Exact integer transform instead of DCT
A 4x4 integer transform is used for image residuals. By having an
exact definition of the inverse transform, there is no encoder/decoder
mismatch. The transformation of the pixels a,b,c,d into four transform
coefficients in one dimension is defined by:
A = 13a + 13b + 13c + 13d
B = 17a + 7b - 7c - 17d
C = 13a - 13b – 13c + 13d
D = 7a - 17b + 17c - 7d

The inverse transform is defined by:
a' = 13A + 17B + 13C + 7D
b' = 13A + 7B - 13C – 17D
c' = 13A – 7B – 13C + 17D
d' = 13A – 17B + 13C - 7D

The relationship between the transform in one dimension without
normalization is a’ = 676 x a. This is used in the quantization step
(see below). The actual transform is 2D and since it is a separable
transform, it implemented as a horizontal 1D transform followed by a
vertical 1D transform.

4.3.7.2 Double Transform
An additional 4x4 transform is used for the 16 DC coefficients of the
16 4x4 transforms inside a macroblock. The coefficients of this second
transform are coded and transmitted as a block in addition to the 16

March 07, 2002 RealNetworks, Inc Confidential 18

4x4 luma blocks (each then having only 15 coefficients). Since we use
the same integer transform to DC coefficients, we have to perform
additional normalization to those coefficients, which implies a
division by 676. To avoid the division we performed normalization by
49/215 on the encoder side and 48/215 on the decoder side, which gives
sufficient accuracy.

4.3.8 Quantization
The quantization is table-based and designed in such a way that the bit
usage as a function of the quantization parameter is fairly linear. In
H.263+, this function is highly non-linear. In the encoder and decoder,
the QP range 0-31 is mapped into the tables A[QP] and B[QP],
respectively, where the relationship between A[] and B[] is:

A[QP] x B[QP] x 6762 = 234.

with

A(QP=0,..,31) = {620, 553, 492, 439, 391, 348, 310, 276, 246, 219, 195,
174, 155, 138, 123, 110, 98, 87, 78, 69, 62, 55, 49, 44, 39, 35,
31, 27, 24, 22, 19, 17}

B(QP=0,..,31) = {60, 67, 76, 85, 96, 108, 121, 136, 152, 171, 192, 216,

242, 272, 305, 341, 383, 432, 481, 544, 606, 683, 767, 854, 963,
1074, 1212, 1392, 1566, 1708, 1978, 2211}

Quantization of coefficient level K is performed as

LEVEL = ((K>>4) x A[QP]x32 + f)>>16/32

where f is 5 for Inter macroblocks and 10 for Intra macroblocks.
Dequantization is defined as

K’ = ((LEVEL x B[QP]) + 8)>>4

For the coefficients of the second transform in INTRA_16x16 macroblocks
quantization is performed as

LEVEL = (K x A[QP] + f)>>20

where f is 0x55555, while dequantization is as above.
The DC coefficient of this block is given a lower QP than the AC
coefficients:

luma_quant_DC[32] =
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22
,22,22,23,23,23,24,24,25,25};

Quantization is performed the same way for chroma as for luma, except
the the QP value used is derived from the QP used for luma using the
tables below. The chroma DC coefficient is given an even lower QP than
the chroma AC coefficients:

chroma_QP = chroma_QP_map[luma_QP];

chroma_QP_map_AC[32] =

{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,17,18,
19,20,20,21,22,22,23,23,24,24,25,25};

March 07, 2002 RealNetworks, Inc Confidential 19

chroma_QP_map_DC[32] =

{0,0,0,1,2,3,4,5,6,7, 8, 9,10,11,12,13,14,15,15,16,
17,18,18,19,20,20,21,21,22,22,23,23};

After inverse transformation, the pixel values will then be 210 too
high, and a 10 bit downshift is needed as a part of the frame
reconstruction. The definition of the transform and quantization is
designed so that no overflow will occur with the use of 32-bit
arithmetic.

4.3.8.1 Dynamic Range for Various Methods.
A*B*676*676 = 2^34
Transform Input = 9 Bits per pixel
Double Xfrm input is DC coeff of 16 4x4 blocks normalized by 49/2^15.
So the input to the remaining chain is 11 bits.
Transform Intermediates = 13*13*4*4 * 2^9 = 21 Bits.
Transform Output = 21 Bits
(11 bits can represent normalized Xfrm at QP0)

Quant Input = 21Bits
Transform Coeff Value Reduced to 17 Bits and then saturated to 16 bits
during Quantization. (Corresponds to ½ LSB Granularity for Table A)
The down shift & saturation is not done for the double Xfrm.
Quant Output = 10 Bits. (signed)
(In case of Double Xfrm and SuperVLC, if the output exceeds 10Bits, the
Double transform is not done. The MB is recoded as INTRA MB)
Tranform + Quant normalization = 2^20

QVAL * B = Level * [A * B * 676 * 676] / [13 * 13] * 2^20 < 2^16
Dquant Input = 10 Bits
Dquant Intermediates = 16 Bits
Dquant Normalisation = 2^4
Dquant Output = Max 12 Bits

Ixfrm Input = 12 Bits
Ixfrm Intermediate = 13*13 * 2^12 < 2^20
Ixfrm Normalization = 2^10
Ixfrm Output = 9 bits

4.3.9 Deblocking / smoothing filters
For I, P and B frames (B frames optional in the encoder) an in-loop
deblocking filter very similar to our previous deblocking filter is
used. Chroma planes are deblock filtered for I frames only. For all
frames a combined smoothing / deblocking standalone postfilter is used.
Combined smoothing / deblocking means that all pixels along the 4x4
grid are filtered more strongly than other pixels.

4.3.9.1 In-loop deblocking
The in-loop deblocking filter is similar to the in-loop deblocking
filter defined in annex J in H.263 version 2, but works on 4x4 edges
instead of 8x8 edges, and only one instead of two pixels on each side
of the edge is filtered.

March 07, 2002 RealNetworks, Inc Confidential 20

The filter operations are performed across 4x4 block edges at the
encoder as well as on the decoder side. The reconstructed image data
(the sum of the prediction and the reconstructed prediction error) are
clipped to the range 0 to 255. Then the filtering is applied, which
alters the picture that is to be stored in the picture store for future
prediction. The filtering operation includes an additional clipping to
ensure the resulting pixel values stay in the range 0…255.

The deblocking filter operates using a set of four (clipped) pixel
values on a horizontal or vertical line in the reconstructed picture,
denoted as A, B, C and D, of which A and B belong to one block called
block1 and C and D belong to a neighboring block called block2 which is
to the right or below block1. All edges of intra blocks are always
filtered while edges of non-intra blocks are filtered only if the block
has at least one coded coefficient or if any motion vector component
differs from its neighbor by more than 3.

The pixels denoted B and C are replaced by B1 and C1, which are
computed as:
B1 = clip(B + d2)
C1 = clip(C – d2)
d2 = clipd1(d1, strength[QP])
d1 = ((A – B - C – D) << 2) >> 3
strength[QP] =
{0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5}

The above strength table is the default table; alternate strength
tables are available to be used, however keeping the encoder and
decoder in sync (both using the same table) must be handled outside of
the bitstream as no means is provided for signaling the use of an
alternate table. The alternate strength tables are:
{0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4}
{0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5}
{0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6}
{0,0,0,0,0,0,0,0,0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7}
{0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,3,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8}
{0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,4,4,5,5,5,6,6,6,7,7,7,8,8,8,9,9,9}

The function clip(x) clips x to the range 0…255. The function clipd1(x,
lim) clips x to the range +/- abs(lim).

