
© SMPTE 2004 – All rights reserved

Document type: Standard

Document subtype:

Document stage: Committee Draft 1

Document language: English

 Proposed SMPTE Standard for Television
Date: 2004-03-31

SMPTE CD xxxM

SMPTE Technology Committee C24 on Video Compression Technology

Proposed SMPTE Standard for Television: VC-9 Compressed
Video Bitstream Format and Decoding Process

Warning

This document is not a SMPTE Standard. It is distributed for review and comment. It is subject to
change without notice and may not be referred to as a SMPTE Standard. Recipients of this
document are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation. Distribution does not constitute
publication.

SMPTE

ii © SMPTE 2004 – All rights reserved

Copyright notice

Copyright 2003, 2004 THE SOCIETY OF MOTION PICTURE AND TELEVISION ENGINEERS

595 W. Hartsdale Ave.
White Plains, NY 10607
+1 914 761 1100
Fax +1 914 xxx xxxx
E-mail eng@smpte.org
Web www.smpte.org

SMPTE

© SMPTE 2004 – All rights reserved

Foreword

SMPTE (the Society of Motion Picture and Television Engineers) is an internationally-recognized standards
developing organization. Headquartered and incorporated in the United States of America, SMPTE has
members in over 80 countries on six continents. SMPTE’s Engineering Documents, including Standards,
Recommended Practices and Engineering Guidelines, are prepared by SMPTE’s Technology Committees.
Participation in these Committees is open to all with a bona fide interest in their work. SMPTE cooperates
closely with other standards-developing organizations, including ISO, IEC and ITU.

SMPTE Engineering Documents are drafted in accordance with the rules given in Part XIII of its
Administrative practices.

This document is proposed standard VC-9 submitted to SMPTE Technology Committee C24.

SMPTE

iv © SMPTE 2004 – All rights reserved

Introduction

This document was prepared for the primary purpose of documenting the bitstream format and decoding
process used in the VC-9 video codec. It defines the bitstream syntax, semantics and constraints for
compressed video bitstreams and describes the complete process required to decode them.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication v

SMPTE Standard for Television: VC-9 Compressed Video
Bitstream Format and Decoding Process

Table of Contents
TABLE OF CONTENTS V

TABLE OF FIGURES IX

TABLE OF TABLES XII

1 SCOPE 1

2 REFERENCES 1

2.1 NORMATIVE REFERENCES 1
2.2 INFORMATIVE REFERENCES 1

3 OVERVIEW 1

3.1 SYNTAX OVERVIEW 1
3.2 DECODING PROCESS OVERVIEW 2
3.3 TRANSPORT REQUIREMENTS (NORMATIVE) 2
3.4 DOCUMENT STRUCTURE 3

4 NOTATION 3

4.1 COMPLIANCE NOTATION 3
4.2 ARITHMETIC OPERATORS 3
4.3 LOGICAL OPERATORS 4
4.4 RELATIONAL OPERATORS 4
4.5 BITWISE OPERATORS 4
4.6 ASSIGNMENT 5
4.7 MNEMONICS 5
4.8 BITSTREAM PARSING OPERATIONS 5
4.9 DEFINITION OF MEDIAN3 AND MEDIAN4 FUNCTIONS 5
4.10 DEFINITION OF TERMINOLOGY 6
4.11 GUIDE TO INTERPRETING SYNTAX DIAGRAMS AND SYNTAX ELEMENTS 10

5 SOURCE CODER/DECODER 11

5.1 PROGRESSIVE CODING MODE 11
5.1.1 Input/output Format 11
5.1.2 Hierarchical Elements 11
5.1.3 Coding Description (Informative) 12

5.2 INTERLACE CODING MODE 14
5.2.1 Input/Output Format for 4:2:0 Interlace 14

5.3 DECODER LIMITATIONS 14
5.3.1 Minimum and maximum sizes 14
5.3.2 Maximum size constraint on compressed bits 15

6 SEQUENCE AND ENTRY-POINT BITSTREAM SYNTAX AND SEMANTICS 15

6.1 SEQUENCE-LEVEL SYNTAX AND SEMANTICS 15

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication vi

6.1.1 Profile (PROFILE)(2 bits) 20
6.1.2 Level (LEVEL)(3 bits) 20
6.1.3 Chroma Format (CHROMAFORMAT) (2 bits) 21
6.1.4 Reserved (RES_SM)(2 bits) 21
6.1.5 Quantized Frame Rate for Post processing Indicator (FRMRTQ_POSTPROC)(3 bits) 21
6.1.6 Quantized Bit Rate for Post processing Indicator (BITRTQ_POSTPROC)(5 bits) 21
6.1.7 Picture Size Indicator Flag (PIC_SIZE_FLAG)(1 bit) 21
6.1.8 Frame Rate Flag (FRAMERATEFLAG)(1 bit) 23
6.1.9 Color Format Indicator Flag (COLOR_FORMAT_FLAG)(1 bit) 25
6.1.10 Hypothetical Reference Decoder Indicator Flag (HRD_PARAM_FLAG)(1 bit) 27
6.1.11 Loop Filter (LOOPFILTER)(1 bit) 28
6.1.12 Reserved Coding (RES_X8)(1 bit) 28
6.1.13 Multiresolution Coding (MULTIRES)(1 bit) 28
6.1.14 Reserved (RES_FASTTX)(1 bit) 28
6.1.15 FAST UV Motion Comp (FASTUVMC)(1 bit) 28
6.1.16 Extended Motion Vectors (EXTENDED_MV)(1 bit) 29
6.1.17 Extended Differential Motion Vector Range (EXTENDED_DMV)(1 bit) 29
6.1.18 Macroblock Quantization (DQUANT)(2 bit) 29
6.1.19 Variable Sized Transform (VSTRANSFORM)(1 bit) 29
6.1.20 Reserved (RES_TRANSTAB)(1 bit) 29
6.1.21 Overlapped Transform Flag (OVERLAP) (1 bit) 29
6.1.22 Syncmarker Flag (SYNCMARKER) (1 bit) 29
6.1.23 Range Reduction Flag (RANGERED) (1 bit) 29
6.1.24 Maximum Number of consecutive B frames (MAXBFRAMES) (3 bits) 29
6.1.25 Quantizer Specifier (QUANTIZER) (2 bits) 29
6.1.26 Postprocessing Flag (POSTPROCFLAG) (1 bit) 30
6.1.27 Broadcast Flag (BROADCAST) (1 bit) 30
6.1.28 Interlace Content (INTERLACE) (1 bit) 30
6.1.29 Frame Counter Flag (TFCNTRFLAG) (1 bit) 30
6.1.30 Frame Interpolation Flag (FINTERPFLAG)(1 bit) 30
6.1.31 Pan Scan Flag (PANSCANFLAG)(1 bit) 30
6.1.32 Reserved RTM Flag (RES_RTM_FLAG)(1 bit) 30
6.1.33 Reserved Advanced Profile Flag (RESERVED)(1 bit) 30

6.2 ENTRY-POINT HEADER SYNTAX AND SEMANTICS 31
6.2.1 HRD Buffer Fullness (HRD_FULLNESS)(Variable Size) 32
6.2.2 Range Mapping Luminance Flag (RANGE_MAPY_FLAG)(1 bit) 33
6.2.3 Range Mapping Chrominance Flag (RANGE_MAPUV_FLAG)(1 bit) 33
6.2.4 Number of pan scan windows (NUMPANSCANWIN)(3 bits) 33

7 PROGRESSIVE BITSTREAM SYNTAX AND SEMANTICS 33

7.1 PICTURE-LEVEL SYNTAX AND SEMANTICS 33
7.1.1 Picture layer 74
7.1.2 Slice Layer 86
7.1.3 Macroblock Layer 87
7.1.4 Block Layer 91

7.2 BITPLANE CODING SYNTAX 98
7.2.1 Invert Flag (INVERT) 99
7.2.2 Coding Mode (IMODE) 99
7.2.3 Bitplane Coding Bits (DATABITS) 100

8 PROGRESSIVE DECODING PROCESS 100

8.1 PROGRESSIVE I FRAME DECODING 100
8.1.1 Progressive I Picture Layer Decode 100

8.2 PROGRESSIVE BI FRAME DECODING 14
8.2.1 BFRACTION following picture type (main profile only) 15
8.2.2 No picture resolution index (RESPIC) 15

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication vii

8.2.3 No range reduction (RANGEREDFRM) 15
8.3 PROGRESSIVE P FRAME DECODING 15

8.3.1 Skipped P Frames 15
8.3.2 Out-of-bounds Reference Pixels 15
8.3.3 P Picture Types 16
8.3.4 P Picture Layer Decode 16
8.3.5 Macroblock Layer Decode 19
8.3.6 Block Layer Decode 30
8.3.7 Rounding Control 41
8.3.8 Intensity Compensation 41

8.4 PROGRESSIVE B FRAME DECODING 42
8.4.1 Skipped Anchor Frames 42
8.4.2 B Picture Layer Decode 43
8.4.3 B Macroblock Layer Decode 43
8.4.4 B Block Layer Decode 47

8.5 OVERLAPPED TRANSFORM 47
8.5.1 Overlap Smoothing in Main and Simple Profiles 48
8.5.2 Overlap Smoothing in Advanced Profile 49

8.6 IN-LOOP DEBLOCK FILTERING 50
8.6.1 I Picture In-loop Deblocking 50
8.6.2 P Picture In-loop Deblocking 51
8.6.3 B Picture In-loop Deblocking 53
8.6.4 Filter Operation 53

8.7 BITPLANE CODING 56
8.7.1 INVERT 56
8.7.2 IMODE 56
8.7.3 DATABITS 57

8.8 SYNC MARKERS 61
8.9 INVERSETRANSFORM CONFORMANCE 62

9 INTERLACE SYNTAX AND SEMANTICS 62

9.1 PICTURE-LEVEL SYNTAX AND SEMANTICS 62
9.1.1 Picture layer 104
9.1.2 Slice Layer 111
9.1.3 Macroblock Layer 111
9.1.4 Block Layer Syntax Elements 113

10 INTERLACE DECODING PROCESS 113

10.1 INTERLACE FIELD I PICTURE DECODING 113
10.1.1 Macroblock Layer Decode 113
10.1.2 Block Layer Decode 114

10.2 INTERLACE BI FIELD DECODING 115
10.3 INTERLACE FIELD P PICTURE DECODING 115

10.3.1 Out-of-bounds Reference Pixels 115
10.3.2 Reference Pictures 115
10.3.3 P Picture Types 118
10.3.4 Macroblock Layer Decode 118
10.3.5 Block Layer Decode 138
10.3.6 Rounding Control 141
10.3.7 Intensity Compensation 141

10.4 INTERLACE FIELD B PICTURE DECODING 141
10.4.1 B Macroblock Layer Decode 142
10.4.2 B Block Layer Decode 143
10.4.3 MV Prediction in B fields 143

10.5 INTERLACE FRAME I PICTURE DECODING 147
10.5.1 Macroblock Layer Decode 147

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication viii

10.5.2 Block Decode 147
10.6 INTERLACE BI FRAME DECODING 149
10.7 INTERLACE FRAME P PICTURE DECODING 149

10.7.1 Out-of-bounds Reference Pixels 149
10.7.2 Macroblock Layer Decode 149
10.7.3 Block Layer Decode 169

10.8 INTERLACE FRAME B PICTURE DECODING 169
10.8.1 B Macroblock Layer Decode 170
10.8.2 B Block Layer Decode 171

10.9 OVERLAPPED TRANSFORM 172
10.9.1 Overlap Smoothing 172
10.9.2 Overlap Smoothing for Interlace Frame Pictures 172

10.10 IN-LOOP DEBLOCK FILTERING 172
10.10.1 I Field Picture In-loop Deblocking 173
10.10.2 P Field Picture In-loop Deblocking 174
10.10.3 B Field Picture In-loop Deblocking 174
10.10.4 Interlace Frame Pictures In-loop Deblocking 174

11 TABLES 182

11.1 INTERLACE PICTURES MV BLOCK PATTERN VLC TABLES 182
11.1.1 4MV Block Pattern Tables 182
11.1.2 2MV Block Pattern Tables 184

11.2 INTERLACE CBPCY VLC TABLES 184
11.3 INTERLACE MV TABLES 191
11.4 INTERLACE PICTURES MB MODE TABLES 204

11.4.1 Interlace Field P / B Pictures Mixed MV MB Mode Tables 204
11.4.2 Interlace Field P / B Pictures 1-MV MB Mode Tables 206
11.4.3 Interlace Frame P / B Pictures 4MV MBMODE Tables 208
11.4.4 Interlace Frame P / B Pictures Non 4MV MBMODE Tables 210

11.5 I-PICTURE CBPCY TABLES 212
11.6 P-PICTURE CBPCY TABLES 213
11.7 DC DIFFERENTIAL TABLES 217

11.7.1 Low-motion Tables 217
11.7.2 High-motion Tables 220

11.8 TRANSFORM AC COEFFICIENT TABLES 222
11.8.1 High Motion Intra Tables 222
11.8.2 Low Motion Intra Tables 233
11.8.3 Low Motion Inter Tables 238
11.8.4 Mid Rate Intra Tables 243
11.8.5 Mid Rate Inter Tables 247
11.8.6 High Rate Intra Tables 251
11.8.7 High Rate Inter Tables 256

11.9 ZIGZAG TABLES 262
11.9.1 Intra zigzag tables 262
11.9.2 Inter zigzag tables 263

11.10 MOTION VECTOR DIFFERENTIAL TABLES 265

ANNEX A TRANSFORM SPECIFICATION 269

A.1 INVERSE TRANSFORM 269
A.2 FORWARD TRANSFORM 271

ANNEX B SPATIAL ALIGNMENT OF VIDEO SAMPLES IN VARIABLE RESOLUTION CODING 273

ANNEX C HYPOTHETICAL REFERENCE DECODER 275

C.1 LEAKY BUCKET MODEL 275
C.1.1 This subclause is informative and defines a leaky bucket model. 275

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication ix

C.1.2 This subclause defines a requirement on all video bit streams when the HRD operates in constant-delay
mode. 278
C.1.3 This subclause is informative only. It describes CBR and VBR bit streams. 278

C.2 MULTIPLE LEAKY BUCKETS 278
C.3 BIT STREAM SYNTAX FOR THE HYPOTHETICAL REFERENCE DECODER 279

C.3.1 This subclause only applies when the HRD operates in constant-delay mode. It describes syntax
required in a video bit stream that is compliant to the Advanced profile, when operating in such mode. 279
C.3.2 This subclause is informative only. 281

C.4 INTERPOLATING LEAKY BUCKETS 281
C.5 DISPLAY ISSUES 283
C.6 TIME-CONFORMANT DECODERS 283
C.7 VARIABLE-DELAY MODE 284
C.8 BENEFITS OF MULTIPLE LEAKY BUCKETS 284

ANNEX D PROFILE AND LEVELS 286

D.1 OVERVIEW 286
D.2 PROFILES 287
D.3 LEVELS 288
D.4 SYNTAX 290

ANNEX E START CODES 291

E.1 START-CODES AND ENCAPSULATION – AN ENCODER VIEWPOINT (INFORMATIVE) 291
E.2 DETECTION OF START CODES AND EIDU (NORMATIVE) 292
E.3 EXTRACTION OF RIDU FROM EIDU (NORMATIVE) 292
E.4 START-CODE SUFFIXES FOR IDU TYPES (NORMATIVE) 293

ANNEX F USER DATA 295

ANNEX G BITSTREAM ENTRY POINTS AND START-CODES 296

Table of Figures
FIGURE 1: DECODING PROCESS BLOCK DIAGRAM 2
FIGURE 2: 4:2:0 LUMA AND CHROMA SAMPLE HORIZONTAL AND VERTICAL POSITIONS 11
FIGURE 3: CODING HIERARCHY SHOWING PICTURE, SLICE, MACROBLOCK AND BLOCK LAYERS 12
FIGURE 4: CODING OF INTRA BLOCKS 13
FIGURE 5: CODING OF INTER BLOCKS 14
FIGURE 6: 4:2:0 LUMA AND CHROMA TEMPORAL AND VERTICAL SAMPLE POSITIONS SHOWN RELATIVE TO SAMPLING

