
DCA Transform Deobfuscated

Alexander E. Patrakov

1 Official definition
The transform that takes the subband samples and produces PCM samples is officially
specified using pseudocode [1]. When translated to C, this yields:

double *prCoeff;
double dct4_coeff[16][16], dct2_coeff[16][16];
double COS_table[16], SIN_table[16];

void
PreCalArrays (void)
{
int i, k;
for (k = 0; k < 16; k++)
for (i = 0; i < 16; i++)
dct4_coeff[k][i] = cos ((2 * i + 1) * (2 * k + 1) * M_PI / 64);

for (k = 0; k < 16; k++)
for (i = 0; i < 16; i++)
dct2_coeff[k][i] = cos ((i) * (2 * k + 1) * M_PI / 32);

for (k = 0; k < 16; k++)
COS_table[k] = 0.25 / (2 * cos ((2 * k + 1) * M_PI / 128));

for (k = 0; k < 16; k++)
SIN_table[k] = -0.25 / (2 * sin ((2 * k + 1) * M_PI / 128));

}

/* raXin contains 32 subband samples for a given channel,
raXout receives 32 PCM samples for this channel */

void
QMFInterpolation2 (double *raXin, double *raXout)
{
int i, j, k;
double A[16], B[16], SUM[16], DIFF[16];

static double raX[512];
static double raZ[64];

/* raXin contains 32 subband samples for a given channel */

for (k = 0; k < 16; k++)
{
A[k] = 0.0;
for (i = 0; i < 16; i++)

A[k] += (raXin[2 * i] + raXin[2 * i + 1]) * dct4_coeff[k][i];

1



}

for (k = 0; k < 16; k++)
{
B[k] = 0.0;
for (i = 0; i < 16; i++)

{
if (i > 0)

B[k] += (raXin[2 * i] + raXin[2 * i - 1]) * dct2_coeff[k][i];
else
B[k] += (raXin[2 * i]) * dct2_coeff[k][i];

}
SUM[k] = A[k] + B[k];
DIFF[k] = A[k] - B[k];

}

for (k = 0; k < 16; k++)
raX[k] = COS_table[k] * SUM[k];

for (k = 0; k < 16; k++)
raX[32 - k - 1] = SIN_table[k] * DIFF[k];

for (k = 31, i = 0; i < 32; i++, k--)
{
for (j = 0; j < 512; j += 64)

raZ[i] += prCoeff[i + j] * (raX[i + j] - raX[j + k]);
}

for (k = 31, i = 0; i < 32; i++, k--)
for (j = 0; j < 512; j += 64)
raZ[32 + i] += prCoeff[32 + i + j] * (-raX[i + j] - raX[j + k]);

for (i = 0; i < 32; i++)
raXout[i] = raZ[i];

for (i = 511; i >= 32; i--)
raX[i] = raX[i - 32];

for (i = 0; i < 32; i++)
raZ[i] = raZ[i + 32];

for (i = 0; i < 32; i++)
raZ[i + 32] = 0.0;

}

As you can see, the code is obfuscated. The aim of this paper is to document the
steps needed to deobfuscate it.

2 From C to math
Let’s translate the code above to mathematical definitions. The relation between nota-
tions used in the code and in the math formulae is shown below. In this table, i takes
the values 0 . . . 31 and enumerates the subbands.

2



Code Formulae
raXin[i] x0,i

raXin[i] j invocations ago x−j,i
A[k], B[k] Ak, Bk

SUM[k], DIFF[k] Sk, Dk

raX[k] Xk

raZ[k] Zk
prCoeff[k] Ck

Since the code implements some linear transformation of its inputs and their his-
tory, and operates by portions of 32 values, it is reasonable to expect that its outputs Zk
can be related to its inputs with the following relation:

Zk =
∑
j′

31∑
i=0

K32j′+k,ixi,−j′ , (1)

i.e. is a sum of 32 convolutions of kernels K...,i (to be found) with the 32 input signals
upsampled by a factor of 32. At the end, we’ll see that it is indeed the case.