4.3.9.2 Combined smoothing/deblocking postfilter
The combined smoothing / deblocking postfilter filters all pixels, but
to obtain the deblocking effect, the filter strength on pixels next to
8x8 and 4x4 block edges is stronger. Only the filtering in one
dimension will be defined. To obtain a two-dimensional effect the
filter is first applied in one direction (vertically), then the other
direction (horizontally)‡.

Given the pixels A, B, C, D, E, the pixel C is replaced by C1, which is
computed as:
C1 = clip(C + d2)
d2 = clipd1(d1, strength[QP][edgeposition])
d1 = (A + 2B – 6C + 2D + E) >> 3

‡ Whether the postfilter is first applied vertically or horizontally,
can be changed to accommodate optimization preferences.

March 07, 2002 RealNetworks, Inc Confidential 21

The edge_position table provides a pel position dependent index into the
strength table, the index into the edge_position table being the position of
the pel to be filtered with respect to an 8x8 block edge.

edge_position = {2,1,0,1,1,0,1,2}

There are four sets of strength tables, default is strength_select = 1.

strength[strength_select][QP][edge_position] =
{ // 0
{0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0},
{0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0},
{0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0},
{0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0},
},
{ // 1 (default)
{0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0},
{0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0},
{0,1,1}, {0,1,1}, {0,1,1}, {0,1,1}, {0,1,1}, {0,1,2}, {0,1,2}, {0,1,2},
// 16 17 18 19 20 21 22 23
{1,2,3}, {1,2,4}, {1,3,5}, {2,4,6}, {2,5,7}, {2,6,8}, {2,6,9}, {2,6,9},
// 24 25 26 27 28 29 30 31
},
{ // 2
{0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0},
{0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0},
{0,1,1}, {0,1,1}, {0,1,1}, {0,1,1}, {0,1,1}, {0,1,1}, {0,1,1}, {0,1,1},
// 16 17 18 19 20 21 22 23
{1,1,2}, {1,1,3}, {1,2,3}, {1,2,4}, {1,2,5}, {2,3,5}, {2,4,6}, {2,4,6},
// 24 25 26 27 28 29 30 31
},
{ // 3
{0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0},
{0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0}, {0,0,0},
{0,1,1}, {0,1,1}, {0,1,1}, {0,1,1}, {0,1,1}, {0,1,1}, {0,1,1}, {0,1,1},
// 16 17 18 19 20 21 22 23
{0,1,1}, {0,1,1}, {1,1,2}, {1,1,2}, {1,1,2}, {1,1,2}, {1,1,2}, {1,1,2},
// 24 25 26 27 28 29 30 31
}

4.4 B Frames
RV8 supports the same type of B frame mode as in H.263+ (Annex O B
pictures) except no Bi-Dir prediction types. For the direct prediction
mode the prediction type is determined by the reference macroblock
prediction type (16x16 or 8x8), and is 16x16 with zero motion vector
when the reference macroblock is INTRA or SKIPPED.
In B frames, there are four methods for motion compensating a
macroblock - forward, backward, direct, and skipped. Forward and
backward macroblocks are estimated and differentially encoded in a
similar fashion to 16x16 MV's in a P frame, except the reference
picture that is used can be either the preceding or future P frame,
respectively.

A direct macroblock uses as a reference the motion vectors from the
macroblock in the same spatial position in the future P frame. There
may be one 16x16 motion vector, or four 8x8 motion vectors in the
reference frame (if the reference macroblock is Intra coded, it is
treated as a zero motion vector for these purposes). The forward and

March 07, 2002 RealNetworks, Inc Confidential 22

backward motion vectors are derived by scaling the reference motion
vectors based on the relative distance between the B frame and the
surrounding P frames. These derived motion vectors are then clipped to
ensure that the referenced blocks lie within the padded image. The
motion compensation prediction is formed by averaging the motion
compensated block from the future P frame with the motion compensated
block from the previous P frame. A weighted average is used, where the
weighting factors are proportional to the temporal distance between the
B frame and the corresponding P frame (iRatio0, iRatio1). The motion
compensated residual is then transformed and coded. The chroma is
compensated with the same scaled motion vectors.
The forward and backward motion vectors for direct mode macroblocks are
calculated as follows.

MVF = (TRB * MV) / TRD

MVB = (TRB- TRD) * MV / TRD

Implemented as:
iRatio0 = (TRB << TR_SHIFT) / TRD;
MVFx = (iRatio0 * MVREFx + TR_RND) >> TR_SHIFT
MVFy = (iRatio0 * MVREFy + TR_RND) >> TR_SHIFT
MVBx = MVFx – MVREFx
MVBy = MVFy – MVREFy
TR_SHIFT = 14
TR_RND = (1 << (TR_SHIFT - 1)
iRatio1 = ((TRD - TRB) << TR_SHIFT) / TRD;

And Weighted Average:
U32 v1 = (U32) pfi,j << 7;
U32 v2 = (U32) ppi,j << 7;
U32 w = ((v1 * iRatio0) >> 16) + ((v2 * iRatio1) >> 16);
pbi,j = (U8) ((w + 0x10) >> 5);

pf = pixel from future reference frame
pb = pixel from prev reference frame
pb = predicted direct mode pixel

Where the vector component MVF is the forward motion vectors, MVB is the
backward motion vector, and MVREF represents the motion vectors in the
corresponding macroblock in the subsequent reference picture. TRD is the
temporal distance between the temporally previous and next reference
frame, and TRB is the temporal distance between the current frame and
previous reference frame. Since iRatio0 <=1, no clipping is needed for
MVF. Clipping is need for MVB. The luma frame data is padded by 16 on
each side, and the subpel interpolation filter is 4-tap.

right edge: pos_x*3 + MVx < (width + 16-16-2)*3
left edge: pos_x*3 + MVx > -(16-1)*3

March 07, 2002 RealNetworks, Inc Confidential 23

upper edge: pos_y*3 + MVy > -(16-1)*3
bottom edge: pos_y*3 + MVy < (height + 16-16-2)*3

assuming reference MV is ok.

In case the the corresponding macroblock in the subsequent reference
picture is of type INTER_4V, four corresponding MVF and MVB’s are
calculated and four 8x8 such blocks are averaged.

A skipped macroblock in a B frame is motion compensated the same way as
a direct macroblock, and it is understood that no transform
coefficients are sent for the entire macroblock.

4.5 Reference Picture Resampling (RPR)
RV8 supports RPR in a manner identical to RVG2. (H263+ based)
Reference picture resampling allows an encoder and decoder to change
image dimensions on the fly, without having to generate a key frame.
Rather than generating a key frame for the first image having the new
dimensions, the encoder simply interpolates the previous reference
image to the new size before using it as a predictor for the next
frame. The implementation is exactly like H263+ spec annexes O, P, and
Q. All Edge displacement, Warping, and Fill parameters are zero. RPR
information is transmitted in the SPO (once). The front-end uses the
ILVC_MSG_ID_Set_RealVideo_RPR_Data to communicate this information to
the back-end. Then, if num_sizes != 0, the back-end will read the
following information from the slice header:
[TR (as before)]

if num_sizes != 0
PCTSZ = getbits(log2(num_sizes))

[MBA (as before)]
The maximum number of sizes is currently limited to 8. The decoder will
use PCTSZ as an index to look up in the array transmitted in SPO:
new_width = horizontal_size[PCTSZ]
new_height = vertical_size[PCTSZ]

4.6 CPU Scalability
<Section to be expanded.>
Based on experiments the following Decoder CPU scalability is allowed.
Dropping B-frames.
§ Snap to Integer Motion Vectors in B-frames.
Disable De-Blocking in B-Frames.