TIME INSTANT (WHERE FROM LEFT TO RIGHT IS SHOWN A TOP FIELD, BOTTOM FIELD, TOP FIELD, AND BOTTOM

FIELD) 14
FIGURE 7: SYNTAX DIAGRAM FOR THE SEQUENCE LAYER BITSTREAM FOR SIMPLE AND MAIN PROFILES. 17
FIGURE 8: SYNTAX DIAGRAM FOR THE SEQUENCE LAYER BITSTREAM FOR THE ADVANCED PROFILE 17
FIGURE 9: SYNTAX DIAGRAM FOR THE ENTRY-POINT LAYER BITSTREAM FOR THE ADVANCED PROFILE 31
FIGURE 10: SYNTAX DIAGRAM FOR THE PROGRESSIVE I PICTURE LAYER BITSTREAM IN SIMPLE/MAIN PROFILE 34
FIGURE 11: SYNTAX DIAGRAM FOR THE PROGRESSIVE BI PICTURE LAYER BITSTREAM IN MAIN PROFILE 35
FIGURE 12: SYNTAX DIAGRAM FOR THE PROGRESSIVE I PICTURE LAYER BITSTREAM IN ADVANCED PROFILE. 37
FIGURE 13: SYNTAX DIAGRAM FOR THE PROGRESSIVE BI PICTURE LAYER BITSTREAM IN ADVANCED PROFILE. 39
FIGURE 14: SYNTAX DIAGRAM FOR THE PROGRESSIVE P PICTURE LAYER BITSTREAM IN SIMPLE/MAIN PROFILE. 40
FIGURE 15: SYNTAX DIAGRAM FOR THE PROGRESSIVE P PICTURE LAYER BITSTREAM IN ADVANCED PROFILE. 42
FIGURE 16: SYNTAX DIAGRAM FOR THE PROGRESSIVE B PICTURE LAYER BITSTREAM IN MAIN PROFILE. 44
FIGURE 17: SYNTAX DIAGRAM FOR THE PROGRESSIVE B PICTURE LAYER BITSTREAM IN ADVANCED PROFILE. 46
FIGURE 18: SYNTAX DIAGRAM FOR VOPDQUANT IN PICTURE HEADER 46
FIGURE 19: SYNTAX DIAGRAM FOR FOR THE SLICE-LAYER BITSTREAM IN THE ADVANCED PROFILE 47
FIGURE 20: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE I PICTURE FOR SIMPLE/MAIN

PROFILE 48

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication x

FIGURE 21: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE I PICTURE FOR ADVANCED

PROFILE 49
FIGURE 22: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE-P PICTURE FOR

SIMPLE/MAIN/ADVANCED PROFILES 50
FIGURE 23: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE B PICTURE FOR

MAIN/ADVANCED PROFILES 51
FIGURE 24: SYNTAX DIAGRAM FOR THE INTRA-CODED BLOCK LAYER BITSTREAM IN PROGRESSIVE MODE. 52
FIGURE 25: SYNTAX DIAGRAM FOR THE INTER-CODED BLOCK LAYER BITSTREAM IN PROGRESSIVE MODE. 53
FIGURE 26: 4X4 SUBBLOCKS 93
FIGURE 27: 8X4 AND 4X8 SUBBLOCKS 94
FIGURE 28: SYNTAX DIAGRAM FOR THE BITPLANE CODING 99
FIGURE 29: CALCULATION OF FRAME DIMENSIONS IN MULTIRES DOWNSAMPLING PSEUDO-CODE 2
FIGURE 30: CBP ENCODING USING NEIGHBORING BLOCKS 3
FIGURE 31: INTRA BLOCK RECONSTRUCTION 4
FIGURE 32: DC DIFFERENTIAL DECODING PSEUDO-CODE 5
FIGURE 33: DC PREDICTOR CANDIDATES 6
FIGURE 34: PREDICTION SELECTION PSEUDO-CODE 7
FIGURE 35: COEFFICIENT DECODE PSEUDO-CODE 9
FIGURE 36: RUN-LEVEL DECODE PSEUDO-CODE 10
FIGURE 37: 8X8 ARRAY WITH POSITIONS LABELED 11
FIGURE 38: EXAMPLE ZIG-ZAG SCANNING PATTERN 11
FIGURE 39: ZIG-ZAG SCAN MAPPING ARRAY 11
FIGURE 40: AC PREDICTION CANDIDATES 12
FIGURE 41: HORIZONTAL AND VERTICAL PIXEL REPLICATION FOR OUT-OF-BOUNDS REFERENCE 15
FIGURE 42: DECODING MV DIFFERENTIAL IN PROGRESSIVE PICTURES: PSEUDO-CODE 21
FIGURE 43: CANDIDATE MOTION VECTOR PREDICTORS IN 1MV P PICTURES 22
FIGURE 44: CANDIDATE MOTION VECTORS FOR 1MV MACROBLOCKS IN MIXED-MV P PICTURES 22
FIGURE 45: CANDIDATE MOTION VECTORS FOR 4MV MACROBLOCKS IN MIXED-MV P PICTURES 23
FIGURE 46: CALCULATING MV PREDICTIOR: PSEUDO-CODE 24
FIGURE 47: HYBRID MOTION VECTOR: PRELIMINARY PREDICTION 26
FIGURE 48: CHROMA MV RECONSTRUCTION FOR PROGRESSIVE: PSEUDO-CODE 28
FIGURE 49: BIT-POSITION/BLOCK CORRESPONDENCE FOR CBPCY 29
FIGURE 50: CALCULATING DC PREDICTOR DIRECTION: PSEUDO-CODE 31
FIGURE 51: INTER BLOCK RECONSTRUCTION 33
FIGURE 52: TRANSFORM TYPES 33
FIGURE 53: BILINEAR FILTER OPERATION 38
FIGURE 54: QUARTER PEL BICUBIC FILTER CASES 39
FIGURE 55: PIXEL SHIFTS 40
FIGURE 56: INTER BLOCK RECONSTRUCTION PSEUDO-CODE 41
FIGURE 57: DIRECT MODE PREDICTION 46
FIGURE 58: EXAMPLE SHOWING OVERLAP SMOOTHING 48
FIGURE 59: FILTERED HORIZONTAL BLOCK BOUNDARY PIXELS IN I PICTURE 50
FIGURE 60: FILTERED VERTICAL BLOCK BOUNDARY PIXELS IN I PICTURE 51
FIGURE 61: EXAMPLE FILTERED BLOCK BOUNDARIES IN P FRAMES 52
FIGURE 62: HORIZONTAL BLOCK BOUNDARY PIXELS IN P PICTURE 52
FIGURE 63: VERTICAL BLOCK BOUNDARY PIXELS IN P PICTURE 53
FIGURE 64: FOUR-PIXEL SEGMENTS USED IN LOOP FILTERING 53
FIGURE 65: PIXELS USED IN FILTERING OPERATION 54
FIGURE 66: PSEUDO-CODE ILLUSTRATING FILTERING OF 3RD

 PIXEL PAIR IN SEGMENT 55
FIGURE 67: PSEUDO-CODE ILLUSTRATING FILTERING OF 1ST, 2ND

 AND 4TH
 PIXEL PAIR IN SEGMENT 55

FIGURE 68: AN EXAMPLE OF 2X3 “VERTICAL” TILES (A) AND 3X2 “HORIZONTAL” TILES (B) – THE ELONGATED DARK

RECTANGLES ARE 1 PIXEL WIDE AND ENCODED USING ROW-SKIP AND COLUMN-SKIP CODING. 58
FIGURE 69: SYNTAX DIAGRAM OF ROW-SKIP CODING 60
FIGURE 70: SYNC MARKERS IN VC-9 – (A) SHOWS SEQUENCE OF ENTROPY CODED DATA WITH SYNCMARKER SET TO

ZERO, (B) SYNCMARKER IS 1 BUT NO SYNC MARKERS ARE ACTUALLY SENT AND (C) SYNCMARKER IS 1, A

LONG AND A SHORT SYNC MARKER ARE SENT, SOME SLICES DO NOT HAVE SYNC MARKERS 62

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication xi

FIGURE 71: SYNTAX DIAGRAM FOR THE PICTURE LAYER BITSTREAM IN INTERLACE FRAME I PICTURE 64
FIGURE 72: SYNTAX DIAGRAM FOR THE PICTURE LAYER BITSTREAM IN INTERLACE FRAME BI PICTURE 66
FIGURE 73: SYNTAX DIAGRAM FOR THE PICTURE LAYER BITSTREAM IN INTERLACE FRAME P PICTURE 67
FIGURE 74: SYNTAX DIAGRAM FOR THE PICTURE LAYER BITSTREAM IN INTERLACE FRAME B PICTURE 67
FIGURE 75: SYNTAX DIAGRAM FOR THE PICTURE LAYER BITSTREAM IN INTERLACE FIELD PICTURES 68
FIGURE 76: SYNTAX DIAGRAM FOR THE FIELD PICTURE LAYER BITSTREAM IN INTERLACE I FIELD PICTURES 69
FIGURE 77: SYNTAX DIAGRAM FOR THE FIELD PICTURE LAYER BITSTREAM IN INTERLACE BI FIELD PICTURES 70
FIGURE 78: SYNTAX DIAGRAM FOR THE FIELD PICTURE LAYER BITSTREAM IN INTERLACE P FIELD PICTURES 71
FIGURE 79: SYNTAX DIAGRAM FOR THE FIELD PICTURE LAYER BITSTREAM IN INTERLACE B FIELD PICTURES 72
FIGURE 80: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN INTERLACE FIELD I PICTURE 73
FIGURE 81: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN P FIELD PICTURE 74
FIGURE 82: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN FIELD B PICTURE 76
FIGURE 83: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN INTERLACE FRAME I PICTURE 76
FIGURE 84: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN INTERLACE FRAME P PICTURE 77
FIGURE 85: SYNTAX DIAGRAM FOR MACROBLOCK LAYER BITSTREAM IN INTERLACE FRAME B PICTURE 78
FIGURE 86: INTRA BLOCK LAYER IN INTERLACE FRAME. 79
FIGURE 87: INTER BLOCK LAYER IN INTERLACE FRAME. 80
FIGURE 88: EXAMPLE OF TWO REFERENCE FIELD PICTURES (NUMREF = 1) 116
FIGURE 89: EXAMPLE OF ONE REFERENCE FIELD PICTURE (NUMREF = 0) USING TEMPORALLY MOST RECENT

REFERENCE (REFFIELD = 0) 117
FIGURE 90: EXAMPLE OF ONE REFERENCE FIELD PICTURE (NUMREF = 0) USING TEMPORALLY SECOND-MOST RECENT

REFERENCE (REFFIELD = 1) 118
FIGURE 91: ASSOCIATION OF BITS IN 4MVBP TO LUMINANCE BLOCKS 119
FIGURE 92: VERTICAL RELATIONSHIP BETWEEN MOTION VECTORS AND CURRENT AND REFERENCE FIELDS 121
FIGURE 93: B FIELD REFERENCES 142
FIGURE 94: INTRA BLOCK DECODE 148
FIGURE 95: TWO FIELD MV MACROBLOCK 150
FIGURE 96: 4 FRAME MV MACROBLOCK 150
FIGURE 97: 4 FIELD MV MACROBLOCK – LUMINANCE BLOCK 151
FIGURE 98: 4 FIELD MV MACROBLOCK – CHROMINANCE BLOCK 151
FIGURE 99: CANDIDATE NEIGHBORING MACROBLOCKS FOR INTERLACE FRAME PICTURE 152
FIGURE 100: EXAMPLE SHOWING OVERLAP SMOOTHING 172
FIGURE 101: FILTERED HORIZONTAL BLOCK BOUNDARY PIXELS IN I PICTURE 173
FIGURE 102: FILTERED VERTICAL BLOCK BOUNDARY PIXELS IN I PICTURE 173
FIGURE 103: FIELD BASED HORIZONTAL / VERTICAL BLOCK BOUNDARIES FILTERING 175
FIGURE 104: MATRIX FOR 1-D 8-POINT INVERSE TRANSFORM 269
FIGURE 105: MATRIX FOR 1-D 4-POINT INVERSE TRANSFORM 269
FIGURE 106: EVEN COMPONENT OF 8-POINT INVERSE TRANSFORM 270
FIGURE 107: EVEN COMPONENT OF 4-POINT INVERSE TRANSFORM 270
FIGURE 108: 8X8 INVERSE TRANSFORM 270
FIGURE 109: 4X8 INVERSE TRANSFORM 270
FIGURE 110: 8X4 INVERSE TRANSFORM 271
FIGURE 111: 4X4 INVERSE TRANSFORM 271
FIGURE 112: RELATIVE SPATIAL ALIGNMENT OF THE VIDEO SAMPLES OF THE DOWNSAMPLED FRAME, 273

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication xii

Table of Tables
TABLE 1: SEQUENCE LAYER BITSTREAM FOR SIMPLE AND MAIN PROFILE 18
TABLE 2: SEQUENCE LAYER BITSTREAM FOR ADVANCED PROFILE 18
TABLE 3: QUANTIZER SPECIFICATION 29
TABLE 4: ENTRY-POINT LAYER BITSTREAM FOR ADVANCED PROFILE 31
TABLE 5: PROGRESSIVE I PICTURE LAYER BITSTREAM FOR SIMPLE AND MAIN PROFILE 53
TABLE 6: PROGRESSIVE BI PICTURE LAYER BITSTREAM FOR MAIN PROFILE 54
TABLE 7: PROGRESSIVE I PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 55
TABLE 8: PROGRESSIVE BI PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 57
TABLE 9: PROGRESSIVE P PICTURE LAYER BITSTREAM FOR SIMPLE AND MAIN PROFILE 58
TABLE 10: PROGRESSIVE P PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 60
TABLE 11: PROGRESSIVE B PICTURE LAYER BITSTREAM FOR MAIN PROFILE 62
TABLE 12: PROGRESSIVE B PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 63
TABLE 13: VOPDQUANT IN PROGRESSIVE PICTURE HEADER 65
TABLE 14: SLICE-LAYER BITSTREAM IN ADVANCED PROFILE 66
TABLE 15: BITPLANE CODING 66
TABLE 16: MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE I PICTURE FOR SIMPLE/MAIN PROFILE 67
TABLE 17: MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE I PICTURE FOR ADVANCED PROFILE 67
TABLE 18: MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE P PICTURE FOR SIMPLE/MAIN/ADVANCED PROFILE 68
TABLE 19: MACROBLOCK LAYER BITSTREAM IN PROGRESSIVE B PICTURE FOR MAIN/ADVANCED PROFILE 70
TABLE 20: INTRA BLOCK LAYER BITSTREAM IN PROGRESSIVE MODE. 72
TABLE 21: INTER BLOCK LAYER BITSTREAM IN PROGRESSIVE MODE 73
TABLE 22: PICTURE CODING TYPE VLC 75
TABLE 23: SIMPLE/MAIN PROFILE PICTURE TYPE FLC IF MAXBFRAMES = 0 76
TABLE 24: MAIN PROFILE PICTURE TYPE VLC IF MAXBFRAMES > 0 76
TABLE 25: ADVANCED PROFILE PICTURE TYPE VLC 76
TABLE 26: BFRACTION VLC TABLE 77
TABLE 27: PQINDEX TO PQUANT/QUANTIZER TRANSLATION (IMPLICIT QUANTIZER) 78
TABLE 28: PQINDEX TO PQUANT TRANSLATION (EXPLICIT QUANTIZER) 79
TABLE 29: MOTION VECTOR RANGE SIGNALED BY MVRANGE 80
TABLE 30: PROGRESSIVE PICTURE RESOLUTION CODE-TABLE 80
TABLE 31: P PICTURE LOW RATE (PQUANT > 12) MVMODE CODETABLE 81
TABLE 32: P PICTURE HIGH RATE (PQUANT <= 12) MVMODE CODETABLE 81
TABLE 33: B PICTURE HIGH RATE (PQUANT <= 12) MVMODE CODETABLE 81
TABLE 34: B PICTURE LOW RATE (PQUANT > 12) MVMODE CODETABLE 82
TABLE 35: P PICTURE LOW RATE (PQUANT > 12) MVMODE2 CODETABLE 82
TABLE 36: P PICTURE HIGH RATE (PQUANT <= 12) MVMODE2 CODETABLE 82
TABLE 37: MVTAB CODE-TABLE 83
TABLE 38: MACROBLOCK QUANTIZATION PROFILE (DQPROFILE) CODE TABLE 84
TABLE 39: SINGLE BOUNDARY EDGE SELECTION (DQSBEDGE) CODE TABLE 84
TABLE 40: DOUBLE BOUNDARY EDGES SELECTION (DQDBEDGE) CODE TABLE 84
TABLE 41: TRANSFORM TYPE SELECT CODE-TABLE 85
TABLE 42: TRANSFORM AC CODING SET INDEX CODE-TABLE 86
TABLE 43: HIGH RATE (PQUANT < 5) TTMB VLC TABLE 89
TABLE 44: MEDIUM RATE (5 <= PQUANT < 13) TTMB VLC TABLE 89
TABLE 45: LOW RATE (PQUANT >= 13) TTMB VLC TABLE 90
TABLE 46: B FRAME MOTION PREDICTION TYPE 91
TABLE 47: HIGH RATE (PQUANT < 5) TTBLK VLC TABLE 91
TABLE 48: MEDIUM RATE (5 =< PQUANT < 13) TTBLK VLC TABLE 92
TABLE 49: LOW RATE (PQUANT >= 13) TTBLK VLC TABLE 92
TABLE 50: HIGH RATE (PQUANT < 5) SUBBLKPAT VLC TABLE 93
TABLE 51: MEDIUM RATE (5 =< PQUANT < 13) SUBBLKPAT VLC TABLE 93
TABLE 52: LOW RATE (PQUANT >= 13) SUBBLKPAT VLC TABLE 94