The code assigns the following values to temporary arrays:

Ak =
15∑
i=0

(x0,2i + x0,2i+1) cos
(2i+ 1)(2k + 1)π

64
, k = 0 . . . 15 (2)

Bk =
15∑
i=0

(x0,2i + x0,2i−1) cos
(2i)(2k + 1)π

64
, k = 0 . . . 15 (3)

where it is assumed that x0,−1 = 0.
Then, the following quantities are stored in the beginning of the raX[] array:

Xk =
Ak +Bk

8 cos (2k+1)π
128

, k = 0 . . . 15 (4)

X31−k = − Ak −Bk
8 sin (2k+1)π

128

, k = 0 . . . 15 (5)

These expressions can be simplified. First, let’s consider Ak + Bk, expand it and
thus find factors that apply to x0,i for each i:

Sk = Ak +Bk = S
(e)
k + S

(o)
k (6)

where

S
(e)
k =

15∑
i=0

x0,2i

(
cos

(2i+ 1)(2k + 1)π
64

+ cos
(2i)(2k + 1)π

64

)
(7)

S
(o)
k =

15∑
i=0

(
x0,2i+1 cos

(2i+ 1)(2k + 1)π
64

+ x0,2i−1 cos
(2i)(2k + 1)π

64

)
(8)

Let’s simplify S(e)
k by using the sum-of-cosines identity:

cosα+ cosβ = 2 cos
α+ β

2
cos

α− β
2

(9)

3



This yields:

S
(e)
k = 2 cos

(2k + 1)π
128

15∑
i=0

x0,2i cos
(4i+ 1)(2k + 1)π

128
(10)

The expression for S(o)
k can be simplified, if one goes from i to i′ = i − 1 in the

second term (i.e., puts i = i′ + 1), shifting the summation limits accordingly:

S
(o)
k =

15∑
i=0

x0,2i+1 cos
(2i+ 1)(2k + 1)π

64
+

14∑
i′=−1

x0,2i′+1 cos
(2i′ + 2)(2k + 1)π

64
(11)

Note that in the second sum, we can drop the term with i′ = −1 because x0,−1 = 0,
and add the term with i′ = 15 because in this case the cosine argument will be an
odd multiple of π/2. In other words, the dropped and added terms are always zero.
Therefore, we can write the two sums as one and obtain:

S
(o)
k =

15∑
i=0

x0,2i+1

(
cos

(2i+ 1)(2k + 1)π
64

+ cos
(2i+ 2)(2k + 1)π

64

)
(12)

Using the sum-of-cosines identity again, we find:

S
(o)
k = 2 cos

(2k + 1)π
128

15∑
i=0

x0,2i+1 cos
(4i+ 3)(2k + 1)π

128
(13)

Thus, by summing (10) and (13), we obtain:

Ak +Bk = 2 cos
(2k + 1)π

128

31∑
i=0

x0,i cos
(2i+ 1)(2k + 1)π

128
(14)

Then, we have to consider Ak −Bk:

Dk = Ak −Bk = D
(e)
k +D

(o)
k (15)

where

D
(e)
k =

15∑
i=0

x0,2i

(
cos

(2i+ 1)(2k + 1)π
64

− cos
(2i)(2k + 1)π

64

)
(16)

D
(o)
k =

15∑
i=0

(
x0,2i+1 cos

(2i+ 1)(2k + 1)π
64

− x0,2i−1 cos
(2i)(2k + 1)π

64

)
(17)

Let’s simplify D(e)
k by using the difference-of-cosines identity:

cosα− cosβ = −2 sin
α+ β

2
sin

α− β
2

(18)

This yields:

D
(e)
k = −2 sin

(2k + 1)π
128

15∑
i=0

x0,2i sin
(4i+ 1)(2k + 1)π

128
(19)

4



The expression for D(o)
k can be simplified, as before, by putting puts i = i′ + 1 in

the second term:

D
(o)
k =

15∑
i=0

x0,2i+1 cos
(2i+ 1)(2k + 1)π

64
−

14∑
i′=−1

x0,2i′+1 cos
(2i′ + 2)(2k + 1)π

64
(20)