5 Bitstream Syntax
This is the specification of the bitstream syntax. The bitstream is not
based on any standard and is not upward or downward compatible with
other RealVideo Codecs.

5.1 Picture Layer
For RealVideo the SPO is used to signal global stream parameters. There
is no Picture Header for RealVideo but the slice layer header has been
kept. Every picture starts with a Slice Layer Header.

March 07, 2002 RealNetworks, Inc Confidential 24

Every stream is Initialised with

32 bit SPO FLAG
32 bit Bitsream Version
Variable Number of Bytes representing (Width/4) followed by (Height/4)
of the Re-Sampled Images.

Number of Re-Sampled Images can be got from
RV20_SPO_BITS_NUMRESAMPLE_IMAGES. This is later used to the read the
PCT SIZE variable in the slice header. PCT SIZE is represented in the
bitstream by the least bits required to represent
RV20_SPO_BITS_NUMRESAMPLE_IMAGES. The value being the index into the
Width and Height Table constructed from the SPO information.

5.1.1 SPO Flags
 Name Mask Description
1 RV20_SPO_FLAG_UNRESTRICTEDMV 0x00000001 Annex D
2 RV20_SPO_FLAG_EXTENDMVRANGE 0x00000002 IMPLIES NEW VLC TABLES
3 RV20_SPO_FLAG_ADVMOTIONPRED 0x00000004 ANNEX F
4 RV20_SPO_FLAG_ADVINTRA 0x00000008 ANNEX I
5 RV20_SPO_FLAG_INLOOPDEBLOCK 0x00000010 ANNEX J
6 RV20_SPO_FLAG_SLICEMODE 0x00000020 ANNEX K
7 RV20_SPO_FLAG_SLICESHAPE 0x00000040 0: free running; 1:

rect
8 RV20_SPO_FLAG_SLICEORDER 0x00000080 0: sequential; 1:

arbitrary
9 RV20_SPO_FLAG_REFPICTSELECTION 0x00000100 ANNEX N
10 RV20_SPO_FLAG_INDEPENDSEGMENT 0x00000200 ANNEX R
11 RV20_SPO_FLAG_ALTVLCTAB 0x00000400 ANNEX S
12 RV20_SPO_FLAG_MODCHROMAQUANT 0x00000800 ANNEX T
13 RV20_SPO_FLAG_BFRAMES 0x00001000 SETS DECODE PHASE
14 RV20_SPO_BITS_DEBLOCK_STRENGTH 0x0000e000 deblocking strength
15 RV20_SPO_BITS_NUMRESAMPLE_IMAGES 0x00070000 max of 8 RPR images

sizes
16 RV20_SPO_FLAG_FRUFLAG 0x00080000 FRU BOOL: if 1 then

OFF
17 RV20_SPO_FLAG_FLIP_FLIP_INTL 0x00100000 FLIP-FLOP interlacing
18 RV20_SPO_FLAG_INTERLACE 0x00200000 de-interlacing

prefilter has been
applied

19 RV20_SPO_FLAG_MULTIPASS 0x00400000 Encoded with multipass
20 RV20_SPO_FLAG_INV_TELECINE 0x00800000 Inverse-telecine

prefilter has been
applied

21 RV20_SPO_FLAG_VBR_ENCODE 0x01000000 Encoded using VBR

5.2 Slice Layer
Once the stream has been initialized, the RealVideo data is received as
a series of slices that follow the syntax given in Figure 5.1. The
Slice Header is indicated in this diagram as the first 9 fields of
every slice.

March 07, 2002 RealNetworks, Inc Confidential 25

SLICE LAYER

RV_BITSTREAM_VERSION

ECC

MB Layer

PicCodType

Deblock Pass Thru

SQUANT

PCT SIZE

MB

RTYPE

RV_TR

Figure 5.1 Slice Layer

March 07, 2002 RealNetworks, Inc Confidential 26

Each slice in the bitstream is corresponds to a independently decodable
section. Coding across a slice boundary is defined as in H.263. Motion
vector prediction and intra mode prediction behaves as if the area
outside the current slice is outside the picture.

Field Lengths
Field Length Description
FIELDLEN_RV_BITSTREAM_VERSION 3
PicCodType 2 RV_INTRAPIC

RV_FORCED_INTRAPIC
RV_INTERPIC
RV_TRUEBPIC

ECC 1 0
FIELDLEN_SQUANT 5 Quant
Deblock Pass Thru 1 1 Enable Deblocking filter
FIELDLEN_TR_RV 13 TR
PCT SIZE See

SPO

MBA Var MBA_NumMBs= (width + 15)>>4 * (height +
15)>>4 - 1
MBA_FieldWidth
47 98 395 1583 6335 9215
6 7 9 11 13 14

SQCIF, QCIF, CIF, 4CIF, 16CIF, 2048x1152
FIELDLEN_RTYPE 1 Rounding

5.2.1 ECC

When ECC bit is set the decoder shall skip that slice. ECC Packets
contains forward error correction data and is not normative to the
decoder. Layers above the decoder should perform the error correction
and consume these packets.

March 07, 2002 RealNetworks, Inc Confidential 27

5.3 Macroblock Layer
MB LAYER

MB Mode

Intra prediction

Motion vectors

CBP

Block layer

QP

Figure 2 Macroblock Layer

5.3.1 MB Mode (Macroblock Mode)
The MB mode is signaled using the general VLC with code numbers as
defined in the table below. If QP needs to be transmitted, one of the
[QP] modes should be chosen.

March 07, 2002 RealNetworks, Inc Confidential 28

N MB Mode (I) MB Mode (P) MB Mode (B)
0 INTRA SKIPPED SKIPPED
1 INTRA_16x16 INTER DIRECT
2 INTER_4V FORWARD
3 INTRA BACKWARD
4 INTRA 16x16 INTRA
5 INTER[QP] INTRA 16x16
6 INTER_4V[QP] DIRECT[QP]
7 INTRA[QP] FORWARD[QP]
8 INTRA 16x16[QP] BACKWARD[QP]
9 INTRA[QP]
10 INTRA 16x16[QP]

Table 2 MB modes
Skip in a P frame is defined as INTER prediction with zero motion
vectors and no coefficients. Skip in a B frame is defined as Direct
prediction and no coefficients.

5.3.2 QP (Quantization Parameter)
If the MB mode indicates that QP (0…31) should be transmitted, a 5 bit
FLC is used, as in H.263. Note this is not available in I frames.

5.3.3 4x4 Intra Prediction
The signaling of the 4x4 intra prediction mode only occurs for INTRA
4x4 type macroblocks.