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication xiii

TABLE 53: 8X4 AND 4X8 TRANSFORM SUB-BLOCK PATTERN CODE-TABLE FOR PROGRESSIVE PICTURES 95
TABLE 54: AC ESCAPE DECODING MODE CODE-TABLE 96
TABLE 55: ESCAPE MODE 3 LEVEL CODEWORD SIZE CONSERVATIVE CODE-TABLE (USED TYPICALLY FOR 1 <= PQUANT

<= 7) 97
TABLE 56: ESCAPE MODE 3 LEVEL CODEWORD SIZE EFFICIENT CODE-TABLE (USED TYPICALLY FOR 8 <= PQUANT <=

31) 97
TABLE 57: ESCAPE MODE 3 RUN CODEWORD SIZE CODE-TABLE 98
TABLE 58: IMODE VLC CODETABLE 99
TABLE 59: CODED BLOCK PATTERN BIT POSITION 3
TABLE 60: CODING SET CORRESPONDENCE FOR PQINDEX <= 7 9
TABLE 61: CODING SET CORRESPONDENCE FOR PQINDEX > 7 10
TABLE 62: SCAN ARRAY SELECTION 11
TABLE 63: DQSCALE 13
TABLE 64: MOTION VECTOR HUFFMAN TABLE 17
TABLE 65: CBP HUFFMAN TABLE 17
TABLE 66: K_X AND K_Y SPECIFIED BY MVRANGE 20
TABLE 67: INDEX/CODING SET CORRESPONDENCE FOR PQINDEX <= 7 32
TABLE 68: INDEX/CODING SET CORRESPONDENCE FOR PQINDEX > 7 32
TABLE 69: INDEX/CODING SET CORRESPONDENCE FOR PQINDEX <= 6 35
TABLE 70: INDEX/CODING SET CORRESPONDENCE FOR PQINDEX > 6 36
TABLE 71: IMODE CODETABLE 56
TABLE 72: NORM-2/DIFF-2 CODE TABLE 57
TABLE 73: CODE TABLE FOR 3X2 AND 2X3 TILES 58
TABLE 74: INTERLACED FRAME I PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 80
TABLE 75: INTERLACED FRAME BI PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 82
TABLE 76: INTERLACED FRAME P PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 84
TABLE 77: INTERLACED FRAME B PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 86
TABLE 78: FIELD INTERLACE PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 88
TABLE 79: FIELD INTERLACE I FIELD PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 89
TABLE 80: FIELD INTERLACE BI FIELD PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 90
TABLE 81: FIELD INTERLACE P FIELD PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 90
TABLE 82: FIELD INTERLACE B FIELD PICTURE LAYER BITSTREAM FOR ADVANCED PROFILE 92
TABLE 83: MACROBLOCK LAYER BITSTREAM IN INTERLACED FRAME I PICTURE 93
TABLE 84: MACROBLOCK LAYER BITSTREAM IN INTERLACED FRAME P PICTURE 94
TABLE 85: MACROBLOCK LAYER BITSTREAM IN INTERLACED FRAME B PICTURE 96
TABLE 86: MACROBLOCK LAYER BITSTREAM IN INTERLACED FIELD I PICTURE 98
TABLE 87: MACROBLOCK LAYER BITSTREAM IN INTERLACED FIELD P PICTURE 99
TABLE 88: MACROBLOCK LAYER BITSTREAM IN INTERLACED FIELD B PICTURE 101
TABLE 89: FIELD PICTURE TYPE FLC 104
TABLE 90: REFDIST VLC TABLE 105
TABLE 91: DMVRANGE VLC TABLE 106
TABLE 92: INTCOMPFIELD VLC TABLE 107
TABLE 93: MBMODETAB CODE-TABLE FOR INTERLACE FIELD P, B PICTURES 108
TABLE 94: MBMODETAB CODE-TABLE FOR INTERLACE FRAME P, B PICTURES 109
TABLE 95: MVTAB CODE-TABLE 109
TABLE 96: CBPTAB CODE-TABLE 110
TABLE 97: 2MVBP CODE-TABLE 110
TABLE 98: 4MVBP CODE-TABLE 110
TABLE 99: MACROBLOCK MODE IN ALL-1MV PICTURES 120
TABLE 100: MACROBLOCK MODE IN MIXED-1MV PICTURES 120
TABLE 101: K_X AND K_Y SPECIFIED BY MVRANGE 122
TABLE 102: P FIELD PICTURE MV PREDICTOR SCALING VALUES WHEN CURRENT FIELD IS FIRST 133
TABLE 103: P FIELD PICTURE MV PREDICTOR SCALING VALUES WHEN CURRENT FIELD IS SECOND 133
TABLE 104: DERIVATION OF N 133
TABLE 105: B FIELD PICTURE BACKWARD MV PREDICTOR SCALING VALUES FOR WHEN CURRENT FIELD IS FIRST 145
TABLE 106: 4MV BLOCK PATTERN TABLE 0 182

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication xiv

TABLE 107: 4MV BLOCK PATTERN TABLE 1 182
TABLE 108: 4MV BLOCK PATTERN TABLE 2 183
TABLE 109: 4MV BLOCK PATTERN TABLE 3 183
TABLE 110: INTERLACE FRAME 2 MVP BLOCK PATTERN TABLE 0 184
TABLE 111: INTERLACE FRAME 2 MVP BLOCK PATTERN TABLE 1 184
TABLE 112: INTERLACE FRAME 2 MVP BLOCK PATTERN TABLE 2 184
TABLE 113: INTERLACE FRAME 2 MVP BLOCK PATTERN TABLE 3 184
TABLE 114: INTERLACED CBPCY TABLE 0 185
TABLE 115: INTERLACED CBPCY TABLE 1 185
TABLE 116: INTERLACED CBPCY TABLE 2 186
TABLE 117: INTERLACED CBPCY TABLE 3 187
TABLE 118: INTERLACED CBPCY TABLE 4 188
TABLE 119: INTERLACED CBPCY TABLE 5 188
TABLE 120: INTERLACED CBPCY TABLE 6 189
TABLE 121: INTERLACED CBPCY TABLE 7 190
TABLE 122: 2-FIELD REFERENCE INTERLACE MV TABLE 0 191
TABLE 123: 2-FIELD REFERENCE INTERLACE MV TABLE 1 192
TABLE 124: 2-FIELD REFERENCE INTERLACE MV TABLE 2 193
TABLE 125: 2-FIELD REFERENCE INTERLACE MV TABLE 3 195
TABLE 126: 2-FIELD REFERENCE INTERLACE MV TABLE 4 196
TABLE 127: 2-FIELD REFERENCE INTERLACE MV TABLE 5 197
TABLE 128: 2-FIELD REFERENCE INTERLACE MV TABLE 6 198
TABLE 129: 2-FIELD REFERENCE INTERLACE MV TABLE 7 200
TABLE 130: 1-FIELD REFERENCE INTERLACE MV TABLE 0 201
TABLE 131: 1-FIELD REFERENCE INTERLACE MV TABLE 1 202
TABLE 132: 1-FIELD REFERENCE INTERLACE MV TABLE 2 202
TABLE 133: 1-FIELD REFERENCE INTERLACE MV TABLE 3 203
TABLE 134: MIXED MV MB MODE TABLE 0 204
TABLE 135: MIXED MV MB MODE TABLE 1 204
TABLE 136: MIXED MV MB MODE TABLE 2 205
TABLE 137: MIXED MV MB MODE TABLE 3 205
TABLE 138: MIXED MV MB MODE TABLE 4 205
TABLE 139: MIXED MV MB MODE TABLE 5 205
TABLE 140: MIXED MV MB MODE TABLE 6 206
TABLE 141: MIXED MV MB MODE TABLE 7 206
TABLE 142: 1-MV MB MODE TABLE 0 206
TABLE 143: 1-MV MB MODE TABLE 1 206
TABLE 144: 1-MV MB MODE TABLE 2 207
TABLE 145: 1-MV MB MODE TABLE 3 207
TABLE 146: 1-MV MB MODE TABLE 4 207
TABLE 147: 1-MV MB MODE TABLE 5 207
TABLE 148: 1-MV MB MODE TABLE 6 207
TABLE 149: 1-MV MB MODE TABLE 7 208
TABLE 150: INTERLACE FRAME 4MV MB MODE TABLE 0 208
TABLE 151: INTERLACE FRAME 4MV MB MODE TABLE 1 208
TABLE 152: INTERLACE FRAME 4MV MB MODE TABLE 2 209
TABLE 153: INTERLACE FRAME 4MV MB MODE TABLE 3 210
TABLE 154: INTERLACE FRAME NON 4MV MB MODE TABLE 0 210
TABLE 155: INTERLACE FRAME NON 4MV MB MODE TABLE 1 211
TABLE 156: INTERLACE FRAME NON 4MV MB MODE TABLE 2 211
TABLE 157: INTERLACE FRAME NON 4MV MB MODE TABLE 3 211
TABLE 158: I-PICTURE CBPCY VLC TABLE 212
TABLE 159: P-PICTURE CBPCY VLC TABLE 0 213
TABLE 160: P-PICTURE CBPCY VLC TABLE 1 214
TABLE 161: P-PICTURE CBPCY VLC TABLE 2 215
TABLE 162: P-PICTURE CBPCY VLC TABLE 3 216

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication xv

TABLE 163: LOW-MOTION LUMINANCE DC DIFFERENTIAL VLC TABLE 217
TABLE 164: LOW-MOTION CHROMA DC DIFFERENTIAL VLC TABLE 218
TABLE 165: HIGH-MOTION LUMINANCE DC DIFFERENTIAL VLC TABLE 220
TABLE 166: HIGH-MOTION CHROMA DC DIFFERENTIAL VLC TABLE 221
TABLE 167: HIGH MOTION INTRA VLC TABLE 222
TABLE 168: HIGH MOTION INTRA INDEXED RUN AND LEVEL TABLE (LAST = 0) 224
TABLE 169: HIGH MOTION INTRA INDEXED RUN AND LEVEL TABLE (LAST = 1) 225
TABLE 170: HIGH MOTION INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST = 0) 226
TABLE 171: HIGH MOTION INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST = 1) 227
TABLE 172: HIGH MOTION INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST = 0) 227
TABLE 173: HIGH MOTION INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST = 1) 228
TABLE 174: HIGH MOTION INTER VLC TABLE 228
TABLE 175: HIGH MOTION INTER INDEXED RUN AND LEVEL TABLE (LAST = 0) 230
TABLE 176: HIGH MOTION INTER INDEXED RUN AND LEVEL TABLE (LAST = 1) 231
TABLE 177: HIGH MOTION INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST = 0) 231
TABLE 178: HIGH MOTION INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST = 1) 232
TABLE 179: HIGH MOTION INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST = 0) 233
TABLE 180: HIGH MOTION INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST = 1) 233
TABLE 181: LOW MOTION INTRA VLC TABLE 233
TABLE 182: LOW MOTION INTRA INDEXED RUN AND LEVEL TABLE (LAST = 0) 235
TABLE 183: LOW MOTION INTRA INDEXED RUN AND LEVEL TABLE (LAST = 1) 236
TABLE 184: LOW MOTION INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST = 0) 236
TABLE 185: LOW MOTION INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST = 1) 237
TABLE 186: LOW MOTION INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST = 0) 237
TABLE 187: LOW MOTION INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST = 1) 238
TABLE 188: LOW MOTION INTER VLC TABLE 238
TABLE 189: LOW MOTION INTER INDEXED RUN AND LEVEL TABLE (LAST = 0) 239
TABLE 190: LOW MOTION INTER INDEXED RUN AND LEVEL TABLE (LAST = 1) 240
TABLE 191: LOW MOTION INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST = 0) 241
TABLE 192: LOW MOTION INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST = 1) 242
TABLE 193: LOW MOTION INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST = 0) 242
TABLE 194: LOW MOTION INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST = 1) 243
TABLE 195: MID RATE INTRA VLC TABLE 243
TABLE 196: MID RATE INTRA INDEXED RUN AND LEVEL TABLE (LAST = 0) 244
TABLE 197: MID RATE INTRA INDEXED RUN AND LEVEL TABLE (LAST = 1) 245
TABLE 198: MID RATE INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST = 0) 245
TABLE 199: MID RATE INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST = 1) 245
TABLE 200: MID RATE INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST = 0) 246
TABLE 201: MID RATE INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST = 1) 246
TABLE 202: MID RATE INTER VLC TABLE 247
TABLE 203: MID RATE INTER INDEXED RUN AND LEVEL TABLE (LAST = 0) 248
TABLE 204: MID RATE INTER INDEXED RUN AND LEVEL TABLE (LAST = 1) 249
TABLE 205: MID RATE INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST = 0) 249
TABLE 206: MID RATE INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST = 1) 250
TABLE 207: MID RATE INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST = 0) 250
TABLE 208: MID RATE INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST = 1) 251
TABLE 209: HIGH RATE INTRA VLC TABLE 251
TABLE 210: HIGH RATE INTRA INDEXED RUN AND LEVEL TABLE (LAST = 0) 252
TABLE 211: HIGH RATE INTRA INDEXED RUN AND LEVEL TABLE (LAST = 1) 254
TABLE 212: HIGH RATE INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST = 0) 254
TABLE 213: HIGH RATE INTRA DELTA LEVEL INDEXED BY RUN TABLE (LAST = 1) 255
TABLE 214: HIGH RATE INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST = 0) 255
TABLE 215: HIGH RATE INTRA DELTA RUN INDEXED BY LEVEL TABLE (LAST = 1) 256
TABLE 216: HIGH RATE INTER VLC TABLE 256
TABLE 217: HIGH RATE INTER INDEXED RUN AND LEVEL TABLE (LAST = 0) 258
TABLE 218: HIGH RATE INTER INDEXED RUN AND LEVEL TABLE (LAST = 1) 259

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication xvi

TABLE 219: HIGH RATE INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST = 0) 260
TABLE 220: HIGH RATE INTER DELTA LEVEL INDEXED BY RUN TABLE (LAST = 1) 260
TABLE 221: HIGH RATE INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST = 0) 261
TABLE 222: HIGH RATE INTER DELTA RUN INDEXED BY LEVEL TABLE (LAST = 1) 261
TABLE 223: INTRA NORMAL SCAN 262
TABLE 224: INTRA HORIZONTAL SCAN 262
TABLE 225: INTRA VERTICAL SCAN 262
TABLE 226: INTER 8X8 SCAN FOR SIMPLE AND MAIN PROFILES AND PROGRESSIVE MODE IN ADVANCED PROFILE 263
TABLE 227: INTER 8X4 SCAN FOR SIMPLE AND MAIN PROFILES 263
TABLE 228: INTER 4X8 SCAN FOR SIMPLE AND MAIN PROFILES 263
TABLE 229: INTER 4X4 SCAN FOR SIMPLE AND MAIN PROFILES AND PROGRESSIVE MODE IN ADVANCED PROFILE 263
TABLE 230: PROGRESSIVE MODE INTER 8X4 SCAN FOR ADVANCED PROFILE 264
TABLE 231: PROGRESSIVE MODE INTER 4X8 SCAN FOR ADVANCED PROFILE 264
TABLE 232: INTERLACE MODE INTER 8X8 SCAN FOR ADVANCED PROFILE 264
TABLE 233: INTERLACE MODE INTER 8X4 SCAN FOR ADVANCED PROFILE 264
TABLE 234: INTERLACE MODE INTER 4X8 SCAN FOR ADVANCED PROFILE 265
TABLE 235: INTERLACE MODE INTER 4X4 SCAN FOR ADVANCED PROFILE 265
TABLE 236: MOTION VECTOR DIFFERENTIAL VLC TABLE 0 265
TABLE 237: MOTION VECTOR DIFFERENTIAL VLC TABLE 1 266
TABLE 238: MOTION VECTOR DIFFERENTIAL VLC TABLE 2 267
TABLE 239: MOTION VECTOR DIFFERENTIAL VLC TABLE 3 268

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 1

1 Scope
This document defines the bitstream syntax and semantics for compressed video data in VC-9 format, and specifies
constraints that are required for conforming bitstreams. It also describes the complete process required to decode the
bitstream. The compression algorithm is not specified in this standard. The video formats supported by the VC-9
standard include progressive and interlaced video sampled in the form of Y luminance samples and U,V chrominance
in 8-bit sample values resulting from a 4:2:0 sampling grid. The decoding process outputs 8-bit video samples
corresponding to the original 4:2:0 sampling grid. The display rendering process by which decoded YUV samples are
converted to a visible image or to a video output signal in a complete decoding system or device are not specified in
VC-9. A VC-9 bitstream may convey additional metadata and user data which shall be accounted for in the buffer
model. Metadata may be included in VC-9 streams that is not used by the decoding process, but it passed to the
display rendering process for the identification and reconstruction of the sampled video format, aspect ratio, color
space, etc.