As before, in the second sum, we can drop the term with i′ = −1 and add the term
with i′ = 15 without changing the sum. Therefore, we can write the two sums as one
and obtain:

D
(o)
k =

15∑
i=0

x0,2i+1

(
cos

(2i+ 1)(2k + 1)π
64

− cos
(2i+ 2)(2k + 1)π

64

)
(21)

Using the difference-of-cosines identity again, we find:

D
(o)
k = 2 sin

(2k + 1)π
128

15∑
i=0

x0,2i+1 sin
(4i+ 3)(2k + 1)π

128
(22)

Thus, by summing (10) and (13), we obtain:

Ak −Bk = −2 sin
(2k + 1)π

128

31∑
i=0

(−1)ix0,i sin
(2i+ 1)(2k + 1)π

128
(23)

Now we can investigate expressions for Xk. Note that the trigonometric functions
in the denominator are conveniently cancelled out:

Xk =
1
4

31∑
i=0

x0,i cos
(2i+ 1)(2k + 1)π

128
, k = 0 . . . 15 (24)

X31−k =
1
4

31∑
i=0

(−1)ix0,i sin
(2i+ 1)(2k + 1)π

128
, k = 0 . . . 15 (25)

In (25), we change the variable: k = 31− l and obtain for l = 16 . . . 31:

Xl =
1
4

31∑
i=0

(−1)ix0,i sin
(2i+ 1)(64− (2l + 1))π

128

=
1
4

31∑
i=0

(−1)ix0,i sin
(2i+ 1) · 64π

128
cos

(2i+ 1)(2l + 1)
128

=
1
4

31∑
i=0

x0,i cos
(2i+ 1)(2l + 1)

128
(26)

By comparing (24) with (26), one can conclude that the following expression is valid
for the whole range of k = 0 . . . 31:

Xk =
1
4

31∑
i=0

x0,i cos
(2i+ 1)(2k + 1)π

128
(27)

5



Since the code only assigns and shifts the values of raXin[], we can write:

Xk+32j =
1
4

31∑
i=0

x−j,i cos
(2i+ 1)(2k + 1)π

128
, k = 0 . . . 31 (28)

The code calculates Xi+j −Xj+k and −Xi+j −Xj+k, where j is divisible by 64
(i.e., j = 64j′) and i+ k = 31. Note to readers: below, k corresponds to i in the code,
and thus, 31− k in the formulae is k in the code. Don’t let this confuse you.

X64j′+k − X64j′+(31−k)

=
1
4

31∑
i=0

x−2j′,i(cos
(2i+ 1)(2k + 1)π

128
− cos

(2i+ 1)(63− 2k)π
128

)

= −1
2

31∑
i=0

x−2j′,i sin
(2i+ 1)π

4
sin

(2i+ 1)(2k − 31)π
128

(29)

Since the last factor will also go into the final answer, in order to discuss its relation to
the DCT, we rewrite the above in terms of cosines:

X64j′+k − X64j′+(31−k)

= −1
2

31∑
i=0

x−2j′,i sin
(2i+ 1)π

4
sin

(2i+ 1)(2k + 33− 64)π
128

=
1
2

31∑
i=0

x−2j′,i(−1)i sin
(2i+ 1)π

4
cos

(2i+ 1)(2k + 33)π
128

=
1
2

31∑
i=0

x−2j′,i cos
(2i+ 1)π

4
cos

(2i+ 1)(2k + 33)π
128

(30)

Analogously,

−X64j′+k − X64j′+(31−k)

=
1
4

31∑
i=0

x−2j′,i(− cos
(2i+ 1)(2k + 1)π

128
− cos

(2i+ 1)(63− 2k)π
128

)

=
1
2

31∑
i=0

x−2j′,i cos
(2i+ 1)π

4
cos

(2i+ 1)(2k + 97)π
128

(31)

It makes sense to introduce the following quantities instead of the original inputs
x−j,i:

x̄−j,i = x−j,i cos
(2i+ 1)π

4
(32)

As one can see, this amounts to dividing by
√

2, and, if i = 1 or 2 (mod 4), flipping the
sign.