Since each of the 4x4 luma blocks shall be assigned a prediction mode,
this will require a considerable number of bits if coded directly. We
have therefore tried to find a more efficient way of coding the mode
information. First of all we observe that the chosen prediction mode
for a block is highly correlated with the prediction modes for adjacent
blocks. We have three blocks, A, B, and C, as given in figure a) below.
When the prediction modes of A and B are known (including the case that
A or B or both are outside the picture) an ordering of the most
probable, next most probable etc. mode of C can be found. This ordering
table is listed below in the shortened length example Table 3 followed
by the complete definition. For each prediction mode of A and B a list
of 9 numbers is given.
In case of INTRA_16x16 the 4x4 block in consideration A, or B is given
the mode number same as the INTRA_16x16 prediction mode. In case of
other MBtypes, A and B are given mode number 0. (see section 5.3.4)

Example: The prediction mode for A and B is 1. The list “1 2 5 6 3 0 4
8 7” indicates that mode 1 is also the most probable mode for block C.
Mode 2 is the next most probable one. In the bitstream there will for
instance be information that Prob0 = 1 (see Table1) indicating that the
next most probable mode after 1 shall be used for block C. In our
example this means Intra prediction mode 2. If Prob0 had been 2, the
mode would have been 5. Use of '–' in the table indicates that this
mode can not occur in this position.

For more efficient coding, the intra prediction mode for two 4x4 luma
blocks are coded in one codeword (Prob0 and Prob1 in the table below).
The transmission order for the 8 codewords in one macroblock is

March 07, 2002 RealNetworks, Inc Confidential 29

indicated in figure b) below. The two probabilities are signaled using
the general VLC with code numbers as defined below.

A

CB

a)

 0 0 1 1

 2 2 3 3

 4 4 5 5

 6 6 7 7

b)

Figure 3 Intra prediction
 B\A outside 0 1
 outside 0 - - - - - - - - 0 1 - - - - - - - 1 0 - - - - - - -
 0 0 2 - - - - - - - 0 2 1 6 4 8 5 7 3 1 2 5 6 3 0 4 8 7
 1 - - - - - - - - - 1 0 2 6 5 4 3 8 7 1 6 2 5 3 0 4 8 7
 2 2 0 - - - - - - - 2 8 0 1 7 4 3 6 5 2 1 7 6 8 3 5 0 4
 3 - - - - - - - - - 2 0 1 3 8 5 4 7 6 1 2 5 3 6 8 4 7 0
 4 - - - - - - - - - 2 0 1 4 6 7 8 3 5 1 6 2 0 4 5 8 7 3
 5 - - - - - - - - - 0 1 5 2 6 3 8 4 7 1 5 2 6 3 8 4 0 7
 6 - - - - - - - - - 0 1 6 2 4 7 5 8 3 1 6 0 2 4 5 7 3 8
 7 - - - - - - - - - 2 7 0 1 4 8 6 3 5 2 1 7 6 0 8 5 4 3
 8 - - - - - - - - - 2 8 0 1 7 3 4 5 6 1 2 7 8 3 4 5 6 0

Table 3 Example Intra mode probability orders
Complete intra mode probability order definition, all modes:
// A=outside
{0,9,9,9,9,9,9,9,9}, // B=outside
{0,2,9,9,9,9,9,9,9}, // B=mode0
{9,9,9,9,9,9,9,9,9}, // B=mode1
{2,0,9,9,9,9,9,9,9}, // B=mode2
{9,9,9,9,9,9,9,9,9}, // B=mode3
{9,9,9,9,9,9,9,9,9}, // B=mode4
{9,9,9,9,9,9,9,9,9}, // B=mode5
{9,9,9,9,9,9,9,9,9}, // B=mode6
{9,9,9,9,9,9,9,9,9}, // B=mode7
{9,9,9,9,9,9,9,9,9}, // B=mode8

// A=mode0
{0,1,9,9,9,9,9,9,9},
{0,2,1,6,4,8,5,7,3},
{1,0,2,6,5,4,3,8,7},
{2,8,0,1,7,4,3,6,5},
{2,0,1,3,8,5,4,7,6},
{2,0,1,4,6,7,8,3,5},
{0,1,5,2,6,3,8,4,7},
{0,1,6,2,4,7,5,8,3},
{2,7,0,1,4,8,6,3,5},
{2,8,0,1,7,3,4,5,6},

// A=mode1
{1,0,9,9,9,9,9,9,9},
{1,2,5,6,3,0,4,8,7},
{1,6,2,5,3,0,4,8,7},
{2,1,7,6,8,3,5,0,4},

March 07, 2002 RealNetworks, Inc Confidential 30

{1,2,5,3,6,8,4,7,0},
{1,6,2,0,4,5,8,7,3},
{1,5,2,6,3,8,4,0,7},
{1,6,0,2,4,5,7,3,8},
{2,1,7,6,0,8,5,4,3},
{1,2,7,8,3,4,5,6,0},

// A=mode2
{9,9,9,9,9,9,9,9,9},
{0,2,1,8,7,6,5,4,3},
{1,2,0,6,5,7,4,8,3},
{2,8,7,1,0,6,4,3,5},
{2,0,8,1,3,7,5,4,6},
{2,0,4,1,7,8,6,3,5},
{2,0,1,5,8,4,6,7,3},
{2,0,6,1,4,7,8,5,3},
{2,7,8,1,0,5,4,6,3},
{2,8,7,1,0,4,3,6,5},

// A=mode3
{9,9,9,9,9,9,9,9,9},
{0,2,1,3,5,8,6,4,7},
{1,0,2,5,3,6,4,8,7},
{2,8,1,0,3,5,7,6,4},
{3,2,5,8,1,4,6,7,0},
{4,2,0,6,1,5,8,3,7},
{5,3,1,2,8,6,4,0,7},
{1,6,0,2,4,5,8,3,7},
{2,7,0,1,5,4,8,6,3},
{2,8,3,5,1,0,7,6,4},

// A=mode4
{9,9,9,9,9,9,9,9,9},
{2,0,6,1,4,7,5,8,3},
{1,6,2,0,4,5,3,7,8},
{2,8,7,6,4,0,1,5,3},
{4,2,1,0,6,8,3,5,7},
{4,2,6,0,1,5,7,8,3},
{1,2,5,0,6,3,4,7,8},
{6,4,0,1,2,7,5,3,8},
{2,7,4,6,0,1,8,5,3},
{2,8,7,4,6,1,3,5,0},

// A=mode5
{9,9,9,9,9,9,9,9,9},
{5,1,2,3,6,8,0,4,7},
{1,5,6,3,2,0,4,8,7},
{2,1,5,3,6,8,7,4,0},
{5,3,1,2,6,8,4,7,0},
{1,6,2,4,5,8,0,3,7},
{5,1,3,6,2,0,8,4,7},
{1,6,5,2,0,4,3,7,8},
{2,7,1,6,5,0,8,3,4},
{2,5,1,3,6,8,4,0,7},

// A=mode6
{9,9,9,9,9,9,9,9,9},

March 07, 2002 RealNetworks, Inc Confidential 31

{1,6,2,0,5,4,3,7,8},
{1,6,5,4,2,3,0,7,8},
{2,1,6,7,4,8,5,3,0},
{2,1,6,5,8,4,3,0,7},
{6,4,1,2,0,5,7,8,3},
{1,6,5,2,3,0,4,8,7},
{6,1,4,0,2,7,5,3,8},
{2,7,4,6,1,5,0,8,3},
{2,1,6,8,4,7,3,5,0},

// A=mode7
{9,9,9,9,9,9,9,9,9},
{2,0,4,7,6,1,8,5,3},
{6,1,2,0,4,7,5,8,3},
{2,7,8,0,1,6,4,3,5},
{2,4,0,8,3,1,7,6,5},
{4,2,7,0,6,1,8,5,3},
{2,1,0,8,5,6,7,4,3},
{2,6,4,1,7,0,5,8,3},
{2,7,4,0,8,6,1,5,3},
{2,8,7,4,1,0,3,6,5},

// A=mode8
{9,9,9,9,9,9,9,9,9},
{2,0,8,1,3,4,6,5,7},
{1,2,0,6,8,5,7,3,4},
{2,8,7,1,0,3,6,5,4},
{8,3,2,5,1,0,4,7,6},
{2,0,4,8,5,1,7,6,3},
{2,1,0,8,5,3,6,4,7},
{2,1,6,0,8,4,5,7,3},
{2,7,8,4,0,6,1,5,3},
{2,8,3,0,7,4,1,6,5}

Note that the table above is the decoder table. Since this is the
decoder table, given the intra prediction mode for A and B, the mode
for C can be found from prob0 or prob1, as transmitted in the
bitstream.