2 References

2.1 Normative References

2.2 Informative References

[HRD] J. Ribas-Corbera, P.A. Chou, and S.L. Regunathan, “A generalized hypothetical reference decoder for
H.264/AVC,” IEEE Transactions on Circuits and Systems for Video Technology, Aug. 2003.

[MPEG2] ISO/IEC 138180-2, Information Technology – Generic Coding of Moving Pictures and Associated Audio
Information: Video (MPEG-2/H.262), Annex C “Video Buffering Verifier,” 2nd Edition, 2000.

[H263] Video Coding for Low Bit Rate Communication, ITU-T recommendation H.263, Annex B “Hypothetical
Reference Decoder,” Jan 1998.

[ISO] ISO/IEC 13818-1:2000 Information Technology – Generic Coding of Moving Pictures and Associated Audio
Information: Systems (2nd Edition).

[RP] Proposed SMPTE Recommended Practice : VC-9 Transport Encoding.

3 Overview
This section gives an overview of the syntax, transport requirements, and the organization of this document.

3.1 Syntax Overview

The syntax of this standard consists of hierarchical layers – sequence, entry-point, picture, slices, macroblocks (MB),
and blocks. A picture is decomposed into macroblocks, each of which consists of four blocks. A slice is one or more
contiguous rows of macroblocks. An entry-point provides random access to a particular picture. The standard specifies
a syntax and decoding process both for progressive and interlace video. Interlaced pictures may be coded as a single

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 2

frame, or as two fields. Progressive picture shall be coded as a single frame. Both progressive and interlace picture
may be mixed in the same sequence. Each picture may be coded as an I-picture, or as a P-picture, or as a B-picture.
There are three profiles in VC-9: simple, main and advanced.

3.2 Decoding Process Overview
An overview of the decoding process, as defined in this document, is shown in Figure 1. The parts of the process, with
the exception of Out-of-Loop Processing, must be performed as described in this document to provide successful
decoding of the compressed bit stream. Non-conforming implementations of in-loop processes can create errors in the
reconstructed pictures which will be exacerbated by the temporal prediction loop.

Bit-stream
Parsing

Overlap
Smooth &
Loop Filter

Decoded
Frame

Buffer
(1-frame delay)

Inv.
VLC

Inv
Quant

Inv
Transf

Pred
Inv.
VLC

Motion
Compensation

½ pel interp

4MV

¼ pel interp

Intensity
Comp.

&
Range

Re-mapping

Out-of-Loop
Processing

Post-filtering

Color Conv.

Re-sizing

Implementation-
specific

Conforming
Implementation

Figure 1: Decoding Process Block Diagram

Out-of-loop processing may be assisted by information carried in the compressed bit stream (e.g. display aspect ratio or
post-filtering level). However, because the effect of such processing does not propagate in the prediction loop (i.e.
errors do not magnify through feedback), and the implementation of such processing may vary depending on the
architecture of the overall system implementation, the normative definition of these out-of-loop processes is beyond the
scope of this document.

3.3 Transport Requirements (Normative)
The elementary stream of this standard shall be encoded into some transport layer, such as MPEG-2 and ASF. For
simple and main profiles of this standard, certain syntax elements of the video stream shall be communicated as meta-
data to the decoder by the transport layer. These meta-data elements are: a) coded width and coded height of video in
simple and main profiles, b) levels corresponding to simple and main profiles, and c) pointer to the coded bitstream,
and its size for coded picture in simple/main profiles. In advanced profile, the coded width and height of video are
communicated to the decoder by the transport layer if the syntax element PIC_SIZE_FLAG = 0 in the sequence
header. For more information on the communication of VC-9 syntax elements as meta-data via the transport layer, see
[RP].

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 3

3.4 Document structure
Section Error! Reference source not found. presents notation and definition of terms used in this document. Section
Error! Reference source not found. describes the input source format, and the hierarchical elements of the syntax.
Section Error! Reference source not found. describes the syntax and semantics of the sequence and entry-point layer.
Section Error! Reference source not found. describes the syntax and semantics of the picture, slice, macroblock, and
block layers of a progressive picture. Section Error! Reference source not found. describes the decoding process of a
progressive picture. Section Error! Reference source not found. describes the syntax and semantics of the picture,
slice, macroblock and block layers of an interlace-coded picture. Section Error! Reference source not found.
describes the decoding process of an interlace picture. In sections Error! Reference source not found. and Error!
Reference source not found., the interlace picture coded as two fields is described first followed by the interlace
picture coded as a frame.

4 Notation
The following notation is used in this document.

4.1 Compliance Notation

As used in this document, the capitalized keywords ‘shall’ and ‘shall not’ denote mandatory provisions of the
specification. The capitalized keyword ‘should’ is used to indicate a provision that is recommended but not mandatory.
The capitalized keyword ‘may’ denotes a feature whose presence does not preclude compliance; that may or may not
be present at the option of the implementer.

4.2 Arithmetic Operators
+ Addition.

− Subtraction (as a binary operator) or negation (as a unary operator).

++ Increment.

− − Decrement.

* Multiplication.

/ Integer division with truncation towards zero. For example, 7/4 and −7/−4 are
truncated to 1 and −7/4 and 7/−4 are truncated to −1.

// Integer division with rounding to the nearest integer. Half-integer values are rounded
away from zero unless otherwise specified. For example 3//2 is rounded to 2, and -3//2
is rounded to -2.

Rest of the line is a comment.

| | Absolute value.

 | x | = x , when x > 0

 | x | = 0, when x == 0

 | x | = −x, when x < 0

% Modulus operator. Defined only for positive numbers.

Sign() Sign.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 4

 Sign(x) = 1, when x >= 0

 Sign(x) = −1, when x < 0

INT () Truncation to integer operator. Returns the integer part of the real-valued argument.

NINT () Nearest integer operator. Returns the nearest integer value to the real-valued
argument. Half-integer values are rounded away from zero.

CLIP () CLIP(n) = 255 if n > 255, CLIP(n) = 0 if n < 0, CLIP(n) = n otherwise

max Maximum of the arguments.

min Minimum of the arguments.

√ Square root.

log2 Logarithm to base 2.

median3
()

Median of 3 values (see section 4.9 for definition)

median4
()

Median of 4 values (see section 4.9 for definition)

4.3 Logical operators
|| Logical OR.

&& Logical AND.

! Logical NOT

 TRUE/FALSE Convention: The syntax uses the convention that a variable or expression evaluating to a non-
zero value is equivalent to a condition that is TRUE and a variable or expression evaluating to a zero value
is equivalent to a condition that is FALSE.

4.4 Relational operators
> Greater than.

>= Greater than or equal to.

< Less than.

<= Less than or equal to.

== Equal to.

!= Not equal to.

4.5 Bitwise operators
A twos complement number representation is assumed where the bitwise operators are used.

& AND

| OR

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 5

^ XOR.

>> Shift right with sign extension.

<< Shift left with zero fill.

4.6 Assignment
= Assignment operator.

4.7 Mnemonics
The following mnemonics are defined to describe the different data types used in the coded bit stream.

uimsbf Unsigned integer, most significant bit first.

vlclbf Variable length prefix code, left bit first, where "left" refers to the order in which the
VLC codes are written.

VLC Variable-length code

FLC Fixed-length code

4.8 Bitstream Parsing Operations
The pseudo-code examples use the following bitstream parsing operations

get_bits(n) Reads n bits from the bitstream and returns the value. get_bits(0) is defined to be
zero.

vlc_decode() Decodes the next variable-length codeword in the bitstream and returns the
decoded symbol

4.9 Definition of Median3 and Median4 Functions
The functions median3() and median4() are used in some of the pseudocode examples in this spec. The functions
median3 and median4 are computed as illustrated in the following pseudocode examples.

median3 (a, b, c)

{

 if (a > b)

{

 if (b > c)

 median = b

 else if (a > c)

 median = c

 else

 median = a

 }

 else if (a > c)

 median = a

 else if (b > c)

 median = c

 else

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 6

 median = b

 return median

}

median4 (a, b, c, d)

{

max = min = a

 if (b > max)

 max = b

 else if (b < min)

 min = b

 if (c > max)

 max = c

 else if (c < min)

 min = c

 if (d > max)

 max = d

 else if (d < min)

 min = d

median = (a + b + c + d - max - min) / 2

return median

}

4.10 Definition of Terminology
For the purposes of this standard, the following definitions apply.

access unit : A coded representation of a single picture in a VC-9 elementary stream.

AC coefficient: Any transform coefficient for which the frequency in one or both dimensions is non-zero.

B-field picture: A field structure B-Picture.

B-frame picture: A frame structure B-Picture.

B-picture; bidirectionally predictive-coded picture: A picture that is coded using motion compensated

prediction from past and/or future reference fields or frames.

backward compatibility: A newer coding standard is backward compatible with an older coding standard if decoders
designed to operate with the older coding standard are able to continue to operate by decoding all or part of a bitstream
produced according to the newer coding standard.

backward motion vector: A motion vector that is used for motion compensation from a reference frame or

reference field at a later time in display order.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 7

backward prediction: Prediction from the future reference frame (field).

bitstream: An ordered series of bits that forms the coded representation of the data.

bitrate: The rate at which the coded bitstream is delivered from the storage medium to the input of a decoder.

block: An 8-row by 8-column matrix of samples, or 64 transform coefficients.

bottom field: One of two fields that comprise a frame. Each line of a bottom field is spatially located

immediately below the corresponding line of the top field.

byte aligned: A bit in a coded bitstream is byte-aligned if its position is a multiple of 8 bits from the first bit in the
stream.

byte: Sequence of 8 bits.

channel: A digital medium that stores or transports a bitstream.|

chrominance component: A matrix, block or single sample representing one of the two colour difference signals
related to the primary colours in the manner defined in the bitstream. The symbols used for the chrominance signals
are U and V.

coded picture: A coded picture is made of a picture header, the optional extensions immediately following it, and the
following picture data. A coded picture may be a coded frame or a coded field.

coded video bitstream: A coded representation of a series of one or more pictures.

coded order: The order in which the pictures are transmitted and decoded. This order is not necessarily the same as
the display order.

coding parameters: The set of user-definable parameters that characterise a coded video bitstream.

component: A matrix, block or single sample from one of the three matrices (luminance and two chrominance) that
make up a picture.

compression: Reduction in the number of bits used to represent an item of data.

DC coefficient: The transform coefficient for which the frequency is zero in both dimensions.

decoder: An embodiment of a decoding process.

decoding process: The process defined in VC-9 whereby a serialized bitstream is converted to an array of 8-bit YUV
samples with 4:2:0 color subsampling. In other words, the decoding algorithm. The VC-9 Decoding Process does
not include the display rendering process, which may convert these samples to images in another color space (such as
RGB), may apply format specific black and white levels, color primaries, YUV matrix coefficients, pixel aspect ratios,
etc., and may display the images with frequency and timing different from the sampled rate.

dequantisation: The process of rescaling the quantised transform coefficients after their representation in the
bitstream has been decoded and before they are presented to the inverse transform.

display order: The order in which the decoded pictures are displayed. Normally this is the same order in which they
were presented at the input of the encoder.

display process: The (non-normative) process by which reconstructed frames are displayed.

encoder: An embodiment of an encoding process.

encoding (process): A process, that reads a stream of input pictures and produces a valid coded bitstream as.

entry-point: A point in the bitstream that offers random access.

field: For an interlaced video signal, a "field" is the assembly of alternate lines of a frame. Therefore an interlaced
frame is composed of two fields, a top field and a bottom field.

forbidden: The term "forbidden" when used in the clauses defining the coded bitstream indicates that the value shall
never be used.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 8

forward motion vector: A motion vector that is used for motion compensation from a reference frame or reference
field at an earlier time in display order.

forward prediction: Prediction from the past reference frame (field).

frame: A frame contains lines of spatial information of a video signal. For progressive video, these lines contain
samples starting from one time instant and continuing through successive lines to the bottom of the frame. For
interlaced video, a frame consists of two fields, a top field and a bottom field. One of these fields will commence one
field period later than the other.

frame rate: The rate at which frames are output from the decoding process.

future reference frame (field): A future reference frame (field) is a reference frame (field) that occurs at a later time
than the current picture in display order.

frame re-ordering: The process of re-ordering the reconstructed frames when the coded order is different from the
display order. Frame re-ordering occurs when B-frames are present in a bitstream. There is no frame re-ordering when
decoding low delay bitstreams.

header: A block of data in the coded bitstream containing the coded representation of a number of data elements
pertaining to the coded data that follow the header in the bitstream.

inter coding: Coding of a macroblock or picture that uses information both from itself and from macroblocks and
pictures occurring at other times.

interlace: The property of conventional television frames where alternating lines of the frame representdifferent
instances in time. In an interlaced frame, one of the field is meant to be displayed first. This field is called the first
field. The first field may be the top field or the bottom field of the frame.

I-field picture: A field structure I-Picture.

I-frame picture: A frame structure I-Picture.

I-picture; intra-coded picture: A picture coded using information only from itself.

intra coding: Coding of a macroblock or picture that uses information only from that macroblock or picture.

level: A defined set of constraints on the values which may be taken by the parameters (such as bit rate and buffer size)
within a particular profile. A profile may contain one or more levels. Levels are hierarchical. A bitstream compliant to
a particular combination of level and profile, is compliant to all higher levels at the same profile.

In a different context, level is the absolute value of a non-zero coefficient (see "run").

luminance component: A matrix, block or single sample representing a monochrome representation of the signal and
related to the primary colours in the manner defined in the bitstream. The symbol used for luminance is Y.

macroblock: The four 8 by 8 blocks of luminance data and the two corresponding 8 by 8 blocks of chrominance data
coming from a 16 by 16 section of the luminance component of the picture.

motion compensation: The use of motion vectors to improve the efficiency of the prediction of sample values. The
prediction uses motion vectors to provide offsets into the past and/or future reference frames or reference fields
containing previously decoded sample values that are used to form the prediction error.

motion estimation: The process of estimating motion vectors during the encoding process.

motion vector: A two-dimensional vector used for motion compensation that provides an offset from the coordinate
position in the current picture or field to the coordinates in a reference frame or reference field.

opposite parity: The opposite parity of top is bottom, and vice versa.

P-field picture: A field structure P-Picture.