Since the code clears Zk at the end for k = 32 . . . 63, we immediately obtain that,
just before the clearing,

Zk+32 =
1
2

7∑
j′=0

C64j′+32+k

31∑
i=0

x̄−2j′,i cos
(2i+ 1)(2k + 97)π

128
, k = 0 . . . 31

(33)

6



Then these values are shifted in the raZ[] buffer, so, before the addition, on the next
call we have:

Z
(0)
k =

1
2

7∑
j′=0

31∑
i=0

C64j′+32+kx̄−2j′−1,i cos
(2i+ 1)(2k + 97)π

128
, k = 0 . . . 31

(34)
Then, the following quantity is added to the buffer:

∆Zk =
1
2

7∑
j′=0

31∑
i=0

C64j′+kx̄−2j′,i cos
(2i+ 1)(2k + 33)π

128
(35)

One can already see that the DCA transform is not a common windowed MDCT.
Indeed, Zk at any given moment of time depends on 16 previous inputs (i.e., has 16
overlapping “windows”), while the usual windowed MDCT has only two overlapping
windows covering each point in time.

It is convenient to introduce the “deobfuscated coefficients”:

C̄k =
{
Ck, k = (128j) . . . (128j + 63)
−Ck, k = (128j + 64) . . . (128j + 127) , j = 0 . . . 3 (36)

One can easily check that Zk can then be written as the following sum, which is
the main result of this paper:

Zk =
1
2

15∑
j′′=0

31∑
i=0

x̄−j′′,iC̄32j′′+k cos
(2i+ 1)(2(32j′′ + k) + 33)π

128
(37)

So, the following 32 kernels (enumerated by i) are important for the transform:

K̄j,i = C̄j cos
(2i+ 1)(2j + 33)π

128
(38)

This structure is similar to the one mentioned in [2] for a pseudo-QMF cosine modula-
tion filter bank. Their definition, adapted to our notation, is:

K̄j,i = C̄j cos
((

i+
1
2

)(
j +

1
2
− M

2

)
π

N
+ φi

)
(39)

where M = 512 is the prototype filter length, N = 32 is the number of bands, and the
following condition must hold:

φi+1 − φi = (2r + 1)
π

2
(40)

By direct comparison of (38) with (39), one finds:

φi =
(
i+

1
2

)
17π
2

(41)

and
φi+1 − φi =

17π
2

(42)

i.e., indeed, an odd multiple of π/2. Thus, (40) holds. One can also easily verify
property (2) in [2] by “deobfuscating” (as defined in (36)) both sets of subband filter
coefficients in the DTS specification and calculating the Fourier transform of the result.

Conclusion: the subband transform in the DTS specification is, up to a constant
factor, a pseudo-QMF cosine modulation filter bank combined with the sign flip of
subband inputs whose number is congruent to 1 or 2 modulo 4.

7



3 Optimizations
Algorithms exist that calculate IMDCT quickly. It is a good idea to use them for cal-
culating the DCA subband transform. However, to do so, one must group the identical
cosine factors.

References
[1] DTS Coherent Acoustics; Core and Extensions. ETSI TS 102 114 V1.2.1 (2002-

12) (search for DTS Coherent Acoustics)

[2] Smith, Julius O. Spectral Audio Signal Processing, March 2007 Draft,
http://ccrma.stanford.edu/ jos/sasp/, online book, accessed 2008-09-07. Pseudo-
QMF Cosine Modulation Filter Bank

8

http://pda.etsi.org/pda/queryform.asp
http://pda.etsi.org/pda/queryform.asp
http://ccrma.stanford.edu/~jos/sasp/
http://ccrma.stanford.edu/~jos/sasp/Pseudo_QMF_Cosine_Modulation_Filter.html
http://ccrma.stanford.edu/~jos/sasp/Pseudo_QMF_Cosine_Modulation_Filter.html

	Official definition
	From C to math