The next table defines the VLC coding for the Prob0,Prob1 pairs. Given
VLC code N, Prob0= dec_iprob[N*2] and Prob1=dec_iprob[N*2+1].

const U8 dec_iprob[162] = {
0,0, // 1 bit

0,1, 1,0, // 3 bits

1,1, 0,2, 2,0, 0,3, // 5 bits

3,0, 1,2, 2,1, 0,4, // 7 bits
4,0, 3,1, 1,3, 0,5,

5,0, 2,2, 1,4, 4,1, // 9 bits
0,6, 3,2, 1,5, 2,3,
5,1, 6,0, 0,7, 4,2,
2,4, 3,3, 6,1, 1,6,

7,0, 0,8, 5,2, 4,3, // 11 bits

March 07, 2002 RealNetworks, Inc Confidential 32

2,5, 3,4, 1,7, 4,4,
7,1, 8,0, 6,2, 3,5,
5,3, 2,6, 1,8, 2,7,
7,2, 8,1, 5,4, 4,5,
3,6, 6,3, 8,2, 4,6,
5,5, 6,4, 2,8, 7,3,
3,7, 6,5, 5,6, 7,4,

4,7, 8,3, 3,8, 7,5, // 13 bits
8,4, 5,7, 4,8, 6,6,
7,6, 5,8, 8,5, 6,7,
8,6, 7,7, 6,8, 8,7,
7,8, 8,8,
};

Table 6 Intra prediction probability coding

5.3.4 16x16 Intra Prediction
The signaling of the16x16 intra prediction mode only occurs for INTRA
16x16 type macroblocks. The prediction mode for the 16x16 macroblock is
coded as a 2-bit FLC:

Code Prediction
00 DC
01 Vertical, from above
10 Horizontal, from left
11 Planar

5.3.5 Motion Vectors
The motion vectors are differentially encoded. The predictor is found
in a way very similar to the description in H.263+, including how to
handle the cases where the block size chosen for the current macroblock
is larger than the block size for one or more of the surrounding
macroblocks. With no special edge conditions the predictor is the
median of the motion vectors to the left, above, and above right,
relative to the current block. See Figure 4 for details. If the
macroblock is coded in 8x8 mode, the median candidates for block 0 are
found in the blocks marked with boldface numbers. If the macroblock is
coded in 16x16 mode, the candidates are found from the blocks in
italic.

If there is no block above right the current block, a candidate is
instead found above left, or left if above left does not exist. This is
different from H.263+, where the zero vector is used in this case. If
there is no block above, the block to the left is used. If there is no
block to the left, the zero vector is used. Motion vectors are
restricted to values which go no further than sixteen pels beyond
picture edges and reference pictures must be padded 16 pels beyond the
edges (eight for chroma planes) by replicating the edge pixels.

March 07, 2002 RealNetworks, Inc Confidential 33

2

0

3

1

 0 1 2 3

 4 5 6 7

 8 9 10 11

 12 13 14 15

 0 1 2 3

 4 5 6 7

 8 9 10 11

 12 13 14 15

 0 1 2 3

 4 5 6 7

 8 9 10 11

 12 13 14 15

Figure 4 Motion vector prediction

Depending on the MB mode, from 0 to 4 motion vectors need to be
transmitted. Each motion vector is transmitted as a horizontal and
vertical component. The horizontal component is transmitted first, then
the vertical component, and then the next vector. If more than one
motion vector is to be sent, the transmission order is upper left block
first, and then a regular right to left zig-zag scanning, as shown in
Figure 5 for 8x8 block sizes. See Table 4 for which code numbers to
use. Each code number is transmitted using Structured UVLC. (see
section 4.3.3)

2

0

3

1

8x8 block size

Figure 5 Motion vector transmission order

March 07, 2002 RealNetworks, Inc Confidential 34

N Vecto
r 0 0

1 1
2 -1
3 2
4 -2
5 3
6 -3
7 4
8 -4
9 5
10 -5
11 6
12 -6
… …

Table 4 Motion vector code numbers

5.3.6 CBP (Coded Block Pattern)

5.3.6.1 CBP length and bit order
CBP contains 24 bits representing 16 luminance blocks and 4 * 2
chrominance blocks in a macroblock. Bits that are set to 1 correspond
to coded 4x4 blocks, bits that are set to 0 correspond to skipped
(empty) blocks. The following diagram gives the correspondence between
bits and luma/chroma blocks.

 Y Cr Cb

5.3.6.2 The structure of CBP code.
The overall structure of CBP codes is presented below.

B0

B1

B2

B3

B4 B5 B6 B7

B8 B9 B10 B11

B12 B13 B14 B15

B16

B17

B18 B19

B20

B21

B22 B23

C0-C3
Y0-Y3

Luma 8x8 descriptors

 CBP descriptor

 Input CBP bits

Cr bits (when Cr!=Cb)

B0-B23

Ctx

March 07, 2002 RealNetworks, Inc Confidential 35

The main CBP object, CBP descriptor is transmitted first using one of
the canonic Huffman codes (see Section 5.4.6) corresponding to the
current macro-block type, and quantizer step size.

In turn, values of the components of CBP descriptor indicate the
presence of the subsequent code objects: 8x8 descriptors and CR bits.
Among these, 8x8 descriptors are transmitted first, using context-
dependent canonic Huffman codes. CR bits required by the CBP descriptor
are transmitted directly.

Below we describe each of these CBP code objects in details.

5.3.6.3 CBP descriptor.
CBP descriptor has the following components:

Composition rule:
 Cbp_dsc = ((((((C0* 3 + C1) * 3 + C2) * 3 + C3) * 2 + Y0) * 2 + Y1) * 2 + Y2) * 2 + Y3;

Mappings between the CBP bits and descriptor’s components are
established as follows:

5.3.6.4 8x8 descriptor and contexts.
Each 8x8 descriptor is represented by a non-zero group of 4 bits
[B0,B1,B4,B5], [B2, B3, B6, B7], [B8,B9,B12,B13], or [B10,B11,B14,B15] in CBP.

Composition rule:
 8x8_dsc = ((B0 * 2 + B1) * 2 + B2) * 2 + B3;

Y0

Y1

Y2 Y3

C0

C1

C2 C3

Y0, Y1, Y2, Y3

[B0,B1,B4,B5], [B2, B3, B6, B7], [B8,B9,B12,B13],
[B10,B11,B14,B15]

0 all 4 bits = 0
1 at least 1 bit != 0 (8x8 descriptor to follow)

C0, C1, C2, C3

[B16,B20], [B17, B21], [B18, B22], [B19,B23]

0 both (Cr,Cb) bits = 0
1 only 1 bit (Cr or Cb) = 1 (extra bit to follow)
2 both (Cr,Cb) bits = 1

B0

B1

B2 B3

March 07, 2002 RealNetworks, Inc Confidential 36

There are 4 different tables describing 8x8 descriptors based on their
context:
 Ctx = Y0 + Y1 + Y2 + Y3 –1;
where Y0-Y3 are the corresponding Y components of the CBP descriptor.