P-frame picture: A frame structure P-Picture.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 9

P-picture; predictive-coded picture: A picture that is coded using motion compensated prediction from past
reference fields or frame.

parameter: A variable within the syntax which may take one of a range of values. A variable which may take one of
only two values is called a flag.

parity (of field): The parity of a field may be top or bottom.

past reference frame (field): A past reference frame (field) is a reference frame (field) that occurs at an earlier time
than the current picture in display order.

picture: Source, coded or reconstructed image data. A source or reconstructed picture consists of three rectangular
matrices of 8-bit numbers representing the luminance and two chrominance signals. For progressive video, a picture is
identical to a frame, while for interlaced video, a picture may refer to a frame, or the top field or the bottom field of the
frame depending on the context.

prediction: The use of a predictor to provide an estimate of the sample value or data element currently being decoded.

prediction error: The difference between the actual value of a sample or data element and its predictor.

profile: A defined subset of the syntax of the VC-9 standard, with a specific set of coding tools, algorithms, and syntax
associated with it. There are three profiles in VC-9: simple, main and advanced. Note that the profiles in VC-9 are
not heirarchical. Main profile is not a subset of advanced profile, nor is it a superset.

progressive: The property of film frames where all the samples of the frame represent the same instances in time.

random access: A random access point in the bitstream is defined by the following guarantee: If decoding begins at
this point, there will be no decoding dependency on any data preceding this point, and all frames needed for display
after this point are also present in the decoding sequence after this point. A random access point is also called an
entry-point.

range mapping: The process of rescaling decoded pixel values in advanced profile. Luminance and chrominance
values may be scaled differently, and the coefficients used for scaling are transmitted in the entry point header. This
process is outside the prediction loop, and is performed as the last stage in decoding. This technique can be used to
reduce the bitrate.

range reduction: The process of rescaling decoded pixel values in main profile. Luminance and chrominace values
are scaled by a factor of 2, if range reduction is signaled for that picture. This process is part of the prediction loop.
This technique can be used to reduce the bit rate.

reconstructed picture: A reconstructed picture is obtained by decoding a coded picture. A reconstructed picture is
either a reconstructed frame (when decoding a frame picture), or one field of a reconstructed frame (when decoding a
field picture). If the coded picture is a field picture, then the reconstructed picture is the top field or the bottom field of
the reconstructed frame.

re-ordering delay: A delay in the decoding process that is caused by frame re-ordering.

reserved: The term "reserved" when used in the clauses defining the coded bitstream, indicates that the value may be
used in the future for SMPTE defined extensions.

run: The number of zero coefficients preceding a non-zero coefficient, in the scan order. The absolute value of the
non-zero coefficient is called "level".

saturation: Limiting a value that exceeds a defined range by setting its value to the maximum or minimum of the
range as appropriate.

skipped macroblock: A macroblock for which no data is encoded.

slice: A consecutive series of macroblock rows in a picture, which are encoded as a single unit.

source; input: Term used to describe the video material or some of its attributes before encoding.

start codes (system and video): 32-bit codes embedded in that coded bitstream that are unique.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 10

stuffing bytes: Zero-byte code-words that may be inserted into the coded bitstream, before a start-code, and after
flushing bits, that are discarded in the decoding process. Their purpose is to increase the bitrate of the stream which
would otherwise be lower than the desired bitrate.

top field: One of two fields that comprise a frame. Each line of a top field is spatially located immediately above the
corresponding line of the bottom field.

top layer: The topmost layer (with the highest layer_id) of a scalable hierarchy.

variable bitrate: Operation where the bitrate varies with time during the decoding of a coded bitstream.

variable length coding (VLC): A reversible procedure for coding that assigns shorter code-words to frequent events
and longer code-words to less frequent events.

Video Codec 9 (VC-9): This is the name of the standard described here.

video buffering verifier (VBV): A hypothetical decoder that is conceptually connected to the output of the encoder.
Its purpose is to provide a constraint on the variability of the data rate that an encoder or editing process may produce.

video sequence: The highest syntactic structure of coded video bitstreams. It contains a series of one or more coded
frames.

zigzag scanning order: A specific sequential ordering of the transform coefficients from (approximately) the lowest
spatial frequency to the highest.

4.11 Guide to Interpreting Syntax Diagrams and Syntax Elements

A guide for interpretation of the diagrams consists of the following:

1. Arrow paths show the possible flows of syntax elements. Any syntax element which has zero length is considered
absent for arrow path diagramming

2. Abbreviations and semantics for each syntax element are as defined in later clauses.

3. Syntax elements shown with square-edged boundaries indicate fixed-length syntax elements; those with rounded
boundaries indicate variable-length syntax elements and those with a rounded boundary within an outer rounded
boundary indicate a syntax element made up of simpler syntax elements which are elaborated on in another
section.

4. A fixed-length syntax element is defined to be a syntax element for which the length of the syntax element is not
dependent on the data in the content of the syntax element itself. The length of this syntax element is either
always the same, or is determined by the prior data in the syntax flow.

The term “layer” is used to refer to any part of the syntax that may be understood and diagrammed as a distinct entity.
The next-lower layer element in a layer diagram is indicated by a rectangle within a rectangle.

It is often convenient to denote the elements in binary representation. To avoid confusion with decimal representation,
whenever a number is expressed in binary format, it is enclosed in square brackets.

Unless specified otherwise, the most significant bit is transmitted first. This is bit 1 and is the leftmost bit in the code
tables in this Recommendation. Unless specified otherwise, all unused or spare bits are set to “0”. All values of
syntax not explicitly defined in this document are, by default, reserved for future use.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 11

5 Source Coder/Decoder

5.1 Progressive Coding Mode

5.1.1 Input/output Format

Figure 2 below defines the YUV 4:2:0 sampling grid, which is the input/output format. The figure also shows the
spatial relationship between the luma and chroma samples.

Figure 2: 4:2:0 Luma and chroma sample horizontal and vertical positions

5.1.2 Hierarchical Elements

The syntax of this standard consists of hierarchical layers – sequence, entry-point, picture, slices, macroblocks (MB),
and blocks. In the advanced profile, an optional entry-point layer may be present between the sequence and picture
layers to signal a random access in the bitstream. Further, in the advanced profile, an optional slice layer, may be
present between the picture layer and the macroblock layer. A slice is defined to contain one or more contiguous rows
of macroblocks in their original left-to-right order. Note that a slice always begins at the first macroblock of a row,
and ends at the last macroblock of the same or another row. The entry-point and slice layers are present only in
advanced profile.

Figure 3 illustrates the picture, macroblock, slice and block layers.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 12

Figure 3: Coding Hierarchy showing Picture, Slice, Macroblock and Block layers

5.1.3 Coding Description (Informative)

This section is not an integral part of this standard.

The compression process uses block-based motion predictive coding to reduce temporal redundancy and transform
coding to reduce spatial redundancy. Figure 4 and Figure 5 illustrate the basic steps used to compress the video data in
the VC-9 compression algorithm.

Picture

Macroblock

1 2 3 4 5 6
Block

Y Cb Cr

Slice1

Slice2

Slice3

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 13

Figure 4: Coding of Intra blocks

Motion vector
(specifies

displacement of
predicted block in
reference frame)

Current 8x8 block

MVx, MVy
Motion

Estimation

Predicted 8x8 block

Top 8x4
 block

Bottom 8x4
Error

.......

.......

Run Level Last

Run Level Last

Transform/
Quantize

Zig-zag
sca

Transform/
Quantize

Zig-zag
sca

RL

RL

VLE

VLE

Error

Quantiz

Transform

Predicted
 Quantized Trans

DC VLE

DC

AC

....
zig-zag scan

run level

8x8 pixel block 8x8 Transform Coeffs

RLE AC VLE

Quantized Trans Coeffs

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 14

Figure 5: Coding of Inter blocks

5.2 Interlace Coding Mode

5.2.1 Input/Output Format for 4:2:0 Interlace

Figure 2 shows the spatial relationship between the luma and chroma samples in the YUV 4:2:0 format. Figure 6
shows the relationship between vertical sample position and sampling time instant. Note that Figure 6 does not show
the spatial relationship between horizontal and vertical sampling positions.

Figure 6: 4:2:0 Luma and chroma temporal and vertical sample positions shown relative to sampling time
instant

(where from left to right is shown a top field, bottom field, top field, and bottom field)

5.3 Decoder Limitations

5.3.1 Minimum and maximum sizes

For progressive frames, the frame height and frame width shall be an multiple of 2. For interlaced frames, the frame
height shall be a multiple of 4, and the frame width shall be a multiple of 2. Note that the codec works with 16x16
pixels of luminance component per MB, and thus the internal frame dimensions used in the codec are multiples of 16.
The internal luma arrays used for decoding the video shall have dimensions of 16 * ((‘frame height’ + 15) / 16) rows
by 16 * ((‘frame_width’ + 15) / 16) columns. The internal chroma arrays used for decoding the video shall have
dimensions half as much as the luma arrays. Note that all decoding operations use the internal array size, but the
output of the decoder is the cropped array obtained by taking the first rows 0 to ‘frame height’ - 1 and columns 0 to
‘frame width’ - 1 out of the internal luma array, and by taking the first rows 0 to ‘frame height’/2 -1 and columns 0 to

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 15

‘frame width’ -1 out of the internal chroma array. The maximum dimensions of the frame are limited by the target
profile and level of the bitstream as listed in Annex D.

5.3.2 Maximum size constraint on compressed bits

A valid VC-9 bitstream shall satisfy the following constraint imposed on the maximum size (in bits) of compressed
data corresponding to any single row of macroblocks.

The data size corresponding to any macroblock row in VC-9 shall not exceed the greater of the two limits: (i) 6144
bits, and (ii) 1536 bits times the number of macroblocks in the horizontal direction.

Compressed data corresponding to a macroblock row is defined to contain all the contiguous entropy coded
information required to decode the entire row of macroblocks, subject to availability of causal information from the
preceding macroblock row, and frame, field or slice-level header data. Therefore, the macroblock row contains –
besides the coded transform coefficients – motion vectors, and macroblock header elements such as the coded block
pattern and field/frame coding type.

Bitplane coding, if used in a mode other than the raw mode, is assumed to be part of the header and is therefore
outside of the constraint. In the raw mode, bits used in coding macroblock information such as 1/4MV are to be
included in the macroblock row size calculation.

Slice header information, where present, is not included in the calculation of the macroblock row data size. Any zero-
valued stuffing bytes, and start-codes, are also not included in the macroblock row data size.

The following three examples illustrate this constraint:

Example 1 – Frame size 300×200, coded as progressive: Number of horizontal macroblocks is ceil(300/16) =
19. Maximum compressed data size of macroblock row = max (6144, 19×1536) =29184 bits.

Example 2 – Frame size 720×480, coded as interlace: Number of horizontal macroblocks is ceil(720/16) =
45. Maximum compressed data size of macroblock row = max (6144, 45×1536) = 69120 bits.

Example 3 – Frame size 40×40, coded as progressive: Number of horizontal macroblocks is ceil(40/16) = 3.
Maximum compressed data size of macroblock row = max (6144, 3×1536) = 6144 bits.

6 Sequence And Entry-Point Bitstream Syntax and Semantics
The bitstream syntax and semantics of the sequence and entry-point layer are described in this section.

6.1 Sequence-level Syntax and Semantics
A sequence-level header contains sequence-level parameters used to decode the sequence of compressed pictures. In
simple and main profiles, this header shall be communicated to the decoder by the transport layer. In the advanced
profile, this header is part of the video data bitstream and its presence is subject to the rules described in Annex G.
Figure 7 shows the bitstream elements that make up the sequence layer for the simple and main profiles. Figure 8
shows the bitstream elements that make up the sequence header for the advanced profile.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 16

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 17

Figure 7: Syntax diagram for the sequence layer bitstream for simple and main profiles.

PROFILE

LOOPFILTER

FASTUVMC

EXTENDED_MV

DQUANT

VSTRANSFORM

OVERLAP

MAXBFRAMES

QUANTIZER

POSTPROCFLAG

BROADCAST

INTERLACE

TFCNTRFLAG

FINTERPFLAGLEVEL

CHROMAFORMAT

FRMRTQ_POSTPROC

BITRTQ_POSTPROC

PIC_HORIZ_SIZE

PIC_VERT_SIZE

ASPECT_RATIO

DISP_SIZE_FLAG

DISP_HORIZ_SIZE

DISP_VERT_SIZE

ASPECT_RATIO_FLAG

PIC_SIZE_FLAG

FRAMERATE

FRAMERATEFLAG

COLOR_PRIM

COLOR_FORMAT_FLAG

TRANSFER_CHAR

MATRIX_COEF

HRD_PARAM

HRD_PARAM_FLAG

RESERVED

EXTENDED_DMV

PANSCANFLAG

Figure 8: Syntax diagram for the sequence layer bitstream for the Advanced Profile

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 18

The following tables show the syntax elements of the sequence layer.

Table 1: Sequence layer bitstream for Simple and Main Profile

SEQUENCE LAYER() { Number of bits

 PROFILE 2

 RES_SM 2

 FRMRTQ_POSTPROC 3

 BITRTQ_POSTPROC 5

 LOOPFILTER 1

 RES_X8 1

 MULTIRES 1

 RES_FASTTX 1

 FASTUVMC 1

 EXTENDED_MV 1

 DQUANT 2

 VSTRANSFORM 1

 RES_TRANSTAB 1

 OVERLAP 1

 SYNCMARKER 1

 RANGERED 1

 MAXBFRAMES 3

 QUANTIZER 2

 FINTERPFLAG 1

 RES_RTM_FLAG 1

}

 Table 2: Sequence layer bitstream for Advanced Profile

SEQUENCE LAYER() { Number of bits

 PROFILE 2

 LEVEL 3

 CHROMAFORMAT 2

 FRMRTQ_POSTPROC 3

 BITRTQ_POSTPROC 5

 LOOPFILTER 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 19

 FASTUVMC 1

 EXTENDED_MV 1

 DQUANT 2

 VSTRANSFORM 1

 OVERLAP 1

 MAXBFRAMES 3

 QUANTIZER 2

 POSTPROCFLAG 1

 BROADCAST 1

 INTERLACE 1

 TFCNTRFLAG 1

 FINTERPFLAG 1

 PANSCANFLAG 1

 RESERVED 1

 if (EXTENDED_MV == 1) {

 EXTENDED_DMV 1

 }

 PIC_SIZE_FLAG 1

 if (PIC_SIZE_FLAG == 1) {

 PIC_HORIZ_SIZE 12

 PIC_VERT_SIZE 12

 DISP_SIZE_FLAG 1

 if (DISP_SIZE_FLAG == 1) {

 DISP_HORIZ_SIZE 14

 DISP_VERT_SIZE 14

 }

 ASPECT_RATIO_FLAG 1

 if (ASPECT_RATIO_FLAG == 1) {

 ASPECT_RATIO 4

 if (ASPECT_RATIO == ‘15’) {

 ASPECT_HORIZ_SIZE 8

 ASPECT_VERT_SIZE 8

 }

 }

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 20

 FRAMERATEFLAG 1

 if (FRAMERATEFLAG == 1) {

 FRAMERATEIND 1

 if (FRAMERATEIND == 0) {

 FRAMERATENR 8

 FRAMERATEDR 4

 } else {

 FRAMERATEEXP 16

 }

 }

 COLOR_FORMAT_FLAG 1

 if (COLOR_FORMAT_FLAG ==1) {

 COLOR_PRIM 8

 TRANSFER_CHAR 8

 MATRIX_COEF 8

 }

 HRD_PARAM_ FLAG 1

 if (HRD_PARAM_ FLAG == 1) {

 HRD_parameters()

 }

}

6.1.1 Profile (PROFILE)(2 bits)

PROFILE is a 2-bit syntax element that specifies the encoding profile used to produce the sequence. The three
profiles are simple, main, and advanced profile, and they correspond to PROFILE = 0, 1, and 3, respectively. The
value 2 is forbidden. The simple profile is designed to ease the computation load for the codec by placing restrictions
on certain compression tools. The relation of profiles to coding tools is presented in Annex D.

6.1.2 Level (LEVEL)(3 bits)

LEVEL is a 3-bit syntax element that is present only if the PROFILE takes the value corresponding to advanced
profile, and specifies the encoding level for the clip in the advanced profile. The codes that are used to signal the levels
in the advanced profile are defined as follows:

LEVEL Meaning

000 L0

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 21

001 L1

010 L2

011 L3

100 L4

101-111 SMPTE Reserved

The levels for Simple and Main profile shall be communicated to the decoder by the Transport Layer. See Annex D on
the use of this syntax element.

6.1.3 Chroma Format (CHROMAFORMAT) (2 bits)

The CHROMAFORMAT syntax element is a 2-bit syntax element that is present only in advanced profile. It indicates
the chrominance/luminance format used to represent each picture. The formats are defined as follows:

CHROMAFORMAT Format

0 SMPTE Reserved

1 4:2:0

2 SMPTE Reserved

3 SMPTE Reserved

Only the value 1 corresponding to format 4:2:0 is permitted for this field. All other values are forbidden

6.1.4 Reserved (RES_SM)(2 bits)

RES_SM is a 2-bit syntax element, that is present only in simple and main profiles, and shall be set to zero. All other
values are forbidden.

6.1.5 Quantized Frame Rate for Post processing Indicator (FRMRTQ_POSTPROC)(3 bits)

FRMRTQ_POSTPROC is a 3-bit syntax element that signals the (quantized) frame rate information for controlling the
strength of post-processing operation. FRMRTQ_POSTPROC represents the value of quantized framerate from 2
frames/second to 30 frames/second in steps of 4. Note that this parameter does not affect the decoding of the bitstream
in any way.

6.1.6 Quantized Bit Rate for Post processing Indicator (BITRTQ_POSTPROC)(5 bits)

BITRTQ_POSTPROC is a 5-bit syntax element that signals the (quantized) bit rate information for controlling the
strength of post-processing operation. BITRTQ_POSTPROC represents the value of quantized bit rate from 32 kbps to
2016 kbps in steps of 64 kbps. Note that this parameter does not affect the decoding of the bitstream in any way.

6.1.7 Picture Size Indicator Flag (PIC_SIZE_FLAG)(1 bit)

PIC_ SIZE_FLAG is a 1-bit syntax element, present only in the advanced profile, that specifies if the size of the coded
picture is sent in the bitstream. If PIC_ SIZE_FLAG is 0, the size is to be communicated to the decoder by the
transport layer. If PIC_SIZE_FLAG is 1, the size is indicated by the following syntax elements.

6.1.7.1 Horizontal Size of Picture (PIC_HORIZ_SIZE)(12 bits)

PIC_HORIZ_SIZE is a fixed-length syntax element that is present only in advanced profile, and only if
PIC_SIZE_FLAG takes the value 1, and specifies the horizontal size of the coded picture in units of 2 pixels. This
syntax element is a 12-bit binary encoding of sizes ranging from 2 to 8192 in units of 2.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 22

6.1.7.2 Vertical Size of Picture (PIC_VERT_SIZE)(12 bits)

PIC_VERT_SIZE is a fixed-length syntax element that is present only in advanced profile, and only if
PIC_SIZE_FLAG takes the value 1, and specifies the vertical size of the coded picture in units of 2 pixels. This syntax
element is a 12-bit binary encoding of sizes ranging from 2 to 8192 in units of 2.

6.1.7.3 Display Size Indicator Flag (DISP_SIZE_FLAG)(1 bit)

DISP_ SIZE_FLAG is a 1-bit syntax element that is present only in advanced profile, and only if PIC_SIZE_FLAG
takes the value 1, and specifies if the display size of the picture is sent in the bitstream. If DISP_ SIZE_FLAG is 0, the
display size is taken to be identical to the coded picture size. If DISP_SIZE_FLAG is 1, the display size is indicated by
the following syntax elements.

6.1.7.3.1 Horizontal Display Size of Picture (DISP_HORIZ_SIZE)(14 bits)

DISP_HORIZ_SIZE is a 14-bit syntax element that is present only in advanced profile, and only if DISP_SIZE_FLAG
is 1 and PIC_SIZE_FLAG is 1, and specifies the horizontal display size of the picture in pixels. This syntax element is
a 14-bit binary encoding of sizes ranging from 1 to 16384.

6.1.7.3.2 Vertical Display Size of Picture (DISP_VERT_SIZE)(14 bits)

DISP_VERT_SIZE is a 14-bit syntax element that is present only in advanced profile, and only if DISP_SIZE_FLAG
is 1 and PIC_SIZE_FLAG is 1, and specifies the vertical display size of the picture in pixels. This syntax element is a
14-bit binary encoding of sizes ranging from 1 to 16384.

6.1.7.4 Aspect Ratio Indicator Flag (ASPECT_RATIO_FLAG)(1 bit)

ASPECT_RATIO_FLAG is a 1-bit syntax element that is present only in advanced profile, and only if
PIC_SIZE_FLAG takes the value 1, and specifies if the aspect ratio is sent in the bitstream. If
ASPECT_RATIO_FLAG is 0, the sample aspect ratio is not transmitted. If ASPECT_RATIO_FLAG is 1, the sample
aspect ratio of the sequence is transmitted in the following syntax element.

6.1.7.4.1 Aspect Ratio (ASPECT_RATIO)(4 bits)

ASPECT_RATIO is a 4-bit syntax element that is present only in advanced profile, and only if the
ASPECT_RATIO_FLAG is 1 and PIC_SIZE_FLAG is 1, and it specifies the Sample Aspect Ratio (SAR) for the
sequence. Note that the sample aspect ratio is often referred to as the pixel aspect ratio.

The table below specifies the value of the Sample Aspect Ratio for each value of the ASPECT_RATIO syntax element.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 23

ASPECT_RATIO SAR

0 Unspecified

1 1:1

2 12:11

3 10:11

4 16:11

5 40:33

6 24:11

7 20:11

8 32:11

9 80:33

10 18:11

11 15:11

12 64:33

13 160:99

14 SMPTE Reserved

15 Aspect width and height
transmitted.

If ASPECT_RATIO takes the value ‘15’, the aspect width and aspect height are transmitted as the following 2 syntax
elements.

6.1.7.4.2 Aspect Width (ASPECT_HORIZ_SIZE)(8 bits)

ASPECT_HORIZ_SIZE is an 8-bit syntax element that is present only in advanced profile, and only if
ASPECT_RATIO_FLAG is 1 and PIC_SIZE_FLAG is 1, and specifies the horizontal aspect size of the sample. This
syntax element is a binary encoding of sizes ranging from 1 to 256.

6.1.7.4.3 Aspect Height (ASPECT_VERT_SIZE)(8 bits)

ASPECT_VERT_SIZE is an 8-bit syntax element that is present only in advanced profile, and only if
ASPECT_RATIO_FLAG is 1 and PIC_SIZE_FLAG is 1, and specifies the vertical aspect size of the sample. This
syntax element is a binary encoding of sizes ranging from 1 to 256. The SAR is defined as the ratio of
ASPECT_HORIZ_SIZE to ASPECT_VERT_SIZE.

6.1.8 Frame Rate Flag (FRAMERATEFLAG)(1 bit)

The syntax element FRAMERATEFLAG is a 1-bit syntax element that is present only in advanced profile, and
indicates that frame rate information is present. If FRAMERATEFLAG = 0, no frame rate information is present. In
this case, the receiver may rely on the underlying protocol (such as Program Clock References in MPEG-2 transport)
to estimate the frame rate. If FRAMERATEFLAG = 1, frame rate information may be obtained from subsequent
syntax elements.

If the video sequence is signaled as progressive (either implicitly as when PROFILE syntax element takes the value
corresponding to simple or main profile, or explicitly as when the PROFILE syntax element is set to advanced profile
and the INTERLACE syntax element is set to zero), the period between two successive frames at the output of the
decoding process is the reciprocal of the frame rate indicated by the FRAMERATE syntax element.

If the video sequence is signaled as interlace, the period between two successive fields at the output of the decoding
process is half the reciprocal of the frame rate indicated by the FRAMERATE syntax element.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 24

6.1.8.1 Frame Rate Indicator (FRAMERATEIND)(1 bit)

The syntax element FRAMERATEIND is a 1-bit syntax element that is present only in advanced profile, and only if
FRAMERATEFLAG = 1. If FRAMERATEIND = 0, the frame rate is signaled by transmitting a numerator field
(FRAMERATENR) and a denominator field (FRAMERATEDR), and the ratio of the two fields is taken to be the
frame rate. If FRAMERATEIND = 1, the frame rate is signaled explicitly by a 16 bit FRAMERATEEXP field.

6.1.8.2 Frame Rate Numerator (FRAMERATENR)(8bits)

The syntax element FRAMERATENR is an 8-bit syntax element that is present only in advanced profile, and only if
FRAMERATEIND = 0 and FRAMERATEFLAG = 1, and it indicates the frame rate numerator of the encoded video
sequence. The following table gives the meaning of the FRAMERATENR syntax element.

FRAMERATENR Value of Frame Rate Numerator

0 Forbidden

1 24 * 1000

2 25 * 1000

3 30 * 1000

4 50 * 1000

5 60 * 1000

6-255 SMPTE Reserved

6.1.8.3 Frame Rate Denominator (FRAMERATEDR)(4 bits)

The syntax element FRAMERATEDR is a 4-bit syntax element that is present only in advanced profile, and only if
FRAMERATEIND = 0 and FRAMERATEFLAG = 1, and it indicates the frame rate denominator of the encoded
video sequence. The following table gives the meaning of the FRAMERATEDR syntax element. The frame rate of the
sequence is the ratio of the Frame rate Numerator to the Frame rate Denominator.

FRAMERATEDR Value of Frame Rate Denominator

0 Forbidden

1 1000

2 1001

3-15 SMPTE Reserved

6.1.8.4 Frame Rate Explicit (FRAMERATEEXP)(16bits)

The syntax element FRAMERATEEXP is a 16-bit syntax element that is present only in advanced profile, and only if
FRAMERATEIND = 1 and FRAMERATEFLAG = 1. FRAMERATEEXP explicitly indicates the frame rate of the
encoded video sequence. This element is used signal frame rate ranging from 0.03125 Hz to 2048 Hz in uniform steps
of 0.03125 Hz.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 25

6.1.9 Color Format Indicator Flag (COLOR_FORMAT_FLAG)(1 bit)

COLOR_FORMAT_FLAG is a 1-bit syntax element that is present only in advanced profile, and indicates if color
format information is present. If COLOR_FORMAT_FLAG is 1, color format information, such as Color Primaries,
Transfer Characteristics, and Matrix Coefficients, may be obtained from subsequent syntax elements.
COLOR_FORMAT_FLAG is 0, no color format information is present in the bitstream, and these syntax elements are
set to the default values specified below.

6.1.9.1 Color Primaries (COLOR_PRIM)(8 bits)

COLOR_PRIM is an 8-bit syntax element that is present only in advanced profile, and only if
COLOR_FORMAT_FLAG is 1, and describes the chromaticity coordinates of the color primaries. The table below
defines the syntax element values indicating the technical specifications where the chromaticity coordinates are
specified. The default value is Recommendation ITU-R BT. 709.

COLOR_PRIM Color Primaries Specification

0 Forbidden

1 Recommendation ITU-R BT.709-2, SMPTE 274M-
1995, and SMPTE296M-1997

primary x y
green 0.300 0.600
blue 0.150 0.060
red 0.640 0.330
white D65 0.3127 0.3290

2 Unspecified color primaries

3 SMPTE Reserved

4 Recommendation ITU-R BT.470-2 System M

primary x y
green 0.21 0.71
blue 0.14 0.08
red 0.67 0.33
white C 0.310 0.316

5
ITU-R Recommendation BT.470-2 System B, G;
EBU Tech. 3213 (1981)

primary x y
green 0.29 0.60
blue 0.15 0.06
red 0.64 0.33
white D65 0.3127 0.3290

6 SMPTE C Primaries from SMPTE RP145-1993.
SMPTE 293M-1996, SMPTE 240M-1995, and
SMPTE 170M-1994,

primary x y
green 0.310 0.595
blue 0.155 0.070
red 0.630 0.340
white (CIE D65) 0.3127 0.3290

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 26

7-255 SMPTE Reserved

6.1.9.2 Transfer Characteristics (TRANSFER_CHAR)(8 bits)

TRANSFER_CHAR is an 8-bit syntax element that is present only in advanced profile, and only if
COLOR_FORMAT_FLAG is 1, and describes the opto-electronic transfer characteristics of the source picture. The
table below defines the syntax element values indicating the technical specification where the transfer characteristics
are specified. The default value is Recommendation ITU-R BT.709.

TRANSFER_CHAR Transfer Characteristics Specification

0 Forbidden

1 Recommendation ITU-R BT.709, SMPTE 274M-
1995, SMPTE 296M-1997, SMPTE 293M-1996
and SMPTE 170M-1994 (Default)

V = 1.099 Lc
0.45 - 0.099 for 1>= Lc >= 0.018

V = 4.500 Lc for 0.018 > Lc >= 0

2 Unspecified Transfer Characteristics

3 SMPTE Reserved

4 Recommendation ITU-R BT.470-2 System M

Assumed display gamma 2.2

5 Recommendation ITU-R BT.470-2 System B,G

Assumed display gamma 2.8

6 SMPTE 170M

V = 1.099 Lc
0.45 - 0.099 for 1 >= Lc >=

0.018

V = 4.500 Lc for 0.018 > Lc >= 0

7 SMPTE 240M-1995

V = 1.1115 Lc
0.45 - 0.1115 for Lc>= 0.0228

V = 4.0 Lc for 0.0228> Lc

8 Linear Transfer Characteristrics

9-255 SMPTE Reserved

6.1.9.3 Matrix Coefficients (MATRIX_COEF)(8 bits)

MATRIX_COEF is an 8-bit syntax element that is present only in advanced profile, and only if
COLOR_FORMAT_FLAG is 1, and describes the matrix coefficients used to derive Y, Cb and Cr signals from the
color primaries. The table below defines the syntax element values indicating the technical specification where the
matrices are specified. The default value is Recommendation ITU-R BT. 709.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 27

MATRIX_COEF Matrix Coefficients Specification

0 Forbidden

1 Recommendation ITU-R BT.709-2 (1125/60/2:1
only), SMPTE 274M-1995 and SMPTE 296M-
1997.

KR = 0.2126; KB = 0.0722

2 Unspecified Matrix

3-5 SMPTE Reserved

6 Recommendation ITU-R BT.601-4,
Recommendation ITU-R BT.470-4 System B and
G, SMPTE 170M-1994 and SMPTE 293M-1996.

KR = 0.299; KB = 0.114

7 SMPTE 240M-1995

KR = 0.212; KB = 0.087

8-255 SMPTE Reserved

6.1.10 Hypothetical Reference Decoder Indicator Flag (HRD_PARAM_FLAG)(1 bit)

The HRD_PARAM_FLAG is a 1-bit flag that is present only in advanced profile, and indicates the presence of HRD
parameters in the bitstream. If this flag is 0, HRD parameters are not present. If HRD_PARAM_FLAG is 1, syntax
elements of the HRD are present as detailed next.

6.1.10.1 Hypothetical Reference Decoder (HRD)(Variable size)

The HRD syntax elements are present only in advanced profile, and only if HRD_PARAM_FLAG is 1, and are as
follows. See Annex C for additional details on the semantics and use of HRD parameters.

hrd_parameters() Descriptor Range

{

 HRD_NUM_LEAKY_BUCKETS FLC-5 (1, 32)

 BIT_RATE_EXPONENT FLC-4 (6,21)

 BUFFER_SIZE_EXPONENT FLC-4 (4,19)

 for(n=1; n <= HRD_NUM_LEAKY_BUCKETS; n++)

 {

 HRD_RATE[n] FLC-16 (1,216)

 HRD_BUFFER[n] FLC-16 (1,216)

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 28

HRD_NUM_LEAKY_BUCKETS – A number between 1 and 32 that specifies the number of leaky buckets N. The
value of N-1 is encoded as a fixed length code in binary using 5 bits.

HRD_RATE[n] and BIT_RATE_EXPONENT – These syntax elements define the peak transmission rate Rn in bits
per second for the nth leaky bucket. The mantissa of Rn is encoded in the syntax element HRD_RATE[n] using a
fixed-length code of 16 bits, and has the range from 1 to 216 . The base-2 exponent of Rn is encoded in the syntax
element BIT_RATE_EXPONENT in fixed length using 4 bits , and takes the range from 6 to 21.

The rates shall be ordered from smallest to largest, i.e., HRD_RATE[n] < HRD_RATE[n+1].

HRD_BUFFER[n] and BUFFER_SIZE_EXPONENT – These syntax elements define the buffer size Bn in bits for the
nth leaky bucket. The mantissa of Bn is encoded in the syntax element HRD_BUFFER[n], using a fixed length code of
16 bits, and has the range 1 to 216. The value of the base-2 exponent of Bn is encoded in the syntax element
BUFFER_SIZE_EXPONENT using a fixed length of 4 bits, and takes the range from 4 to 19.

The buffer sizes shall be ordered from largest to smallest, i.e., HRD_BUFFER[n] >= HRD_BUFFER[n+1].