5.3.6.5 Cr bits.
Cr bits are transmitted every time when any of the C0-C3 CBP components
is set to 1.

5.4 Block Layer

5.4.1 Block size, scan order, and types of coefficients.

Quantized DCT transform coefficients are encoded in blocks of 16
coefficients each, corresponding to their original 4x4 layout:

The following types of coefficients are encoded using separate groups
of tables:

1. Luma coefficients from Inter-coded 4x4 blocks
2. Chroma coefficients from Inter-coded 4x4 blocks
3. Luma coefficients from 4x4-transformed Intra blocks
4. Chroma coefficients from 4x4-transformed Intra blocks
5. Luma DC coefficients from 16x16-transformed Intra blocks
6. Chroma DC coefficients from 16x16-transformed Intra blocks
7. Luma DC-removed coefficients from 16x16 transformed Intra blocks
8. Chroma DC-removed coefficients from 16x16 transformed Intra

blocks.

To simplify the processing in the last two cases (dc-removed
coefficients) the encoding is still done assuming there is a full 4x4
matrix of the coefficients, but the actual code tables are designed
such that coefficient C1 is always 0.

5.4.2 The structure of the code.
The code for each block of 16 coefficients has the following structure:

C0

C1

C2

C3

C4 C5 C6 C7

C8 C9 C10 C11

C12 C13 C14 C15

March 07, 2002 RealNetworks, Inc Confidential 37

The main code object, 4x4 block descriptor is transmitted first. Based
on the values of its components, subsequent code objects: 2x2
descriptors, level descriptors, and sign bits may follow.

The order of these code objects follows the natural order of components
in descriptors. E.g. if 4x4 descriptor indicates that there is a large
DC coefficient, then, the next code object is its Level descriptor. If
the level descriptor is not sufficient to represent the absolute value
of this coefficient exactly, it will indicate how many Extra bits will
follow. The Sign bit is transmitted right after.

Below we describe each of these code components.

5.4.3 4x4 and 2x2 block descriptors.

4x4 and 2x2 descriptors have the following components:

L4-L5 [C2,C3,C6,C7]
 [C8,C12,C9,C13]
 [C10,C11,C14,C15] 2x2 descriptors

L0-L3

 4x4 block descriptor

Input coefficients

Level descriptors

Extra bits

 Sign bits

C0-C15

Extension codes for large
coefficients

For all non-zero
coefficients

March 07, 2002 RealNetworks, Inc Confidential 38

Composition rules:

4x4_dsc = ((((L0 * 3 + L1) * 3 + L2) * 3 + L3) * 2 + L4) * 2 + L5) * 2 + L6;
2x2_dsc = ((L0 * 3 + L1) * 3 + L2) * 3 + L3;

Mappings between coefficients’ values and descriptor’s components:

The encoding of 2x2 descriptors for L4 and L5 blocks is done using the
same tables (with an inverse scan order of coefficients in the L5
block). The 2x2 descriptor for block L6 is encoded using separate
tables.

5.4.4 Level descriptors.
When coefficients are large (which is signalized by escape codes
in 4x4 or 2x2 descriptors), their absolute residual values are
transmitted using additional level descriptors and extension bits
as specified below:

L0

L1

L2 L3

 L4

 L5

 L6

L0

L1

L2 L3

L0

C0, C2, C8, C10

0 0
1 +1,-1

2 +2,-2

3 >2,<-2 (escape code)

L1, L3, L3

C1, C4, C5, C3, C6, C7,
C12, C9, C13, C11, C14, C15

0 0
1 +1,-1
2 >1, <-1 (escape code)

L4, L5, L6

[C2, C3, C6, C7], [C8,C12,C9,C13],
[C10,C11,C14,C15]

0 0 (all 4 coefficients = 0)
2 !0 (escape code)

March 07, 2002 RealNetworks, Inc Confidential 39

5.4.5 Sign bits.
Sign bits are transmitted for all non-zero coefficients following the
description of their absolute values (by the corresponding combination
of 4x4, 2x2, or level descriptors).

Encoding of all non-zero DCT coefficients is done in the order as they
appear in 4x4 and 2x2 descriptors.

5.4.6 Code Tables.

5.4.6.1 Partition of code tables based on Inter/Intra
coding and quantization step sizes.

The tables for all code components are separate for Inter- and Intra-
coded macroblocks. Additionally, different code tables are used based
on QP values used to encode macroblocks. The mappings between QPs and
indices of code tables are provided below.

Level descriptors Extra bits Absolute residual values

0-22 0 0-22
23 1 23-24
24 2 25-28
25 3 29-36
26 4 37-52
27 5 53-84
28 6 85-148
29 7 147-274
30 8 275-530

QP range partition for Intra-
coded macroblocks

Region # QP range

0 0-9

1 10-15

2 16-20

3 21-25

4 26-30

QP range partition for Inter-
coded macroblocks

Region # QP range

0 0-6

1 7-10

2 11-14

3 15-18

4 19-22

5 23-26

6 27-30

March 07, 2002 RealNetworks, Inc Confidential 40

5.4.6.2 Variable-length codes and code tables.
Variable length codes represent sequences of bits packed in bytes such
that earlier bits correspond to the leftmost (more significant) digits
within a byte.

Encoding and decoding algorithms discussed herein employ Canonic
Huffman Codes (see, e.g., A.Moffat, and A.Turpin, "On the
Implementation of Minimum-Redundancy Prefix Codes", IEEE Transactions
on Communications, 45(10): 1200-1207, 1997).

For the description of such codes we will only specify code lengths.
The reconstruction of the corresponding codewords can be accomplished
using the following algorithm.

/*
 * Given: n – the number of codes, and len[] – code lengths
* Produces: code[] – canonic Huffman codewords
*/
make_code (int n, unsigned char *len, unsigned int *code)
{
 unsigned int leaves [MAX_DEPTH+1], start [MAX_DEPTH+2];
 register int i;

 /* count the number of leaves on each level: */
 for (i = 0; i <= MAX_DEPTH; i++) leaves [i] = 0;
 for (i = 0; i < n; i++) leaves [len [i]]++;

 /* set start codes for each level: */
 start [1] = 0;
 for (i = 1; i <= MAX_DEPTH; i++)
 start [i + 1] = (start [i] + leaves [i]) * 2;

 /* assign codewords: */
 for (i = 0; i < n; i++)
 code [i] = start [len [i]]++;
}

5.4.6.3 Code tables.
The following tables represent lengths of the canonic Huffman codes for
all the above described components of codes for transform coefficients
and CBP types.

/* intra tables: */
char intra_cbp[MAX_INTRA_QP_REGIONS][2][MAX_CBP] = {};
char intra_8x8_dsc[MAX_INTRA_QP_REGIONS][2][4][MAX_8x8_DSC] = {};
char intra_luma_4x4_dsc[MAX_INTRA_QP_REGIONS][3][MAX_4x4_DSC] = {};
char intra_luma_2x2_dsc[MAX_INTRA_QP_REGIONS][2][MAX_2x2_DSC] = {};
char intra_chroma_4x4_dsc[MAX_INTRA_QP_REGIONS][MAX_4x4_DSC] = {};

March 07, 2002 RealNetworks, Inc Confidential 41

char intra_chroma_2x2_dsc[MAX_INTRA_QP_REGIONS][2][MAX_2x2_DSC] = {};
char intra_level_dsc[MAX_INTRA_QP_REGIONS][MAX_LEVEL_DSC] = {};

/* inter tables: */
char inter_cbp[MAX_INTER_QP_REGIONS][MAX_CBP] = {};
char inter_8x8_dsc[MAX_INTER_QP_REGIONS][4][MAX_8x8_DSC] = {};
char inter_luma_4x4_dsc[MAX_INTER_QP_REGIONS][MAX_4x4_DSC] = {};
char inter_luma_2x2_dsc[MAX_INTER_QP_REGIONS][2][MAX_2x2_DSC] = {};
char inter_chroma_4x4_dsc[MAX_INTER_QP_REGIONS][MAX_4x4_DSC] = {};
char inter_chroma_2x2_dsc[MAX_INTER_QP_REGIONS][2][MAX_2x2_DSC] = {};
char inter_level_dsc[MAX_INTER_QP_REGIONS][MAX_LEVEL_DSC] = {};

6 Performance Estimates
Note for V1.0 of this document, this section has not been updated with
actual results now being obtained; it remains as a compilation of
previous results and may not be relevant.

6.1 CPU Utilization
<Section to be expanded.>
This section summarizes the CPU performance estimates for the RealVideo
decoder.

6.1.1 Decoder Performance

Decoder Comparison @ 40 Kbps

0%

2%

4%

6%

8%

10%

Pentium(R) MMX
processor @166

Pentium(R) II
processor @266

Pentium(R) III
processor @500

C
PU

 U
sa

ge RV8 ASM
G2
RV8 C/ASM

RV8 C/ASM is an estimate for a RV8 decoder using C for everything
except the postfilter.

Decoder CPU usage is similar to that of the existing decoder. At these
low CPU utilizations there are no performance issues with respect to
the RV8 algorithm. The performance difference between the MMX(TM)
processor instruction variant and the SSE instruction variant is too
small (~5%) to initially justify developing both versions.

March 07, 2002 RealNetworks, Inc Confidential 42

Code size for the entire decode loop is estimated at less than 4K,
fitting easily within the CPU code cache.

7 QA Test Procedures
See QA test procedures doc.

8 References
[1] ISO/IEC 14496-2, "Information technology - Generic coding of

audio-visual objects: Visual,", March 1999.
[2] G. Sullivan and T. Wiegand, “Rate-Distortion Optimization for

Video Compression,” IEEE Signal Processing Magazine, Vol. 15, No. 6,
Nov. 1998.

[3] G. Bjontegaard, “Response to Call for Proposals for H.26L,” Q15-
F-11, ITU-T Advanced Video Meeting, Seoul, Nov. 98,
ftp://standard.pictel.com/video-site/9811_Seo/q15f11.doc .

[4] G. Bjontegaard, “Enhancement of the Telenor proposal for H.26L,”
Q15-G-25, ITU-T Advanced Video Meeting, Monterey, Feb. 99,
ftp://standard.pictel.com/video-site/9902_Mon/q15g25.doc .

[5] G. Bjontegaard, “Adding Intra mode suitable for coding of flat
regions,” COM-16 D.360, ITU-T Advanced Video Meeting, Geneva, Feb.
2000, ftp://standard.pictel.com/video-
site/0002_Gen/Telenor_intra.doc.

[6] Gary Sullivan, “Draft Text of Recommendation H.263 Version 2
(“H.263+”) for Decision”

[7] Gregory J. Conklin, Gary S. Greenbaum, Karl O. Lillevold, Alan F.
Lippman and Yuriy A. Reznik, “Video Coding for Streaming Media
Delivery on the Internet,” IEEE Transactions on Circuits and Systems
for Video Technology.

9 Annex A
RealVideo Decoders are Split into 2 parts, RealVideo Frontend and
the decoder Backend.

RealVideo Frontend: Exposes the RealMedia Codec Interface.
 The Frontend handles all the Initialization, pre-post filtering,
frame-rate up sampling, statistics, and scalability decisions.

RealVideo Backend: Exposes the Hive/PIA Codec Interface.
 The Backend decodes the Bitstream. The Backend maybe referred to
as ILVC in general or in RV8 by codename “Tromsø” to refer to
specific algorithms.

Back End Interface:

RV20toYUV420Init (RV10_INIT *prv10Init, void **decoderState)
RV20toYUV420Free (void *global)
RV20toYUV420Transform (

UCHAR *pRV20Packets,
UCHAR *pDecodedFrameBuffer,
void *pInputParams, // H263DecoderInParams

ftp://standard.pictel.com/video-site/9811_Seo/q15f11.doc
ftp://standard.pictel.com/video-site/9902_Mon/q15g25.doc
ftp://standard.pictel.com/video

March 07, 2002 RealNetworks, Inc Confidential 43

void *pOutputParams, // H263DecoderOutParams
void *global)

RV20toYUV420CustomMessage (
PIA_Custom_Message_ID *msg_id, void *global
)

The RV20toYUV420CustomMessage function exposes decoder interfaces
that are specific to the "ILVC" decoder. These interfaces are defined
in "ilvcmsg.h".

RV20toYUV420HiveMessage (ULONG32 *msg_id, void *global)
The RV20toYUV420HiveMessage function exposes decoder interfaces that

may be applicable to a variety of decoders, not just to "ILVC". The
'msg' parameter points to a ULONG32 that identifies a particular
interface or feature. This ULONG32 is actually the first member in a
larger struct, similar to the PIA_Custom_Message_ID usage. See
"hivervi.h" for a complete list of supported messages.

typedef struct tagRV10_INIT
{

UINT16 outtype;
UINT16 pels;
UINT16 lines;
UINT16 nPadWidth;
/* number of columns of padding on right to get 16 x 16 block*/
UINT16 nPadHeight;
/* number of rows of padding on bottom to get 16 x 16 block*/
UINT16 pad_to_32;
// to keep struct member alignment independent of compiler options
ULONG32 ulInvariants;
// ulInvariants specifies the invariant picture header bits -- SPO
LONG32 packetization;
ULONG32 ulStreamVersion;

} RV10_INIT;

typedef struct tag_H263DecoderInParams
{

ULONG32 dataLength;
LONG32 bInterpolateImage;
ULONG32 numDataSegments;
PNCODEC_SEGMENTINFO *pDataSegments;
ULONG32 flags;
// 'flags' should be initialized by the front-end before each
// invocation to decompress a frame. It is not updated by the
// decoder.
// If it contains RV_DECODE_MORE_FRAMES, it informs the decoder
// that it is being called to extract the second or subsequent
// frame that the decoder is emitting for a given input frame.
// The front-end should set this only in response to seeing
// an RV_DECODE_MORE_FRAMES indication in H263DecoderOutParams.
// If it contains RV_DECODE_DONT_DRAW, it informs the decoder
// that it should decode the image (in order to produce a valid
// reference frame for subsequent decoding), but that no image
// should be returned. This provides a "hurry-up" mechanism.
ULONG32 timestamp;

} H263DecoderInParams;

typedef struct tag_H263DecoderOutParams

March 07, 2002 RealNetworks, Inc Confidential 44

{
ULONG32 numFrames;
ULONG32 notes;
//'notes' is assigned by the transform function during each call to
// decompress a frame. If upon return the notes parameter contains
// the indication RV_DECODE_MORE_FRAMES, then the front-end
// should invoke the decoder again to decompress the same image.
// For this additional invocation, the front-end should first set
// the RV_DECODE_MORE_FRAMES bit in the 'H263DecoderInParams.flags'
// member, to indicate to the decoder that it is being invoked to
// extract the next frame.
// The front-end should continue invoking the decoder until the
// RV_DECODE_MORE_FRAMES bit is not set in the 'notes' member.
// For each invocation to decompress a frame in the same
// "MORE_FRAMES"
// loop, the front-end should send in the same input image.
//
// If the decoder has no frames to return for display, 'numFrames'
// will be set to zero. To avoid redundancy, the decoder does
// *not* set the RV_DECODE_DONT_DRAW bit in 'notes' in this case.