6.1.11 Loop Filter (LOOPFILTER)(1 bit)

LOOPFILTER is a 1-bit syntax element that indicates whether loop filtering is enabled for the sequence. If
LOOPFILTER = 0, then loop filtering is not enabled. If LOOPFILTER = 1, then loop filtering is enabled. If the
PROFILE syntax takes the value corresponding to simple profile, the LOOPFILTER syntax element shall have the
value 0. See section 8.6 for a description of loop filtering.

6.1.12 Reserved Coding (RES_X8)(1 bit)

RES_X8 is a 1-bit syntax element that is present only in simple and main profiles, and shall be set to zero. The value 1
is forbidden.

6.1.13 Multiresolution Coding (MULTIRES)(1 bit)

MULTIRES is a 1-bit syntax element that is present only in simple and main profiles, and indicates whether the
frames may be coded at smaller resolutions than the specified frame resolution. Resolution changes are allowed only
on I pictures. If MULTIRES = 1, then the frame level RESPIC syntax element is present which indicates the
resolution for that frame. See sections 8.1.1.3 for a description of multiresolution decoding in I pictures.

6.1.14 Reserved (RES_FASTTX)(1 bit)

RES_FASTTX is a 1-bit syntax element that is present only in simple and main profiles, and shall be set to the value
1. The value 0 is forbidden.

6.1.15 FAST UV Motion Comp (FASTUVMC)(1 bit)

FASTUVMC is a 1-bit syntax element that controls the subpixel interpolation and rounding of chroma motion vectors.
If FASTUVMC = 1, then the chroma motion vectors that are at quarter pel offsets will be rounded to the nearest half
or full pel positions If FASTUVMC = 0, then no special rounding or filtering is done for chroma. See section 8.3.5.4.2
for details on how chroma motion vector computation is performed for the two cases. (Informative – The purpose of
this mode is speed optimization of the decoder).

FASTUVMC is always 1 for the Simple Profile.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 29

6.1.16 Extended Motion Vectors (EXTENDED_MV)(1 bit)

EXTENDED_MV is a 1-bit syntax element that indicates whether extended motion vectors is turned on (value 1) or
off (value 0). This bit is always set to zero for the Simple Profile. For the Main and Advanced Profiles, the extended
motion vector mode indicates the possibility of extended motion vectors in P and B pictures.

6.1.17 Extended Differential Motion Vector Range (EXTENDED_DMV)(1 bit)

EXTENDED_DMV is a 1-bit syntax element that is present in Advanced Profile sequence headers if
EXTENDED_MV = 1. This bit indicates whether extended differential motion vector range is signaled at the picture
layer for P and B pictures.

6.1.18 Macroblock Quantization (DQUANT)(2 bit)

DQUANT is a 2-bit syntax element that indicates whether or not the quantization step size may vary within a frame.
There are three possible values for DQUANT. If DQUANT = 0, then only one quantization step size (i.e. the frame
quantization step size) may be used per frame. If DQUANT = 1 or 2, then the quantization step size may vary
within the frame. In simple profile, DQUANT = 0. See section 7.1.1.29 for a description of DQUANT.

6.1.19 Variable Sized Transform (VSTRANSFORM)(1 bit)

VSTRANSFORM is a 1-bit syntax element that indicates whether variable-sized transform coding is enabled for the
sequence. If VSTRANSFORM = 0, then variable-sized transform coding is not enabled. If VSTRANSFORM = 1, then
variable-sized transform coding is enabled. See section 8.3.6.2 for a description of variable-sized transform coding.

6.1.20 Reserved (RES_TRANSTAB)(1 bit)

RES_TRANSTAB is a 1-bit syntax element that is present only in simple and main profiles, and shall be set to 0. The
value 1 is forbidden.

6.1.21 Overlapped Transform Flag (OVERLAP) (1 bit)

OVERLAP is a 1-bit flag that indicates whether Overlapped Transforms (Section 7.4) are used. If OVERLAP = 1,
then Overlapped Transforms are used, otherwise they are not used.

6.1.22 Syncmarker Flag (SYNCMARKER) (1 bit)

SYNCMARKER is a 1-bit flag that is present only in simple and main profiles, and indicates whether synchronization
markers may be present in the bitstream. If SYNCMARKER =1, then the markers may be present, otherwise they are
not present. See section 8.8 for description of synchronization markers.

6.1.23 Range Reduction Flag (RANGERED) (1 bit)

RANGERED is a 1-bit syntax element that is present only in simple and main profiles. RANGERED is always set to
zero in simple profile. In main profile, RANGERED indicates whether range reduction is used for each frame. If
RANGERED = 1, then there is a syntax element in each frame header (RANGEREDFRM) that indicates whether
range reduction is used for that frame. If RANGERED = 0, the syntax element RANGEREDFRM is absent, and range
reduction is not used.

6.1.24 Maximum Number of consecutive B frames (MAXBFRAMES) (3 bits)

MAXBFRAMES is a 3-bit syntax element that indicates the maximum number of consecutive B frames between I or P
frames. If MAXBFRAMES = 0, then there are no B frames in the sequence. If MAXBFRAMES is not equal to zero, B
Frames are present in the sequence. However, the actual non-zero value is only of informative value, and is not used in
the decoding process.

6.1.25 Quantizer Specifier (QUANTIZER) (2 bits)

QUANTIZER is a 2-bit syntax element that indicates the quantizer used for the sequence. The quantizer types are
encoded according to Table 3.

 Table 3: Quantizer specification

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 30

FLC Quantizer specification

00 Quantizer implicitly specified at frame level

01 Quantizer explicitly specified at frame level

10 Nonuniform quantizer used for all frames

11 Uniform quantizer used for all frames

6.1.26 Postprocessing Flag (POSTPROCFLAG) (1 bit)

POSTPROCFLAG is a 1-bit syntax element that is present only in advanced profile, and indicates at the sequence
level whether frame based post processing is used.

6.1.27 Broadcast Flag (BROADCAST) (1 bit)

BROADCAST is a 1-bit syntax element that is present only in advanced profile, and indicates if the interlace syntax
element flags TFF and RFF are present in advanced profile picture headers.

6.1.28 Interlace Content (INTERLACE) (1 bit)

INTERLACE is a 1-bit syntax element that is present only in the advanced profile. INTERLACE = 0 signals that the
source content is progressive. INTERLACE = 1 signals that the source content is interlaced. The individual frames
may still be coded using the progressive or interlace syntax when INTERLACE = 1. This bit controls the presence of
the TFF, RFF and RPTFRM syntax elements in the picture headers.

6.1.29 Frame Counter Flag (TFCNTRFLAG) (1 bit)

TFCNTRFLAG is a 1-bit syntax element that is present only in advanced profile. TFCNTRFLAG = 1 indicates that
the syntax element TFCNTR is present in the advanced profile picture headers. TFCNTRFLAG = 0 indicates that
TFCNTR is not present in the picture header.

6.1.30 Frame Interpolation Flag (FINTERPFLAG)(1 bit)

FINTERPFLAG is a 1-bit syntax element that indicates if the syntax element INTERPFRM is present in the picture
header. If FINTERPFLAG = 0 then INTERPFRM is not present in picture headers. If FINTERPFLAG = 1
INTERPFRM is present in picture headers.

6.1.31 Pan Scan Flag (PANSCANFLAG)(1 bit)

PANSCANFLAG is a 1-bit syntax element that is only present in the advanced profile, and indicates if the syntax
elements NUMPANSCANWIN, TOPLEFTX, TOPLEFTY, BOTRIGHTX and BOTRIGHTY are present in the bit
stream. If PANSCANFLAG = 0 then above elements are not present.

6.1.32 Reserved RTM Flag (RES_RTM_FLAG)(1 bit)

RES_RTM_FLAG is a 1-bit syntax element that is present only in simple and main profiles, and shall be set to 1. The
value 0 is forbidden.

6.1.33 Reserved Advanced Profile Flag (RESERVED)(1 bit)

RESERVED is a 1-bit syntax element that is present only in advanced profile, and shall be set to 1. The value 0 is
forbidden.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 31

6.2 Entry-Point Header Syntax and Semantics
An entry-point header is present only in advanced profile, and it signals a random access point for the bitstream. An
entry-point guarantees that subsequent pictures may be decoded if decoding begins from at this point. An entry-point
header contains syntax elements specifying the buffer fullness of the HRD leaky bucket. The syntax elements that
make up the entry-point layer are shown in Figure 9, and Table 4. The use of entry-point header is discussed in Annex
G.

Figure 9: Syntax diagram for the entry-point layer bitstream for the Advanced Profile

 Table 4: Entry-point layer bitstream for Advanced Profile

SEQUENCE LAYER() { Number of bits

 if (HRD_PARAM_ FLAG == 1) {

 hrd_fullness ()

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 32

 }

 RANGE_MAPY_FLAG 1

 if (RANGE_MAPY_FLAG == 1) {

 RANGE_MAPY 3

 }

 RANGE_MAPUV_FLAG 1

 if (RANGE_MAPUV_FLAG == 1) {

 RANGE_MAPUV 3

 }

 if (PANSCANFLAG == 1) {

 NUMPANSCANWIN 3

 }

}

6.2.1 HRD Buffer Fullness (HRD_FULLNESS)(Variable Size)

HRD_FULLNESS is a variable size syntax element that is present in the entry-point header only if the
HRD_PARAM_FLAG in the sequence header is set to to 1. If the HRD_PARAM_FLAG in the sequence header is set
to zero, HRD_FULLNESS syntax element is not present. See Annex C for additional details on the semantics and use
of HRD parameters.

hrd_fullness() Descriptor Range

{

 for(n=1; n <= HRD_NUM_LEAKY_BUCKETS; n++)

 {

 HRD_FULLNESS[n] FLC - 8 (0, 255)

 }

HRD_FULLNESS[n] – This syntax element defines the decoder buffer fullness as an upwards rounded fraction of the
buffer size Bn, in units of Bn/256. This element may take values in the range 1 to 256 and is encoded in binary using
the 8 bit values 0 through 255 to uniformly cover the range. See section 6.1.10.1 for more information on
HRD_NUM_LEAKY_BUCKETS and buffer size Bn.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 33

6.2.2 Range Mapping Luminance Flag (RANGE_MAPY_FLAG)(1 bit)

RANGE_MAPY_FLAG is a 1-bit flag. If RANGE_MAPY_FLAG is set to one, the syntax element RANGE_MAPY is
present. Otherwise, that syntax element is absent.

6.2.2.1 Range Mapping Luminance (RANGE_MAPY)(3 bits)

RANGE_MAPY is an 3-bit syntax element that is present only if RANGE_MAPY_FLAG = 1, and takes the value
from 0 to 7. If this syntax element is present, the luminance component of the decoded picture is scaled according to
the formula:

Y[n] = CLIP (((Y[n] – 128) * (RANGE_MAPY + 9) + 4) >> 3) + 128);

Note that this scaling is performed after all other decoding stages (including loop-filter) have been performed. Note
that RANGE_MAPY_FLAG is reset to zero at the beginning of the next sequence.

6.2.3 Range Mapping Chrominance Flag (RANGE_MAPUV_FLAG)(1 bit)

RANGE_MAPUV_FLAG is a 1-bit flag. If RANGE_MAPUV_FLAG is set to one, the syntax element
RANGE_MAPUV is present. Otherwise, that syntax element is absent.

6.2.3.1 Range Mapping Chrominance (RANGE_MAPUV)(3 bits)

RANGE_MAPUV is an 3-bit syntax element that is present only if RANGE_MAPUV_FLAG = 1, and takes the value
from 0 to 7. If this syntax element is present, the chrominance component of the decoded picture is scaled according to
the formula:

U[n] = CLIP (((U[n] – 128) * (RANGE_MAPUV + 9) + 4) >> 3) + 128);

V[n] = CLIP (((V[n] – 128) * (RANGE_MAPUV + 9) + 4) >> 3) + 128);

Note that this scaling is performed after all other decoding stages (including loop-filter) have been performed. Note
that RANGE_MAPUV_FLAG is reset to zero at the beginning of the next sequence.

6.2.4 Number of pan scan windows (NUMPANSCANWIN)(3 bits)

If PANSCANFLAG = 1, then NUMPANSCANWIN gives the number of pan scan windows being used in the
following pictures.

7 Progressive Bitstream Syntax and Semantics

7.1 Picture-level Syntax and Semantics
This section describes the syntax and semantics of the picture layer, slice layer, macroblock layer, and block layer of
the compressed stream, when the picture is coded in progressive mode. Note that the slice layer is present only in the
Advanced Profile bitstream. In the advanced profile, pictures and slices are always byte-aligned, and are transmitted in
an independent decodable unit (IDU) as described in Annex E. In the advanced profile, a new picture, or a slice, is
detected via start-codes as outlined in Annex E. In the main and simple profiles, a new picture is byte-aligned. The
pointer to the coded bitstream, and its size for each coded picture shall be communicated to the decoder by the
Transport Layer. In simple and main profiles, a picture whose coded size is less than or equal to one byte shall be
considered to be a skipped picture.

Figure 10 through Figure 25 show the bitstream elements that make up each layer.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 34

Figure 10: Syntax diagram for the Progressive I picture layer bitstream in simple/main profile

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 35

PTYPE

INTERPFRM

PQINDEX

HALFQP

PQUANTIZER

TRANSDCTAB

TRANSACFRM

TRANSACFRM2

MBLAYER

Picture Layer

(Progressive BI Main Profile)

FRMCNT

BF

MVRANGE

BFRACTION

Figure 11: Syntax diagram for the Progressive BI picture layer bitstream in main profile

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 36

FCM

TFCNTR

TFF

RFF

PTYPE

RPTFRM

INTERPFRM

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

CONDOVER

TRANSDCTAB

OVERFLAGS

TRANSACFRM

TRANSACFRM2

VOPDQUANT

MBLAYER

ACPRED

Picture Layer

(Progressive I Advanced Profile)

RNDCTRL

UVSAMP

TOPLEFTX, TOPLEFTY,

BOTRIGHTX, BOTRIGHTY

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 37

Figure 12: Syntax diagram for the Progressive I picture layer bitstream in advanced profile.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 38

FCM

TFCNTR

TFF

RFF

PTYPE

RPTFRM

INTERPFRM

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

CONDOVER

TRANSDCTAB

OVERFLAGS

TRANSACFRM

TRANSACFRM2

VOPDQUANT

MBLAYER

ACPRED

Picture Layer

(Progressive BI Advanced

Profile)

RNDCTRL

UVSAMP

PICERRCODING

TOPLEFTX, TOPLEFTY,

BOTRIGHTX, BOTRIGHTY

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 39

Figure 13: Syntax diagram for the Progressive BI picture layer bitstream in advanced profile.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 40

Figure 14: Syntax diagram for the Progressive P picture layer bitstream in Simple/Main Profile.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 41

FCM

TFCNTR

TFF

RFF

PTYPE

RPTFRM

INTERPFRM

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

MVTAB

CBPTAB

SKIPMB

TRANSACFRM

VOPDQUANT

MBLAYER

MVTYPEMB

Picture Layer

(Progressive P Advanced Profile)

TTMBF

TTFRM

TRANSDCTAB

MVMODE

LUMSCALE

LUMSHIFT

MVMODE2

MVRANGE

RNDCTRL

UVSAMP

TOPLEFTX,TOPLEFTY

BOTRIGHTX,BOTRIGHTY

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 42

 Figure 15: Syntax diagram for the Progressive P picture layer bitstream in Advanced Profile.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 43

MVTAB

CBPTAB

SKIPMB

TRANSACFRM

VOPDQUANT

MBLAYER

MVTYPEMB

Picture Layer

(Progressive B Main Profile)

TTMBF

TTFRM

TRANSDCTAB

DIRECTMB

PTYPE

INTERPFRM

PQINDEX

HALFQP

PQUANTIZER

FRMCNT

RANGEREDFRM

MVRANGE

BFRACTION

MVMODE

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 44

Figure 16: Syntax diagram for the Progressive B picture layer bitstream in Main Profile.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 45

FCM

TFCNTR

TFF

RFF

PTYPE

RPTFRM

INTERPFRM

BFRACTION

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

MVTAB

CBPTAB

SKIPMB

VOPDQUANT

MBLAYER

MVTYPEMB

Picture Layer

(Progressive B Advanced Profile)

TTMBF

TTFRM

TRANSDCTAB

MVMODE

MVRANGE

DIRECTMB

RNDCTRL

UVSAMP

TRANSACFRM

TOPLEFTX, TOPLEFTY,

BOTRIGHTX, BOTRIGHTY

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 46

Figure 17: Syntax diagram for the Progressive B picture layer bitstream in Advanced Profile.