ULONG32 timestamp;
// The 'temporal_offset' parameter is used in conjunction with the
// RV_DECODE_MORE_FRAMES note, to assist the front-end in
// determining when to display each returned frame.
// If the decoder sets this to T upon return, the front-end should
// attempt to display the returned image T milliseconds relative to
// the front-end's idea of the presentation time corresponding to
// the input image.
// Be aware that this is a signed value, and will typically be
// negative.

ULONG32 width;
ULONG32 height;
// Width and height of the returned frame.
// This is the width and the height as signalled in the bitstream.

} H263DecoderOutParams;

10 Annex B

10.1 Encoder Command line Interface
Usage: tromsoe infile [options]
In the following syntax descriptions, arglist is a comma-separated list
of the form \"arg[=value],arg[=value],...\". Some arguments take
values, some do not. If arglist contains any whitespace, it must be
enclosed in quotes. For example, -d 4,l=mylog.txt,a specifies the
debug level to be 4, that the debug log file is named \"mylog.txt\",
and that the file should be opened in append mode rather than being
overwritten.

Infile Specify raw YUV12 input file
-a letter,arglist Enable a specific H.263 annex.

Letter letter is mandatory and must be the
first argument in arglist. It is

March 07, 2002 RealNetworks, Inc Confidential 45

the annex's upper case letter.
For some annexes, this letter
argument takes a value, as described
below. The remaining elements of
arglist are specific to each annex.
For annexes that can be applied on a
per-layer basis, arglist can contain
\"l=<level>\", indicating the option
is being applied to the given level.

K[=<bytes_per_slice>] Slice Structured Mode [default slice
size is 512]

O Add a new scalability layer. First
O option describes layer 0, second
layer 1, etc (deprecated). Options
include:

w=<width> Layer width [default: layer 0 QCIF,
layer n prev] (deprecated)

h=<height> Layer height [default: layer 0 QCIF,
layer n prev] (deprecated)

p=profile String profile of 'P's, 'B's and '-
's [default \"P\"]

r=<ref_layer> [default: 0 for layer 0, n - 1 for
layer n] (deprecated)

-z Enable Interlaced Encode.
-b <image_range> Images to encode [encode all by

default]
 <image_range> is <m>-<n>:
 3-5 means frames 3, 4 and 5
 4- means frames 4 and beyond
 -5 means frames 0 through 5
 7 means frames 0 through 7
-c <cpu_usage> Specify CPU scalability setting.

cpu_usage is a number between 0 and
100

-d arglist Specify debugging output.
<level> Detail level. Use -1 to suppress.

[default is 0]
l=logfile Output file for debug messages.

[default is stdout]
a Append to logfile. [default is to

overwrite]
-f arglist Specify format of compressed output

file.
r Use raw format. [default]
x Use extended raw format.

-h Display this command line help and
exit.

-i arglist Specify input file format.
w=<width> Source image width [default is 176]
h=<height> Source image height [default is 144]
fps=<frame_rate> Source frame rate [default is 30

fps] (deprecated)
sf=<skip_factor> Source frames to skip between each

encoded frame [0]
pcf=<clock_freq> Picture clock frequency [default is

March 07, 2002 RealNetworks, Inc Confidential 46

29.97] (deprecated)
par=par_description Pixel aspect ratio. par_description

is a string (deprecated)
-m <speed> Specify machine clock rate in MHz.
-r mode,arglist Specify data rate control for non-I

frames.
mode mode is mandatory and must be the

first argument in arglist. It is
one of the following strings:

q[=<qual>] Use PIA_RCM_QUALITY with the given
quality [5000].

Q[=<qp>] Map fixed QP into PIA_RCM_QUALITY
[5000].

fs=<frame_size> (deprecated)
fd (deprecated)

q=<quality> Specifies minimum quality level in
range 0 .. 10000.
[default is 0].

fps=<frame_rate> (deprecated)
d=<data_rate> (deprecated)
kb=<data_rate> (deprecated)
B=<QP> Use the given QP for B frames
l=<layer> (deprecated)

-k mode,arglist Specify rate control for I frames.
mode mode is mandatory and must be the

first argument in arglist. It is
one of the following strings:

i=<interval>
interval = 0
interval > 0

Specify key frame period.
Use PIA_KFCM_AUTO.
Use PIA_KFCM_INTERVAL, with the
given interval.

a Use PIA_RCM_AUTO rate control [this
is the default].

q[=<quality>] Use PIA_RCM_QUALITY with the given
quality [5000].

fs=<frame_size> Use method PIA_RCM_FRAME_SIZE with
the given target frame size (in
bytes). (deprecated)

q=<quality> Specifies quality level in range 0
.. 10000. [default is 5000 for mode
PIA_RCM_QUALITY, else 0].

l=<layer> (deprecated)
-o outfile Specify output file. Output

suppressed if unspecified.
-q Quiet mode (no summary statistics).
-v Verbose mode. Displays progress

messages and statistics about the
compressed bitstream to stdout.

10.2 Decoder Command line Interface
Usage: tromsod infile [options]
In the following syntax descriptions, arglist is a comma-separated list
of the form \"arg[=value],arg[=value],...\". Some arguments take
values, some do not. If arglist contains any whitespace, it must be

March 07, 2002 RealNetworks, Inc Confidential 47

enclosed in quotes. For example, -d 4,l=mylog.txt,a specifies the
debug level to be 4, that the debug log file is named \"mylog.txt\",
and that the file should be opened in append mode rather than being
overwritten.
infile Specify TROMSO bitstream input file.
-b <image_range> Images to decode [decode all by

default]
<image_range> is <m>-<n>:
3-5 means frames 3, 4 and 5
4- means frames 4 and beyond
-5 means frames 0 through 5
7 means frames 0 through 7

-d arglist Specify debugging output.
<level> Detail level. Use -1 to suppress.

[default is 0]
l=logfile Output file for debug messages.

[default is stdout]
a Append to logfile. [default is to

overwrite]
-e arglist Specify post filtering options

smoothing Smoothing [default is off]
-f arglist Specify display attributes

(deprecated)
-h Display this command line help and

exit.
-i arglist Specify input file format.

w=<width> Compressed image width [default is
176]

h=<height> Compressed image height [default is
144]

-l Enable latency mode [default is off]
-m <speed> Specify machine clock rate in MHz.

(WIN32 IA only)
-o outfile Specify output file. Output

suppressed if unspecified.
-p Enable smoothing postfilter [default

is off]
-q Quiet mode. Suppresses display of

summary information.
-v Verbose mode. Displays progress

messages to stdout.
-x arglist Specify packet loss characteristics.

<percent> Percent packet loss [default is 0].