PQDIFF

VOPDQUANT

DQUANT = 2

DQUANTFRM

DQPROFILE

DQSBEDGE

DQDBEDGE

DQUANT = 1

DQBILEVEL

ABSPQ

PQDIFF

ABSPQ

Figure 18: Syntax diagram for VOPDQUANT in picture header

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 47

Figure 19: Syntax diagram for for the Slice-Layer bitstream in the Advanced Profile

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 48

BLOCK LAYER

MB Layer

(I Picture Simple/Main Profile)

CBPCY

ACPRED

Figure 20: Syntax diagram for macroblock layer bitstream in Progressive I picture for simple/main profile

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 49

BLOCK LAYER

MB Layer

(I Picture Advanced Profile)

MQDIFF

ABSMQ

CBPCY

ACPRED

OVERFLAGMB

Figure 21: Syntax diagram for macroblock layer bitstream in progressive I picture for advanced profile

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 50

TTMB

MVDATA

BLOCK LAYER

MB LAYER

(P Picture)

BLKMVDATA

TTMB

CBPCY

BLOCK LAYER

1 MV Mode 4 MV Mode

HYBRIDPRED

HYBRIDPRED

HYBRIDPRED

Non-skipped MB Skipped MB

HYBRIDPRED

Non-skipped MB Skipped MB

ACPRED

SKIPMBBIT

MVMODEBIT

SKIPMBBIT

MVMODEBIT

SKIPMBBIT

MVMODEBIT

CBPCY

ABSMQ

MQDIFF

ABSMQ

MQDIFF

SKIPMBBIT

MVMODEBIT

ABSMQ

MQDIFF

ACPRED ACPRED

Figure 22: Syntax diagram for macroblock layer bitstream in Progressive-P picture for Simple/Main/Advanced
Profiles

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 51

Figure 23: Syntax diagram for macroblock layer bitstream in Progressive B picture for Main/Advanced Profiles

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 52

DCCOEF

DCCOEFESC

ACCOEF1

ESCMODE

ACCOEF2

LVLSIGN

ESCLR

ESCLVLSZ

ESCRUNSZ

ESCRUN

LVLSIGN2

ESCLVL

Block LAYER

(INTRA)

DCCOEF_EXTQUANT1

DCCOEF_EXTQUANT2

DCSIGN

Figure 24: Syntax diagram for the Intra-coded block layer bitstream in Progressive mode.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 53

Figure 25: Syntax diagram for the Inter-coded block layer bitstream in Progressive mode.

The following tables show the syntax elements of the picture-layer and slice-layer bitstream.

Table 5: Progressive I picture layer bitstream for Simple and Main Profile

PICTURE LAYER() { Number of bits

 if (FINTERPFLAG == 1) {

 INTERPFRM 1

 }

 FRMCNT 2

 if (RANGERED == 1) {

TTBL

ACCOEF1

ESCMODE

ACCOEF2

ESCLVLSZ

ESCRUNSZ

ESCRUN

LVLSIGN

ESCLVL

ESCLR

LVLSGN2

SUBBLKPAT

BLOCK LAYER

(INTER

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 54

 RANGEREDFRM 1

 }

 PTYPE Var. size or 1

 BF 7

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (EXTENDED_MV == 1) {

 MVRANGE Variable size Only M.P.

 }

 if (MULTIRES == 1) {

 RESPIC 2 Not B->I

 }

 TRANSACFRM Variable size

 TRANSACFRM2 Variable size

 TRANSDCTAB 1

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Table 6: Progressive BI picture layer bitstream for Main Profile

PICTURE LAYER() { Number of bits

 if (FINTERPFLAG == 1) {

 INTERPFRM 1

 }

 FRMCNT 2

 PTYPE Var. size or 1

 BFRACTION Var. size

 BF 7

 PQINDEX 5

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 55

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (EXTENDED_MV == 1) {

 MVRANGE Variable size

 }

 TRANSACFRM Variable size

 TRANSACFRM2 Variable size

 TRANSDCTAB 1

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Table 7: Progressive I picture layer bitstream for Advanced Profile

PICTURE LAYER() { Number of bits

 If (INTERLACE == 1)

 FCM Variable size

 PTYPE Variable size

 if (TFCNTRFLAG) {

 TFCNTR 8

 }

 if (BROADCAST) {

 if (INTERLACE == 0) {

 RPTFRM 2

 }

 else {

 TFF 1

 RFF 1

 }

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 56

 if (PANSCANFLAG) {

 For (i = 0; i < NUMPANSCANWIN; i++) {

 TOPLEFTX 16

 TOPLEFTY 16

 BOTRIGHTX 16

 BOTRIGHTY 16

 }

 }

 RNDCTRL 1

 UVSAMP 1

 if (FINTERPFLAG == 1) {

 INTERPFRM 1

 }

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (POSTPROCFLAG == 1) {

 POSTPROC 2

 }

 ACPRED Bitplane

 if (OVERLAP == 1 && ‘PQUANT conditions’) {

 CONDOVER Variable size

 if (CONDOVER == 11b) {

 OVERFLAGS Bitplane

 }

 }

 TRANSACFRM Variable size

 TRANSACFRM2 Variable size

 TRANSDCTAB 1

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 57

 }

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Table 8: Progressive BI picture layer bitstream for Advanced Profile

PICTURE LAYER() { Number of bits

 If (INTERLACE == 1)

 FCM Variable size

 PTYPE Variable size

 if (TFCNTRFLAG) {

 TFCNTR 8

 }

 if (BROADCAST) {

 if (INTERLACE == 0) {

 RPTFRM 2

 }

 else {

 TFF 1

 RFF 1

 }

 }

 if (PANSCANFLAG) {

 For (i = 0; i < NUMPANSCANWIN; i++) {

 TOPLEFTX 16

 TOPLEFTY 16

 BOTRIGHTX 16

 BOTRIGHTY 16

 }

 }

 RNDCTRL 1

 UVSAMP 1

 if (FINTERPFLAG == 1) {

 INTERPFRM 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 58

 }

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (POSTPROCFLAG == 1) {

 POSTPROC 2

 }

 ACPRED Bitplane

 if (OVERLAP == 1 && ‘PQUANT conditions’) {

 CONDOVER Variable size

 if (CONDOVER == 11b) {

 OVERFLAGS Bitplane

 }

 }

 TRANSACFRM Variable size

 TRANSACFRM2 Variable size

 TRANSDCTAB 1

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

 }

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Table 9: Progressive P picture layer bitstream for Simple and Main Profile

PICTURE LAYER() { Number of bits

 if (FINTERPFLAG == 1) {

 INTERPFRM 1

 }

 FRMCNT 2

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 59

 if (RANGERED == 1) {

 RANGEREDFRM 1

 }

 PTYPE Var. size or 1

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (EXTENDED_MV == 1) {

 MVRANGE Variable size Not S.P.

 }

 if (MULTIRES == 1) {

 RESPIC 2

 }

 MVMODE Variable size

 if (MVMODE == ’intensity compensation’) {

 MVMODE2 Variable size

 LUMSCALE 6

 LUMSHIFT 6

 }

 if (MVMODE == ‘Mixed-MV’ || (MVMODE == ‘Intensity
Compensation’ && MVMODE2 == ‘Mixed-MV’) {

 MVTYPEMB Bitplane

 }

 SKIPMB Bitplane

 MVTAB 2

 CBPTAB 2

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

 }

 if (VSTRANSFORM == 1) {

 TTMBF 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 60

 if (TTMBF == 1) {

 TTFRM 2

 }

 }

 TRANSACFRM Variable size

 TRANSDCTAB 1

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Table 10: Progressive P picture layer bitstream for Advanced Profile

PICTURE LAYER() { Number of bits

 If (INTERLACE == 1)

 FCM Variable size

 PTYPE Variable size

 if (TFCNTRFLAG) {

 TFCNTR 8

 }

 if (BROADCAST) {

 if (INTERLACE == 0) {

 RPTFRM 2

 }

 else {

 TFF 1

 RFF 1

 }

 }

 if (PANSCANFLAG) {

 For (i = 0; i < NUMPANSCANWIN; i++) {

 TOPLEFTX 16

 TOPLEFTY 16

 BOTRIGHTX 16

 BOTRIGHTY 16

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 61

 }

 RNDCTRL 1

 UVSAMP 1

 if (FINTERPFLAG == 1) {

 INTERPFRM 1

 }

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (POSTPROCFLAG == 1) {

 POSTPROC 2

 }

 if (EXTENDED_MV == 1) {

 MVRANGE Variable size

 }

 MVMODE Variable size

 if (MVMODE == ’intensity compensation’) {

 MVMODE2 Variable size

 LUMSCALE 6

 LUMSHIFT 6

 }

 if (MVMODE == ‘Mixed-MV’ || (MVMODE == ‘Intensity
Compensation’ && MVMODE2 == ‘Mixed-MV’) {

 MVTYPEMB Bitplane

 }

 SKIPMB Bitplane

 MVTAB 2

 CBPTAB 2

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 62

 if (VSTRANSFORM == 1) {

 TTMBF 1

 if (TTMBF == 1) {

 TTFRM 2

 }

 }

 TRANSACFRM Variable size

 TRANSDCTAB 1

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Table 11: Progressive B picture layer bitstream for Main Profile

PICTURE LAYER() { Number of bits

 if (FINTERPFLAG == 1) {

 INTERPFRM 1

 }

 FRMCNT 2

 if (RANGERED == 1) {

 RANGEREDFRM 1

 }

 PTYPE Var. size or 1

 BFRACTION Variable size

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (EXTENDED_MV == 1) {

 MVRANGE Variable size Not S.P.

 }

 MVMODE Variable size

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 63

 if (MVMODE == ‘Mixed-MV mode’) {

 MVTYPEMB Bitplane

 }

 DIRECTMB Bitplane

 SKIPMB Bitplane

 MVTAB 2

 CBPTAB 2

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

 }

 if (VSTRANSFORM == 1) {

 TTMBF 1

 if (TTMBF == 1) {

 TTFRM 2

 }

 }

 TRANSACFRM Variable size

 TRANSDCTAB 1

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Table 12: Progressive B picture layer bitstream for Advanced Profile

PICTURE LAYER() { Number of bits

 If (INTERLACE == 1)

 FCM Variable size

 PTYPE Variable size

 if (TFCNTRFLAG) {

 TFCNTR 8

 }

 if (BROADCAST) {

 if (INTERLACE == 0) {

 RPTFRM 2

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 64

 else {

 TFF 1

 RFF 1

 }

 }

 if (PANSCANFLAG) {

 For (i = 0; i < NUMPANSCANWIN; i++) {

 TOPLEFTX 16

 TOPLEFTY 16

 BOTRIGHTX 16

 BOTRIGHTY 16

 }

 }

 RNDCTRL 1

 UVSAMP 1

 if (FINTERPFLAG == 1) {

 INTERPFRM 1

 }

 BFRACTION Variable size

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (POSTPROCFLAG == 1) {

 POSTPROC 2

 }

 if (EXTENDED_MV == 1) {

 MVRANGE Variable size

 }

 MVMODE Variable size

 if (MVMODE == ‘Mixed-MV mode’) {

 MVTYPEMB Bitplane

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 65

 }

 DIRECTMB Bitplane

 SKIPMB Bitplane

 MVTAB 2

 CBPTAB 2

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

 }

 if (VSTRANSFORM == 1) {

 TTMBF 1

 if (TTMBF == 1) {

 TTFRM 2

 }

 }

 TRANSACFRM Variable size

 TRANSDCTAB 1

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Table 13: VOPDQUANT in Progressive picture header

VOPDQUANT() { Number of bits

 if (DQUANT == 2) {

 PQDIFF 3

 if (PQDIFF == 7) {

 ABSPQ 5

 }

 }

 else {

 DQUANTFRM 1

 if (DQUANTFRM == 1) {

 DQPROFILE 2

 if (DQPROFILE == ‘single edge‘) {

 DQSBEDGE 2

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 66

 }

 if (DQPROFILE == ‘double edge‘) {

 DQDBEDGE 2

 }

 if (DQPROFILE == ‘all macroblock‘) {

 DQBILEVEL 1

 }

 if not (DQPROFILE == ‘all macroblock‘ and
DQBILEVEL == 0) {

 PQDIFF 3

 if (PQDIFF == 7) {

 ABSPQ 5

 }

 }

 }

 }

}

Table 14: Slice-Layer bitstream in Advanced Profile

SLICE() { Number of bits

 SLICE_ADDR 9

 PIC_HEADER_FLAG 1

 if (PIC_HEADER_FLAG == 1) {

 PICTURE_LAYER()

 }

 for (‘all macroblocks’) {

 MB_LAYER ()

 }

}

Table 15: Bitplane coding

BITPLANE() {

 INVERT 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 67

 IMODE Variable size

 DATABITS Variable size

}

Table 16: Macroblock layer bitstream in Progressive I picture for Simple/Main Profile

I PICTURE MB() { Number of bits

 CBPCY Variable size

 ACPRED 1

 for (‘all coded blocks in MB’) {

 BLOCK()

 }

}

Table 17: Macroblock layer bitstream in Progressive I picture for Advanced Profile

I PICTURE MB() { Number of bits

 CBPCY Variable size

 if (‘ACPRED mode == RAW’) { <

 ACPRED 1

 }

 if (CONDOVER == 11b

 && OVERFLAGS == ‘raw mode’) {

 <

 OVERFLAGMB 1

 }

 if (DQUANTFRM) {

 if (DQPROFILE == ‘all macroblocks‘) {

 if (DQBILEVEL){

 MQDIFF 1

 } else {

 MQDIFF 3

 if (MQDIFF == 7) {

 ABSMQ 5

 }

 }

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 68

 }

 for (‘all coded blocks in MB’) {

 BLOCK()

 }

}

Table 18: Macroblock layer bitstream in Progressive P picture for Simple/Main/Advanced Profile

P PICTURE MB() { Number of bits

 if (MVTYPEMB == ‘raw mode’) {

 MVMODEBIT 1

 }

 if (SKIPMB == ‘raw mode’) {

 SKIPMBBIT 1

 }

 if (1 MV mode) {

 if (non-skipped MB) {

 MVDATA Variable size

 if (‘hybrid MV pred’) { <

 HYBRIDPRED 1

 }

 if (‘Intra MB’ && ‘last flag’ = = 0) {

 if (DQUANTFRM) {

 if (DQPROFILE == ‘all macroblocks‘) {

 MQDIFF Variable size

 if (MQDIFF == 7) {

 ABSMQ 5

 }

 }

 }

 ACPRED 1

 }

 else if (‘last flag’ = = 1){

 if (‘Intra MB’) {

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 69

 ACPRED 1

 }

 CBPCY Variable size

 if (DQUANTFRM) {

 if (DQPROFILE == ‘all macroblocks‘) {

 MQDIFF Variable size

 if (MQDIFF == 7) {

 ABSMQ 5

 }

 }

 }

 }

 if (TTMBF == 0) {

 TTMB Variable size

 }

 for (‘all coded blocks in MB’) {

 BLOCK()

 }

 } /* non-skipped MB */

 else { /* skipped MB */

 if (‘hybrid MV pred’) { <

 HYBRIDPRED 1

 }

 } /* skipped MB */

 } /* 1 MV mode */

 else { /* 4 MV mode */

 if (non-skipped MB) {

 CBPCY Variable size

 for (‘each of the 4 Y-blocks’) {

 if (‘CBPCY bit set for this block’) {

 BLKMVDATA Variable size

 }

 if (‘hybrid MV pred’) { <

 HYBRIDPRED 1

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 70

 }

 if (DQUANTFRM) {

 if (DQPROFILE == ‘all macroblocks‘) {

 MQDIFF Variable size

 if (MQDIFF == 7) {

 ABSMQ 5

 }

 }

 }

 if (‘any block is intra’ && ‘non-zero prediction for
that block’) {

 ACPRED 1

 }

 if (TTMBF == 0) {

 TTMB Variable size

 }

 for (‘all coded blocks in MB’) {

 BLOCK()

 }

 } /* non-skipped MB */

 else { /* skipped MB */

 for (‘all 4 Y-blocks’) { <

 if (‘hybrid MV pred’) { <

 HYBRIDPRED 1

 }

 }

 } /* skipped MB */

 } /* 4 MV mode */

}

Table 19: Macroblock layer bitstream in Progressive B picture for Main/Advanced Profile

B PICTURE MB() { Number of bits

 if (DIRECTMB == ‘raw mode’) {

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 71

 DIRECTBBIT 1

 }

 if (SKIPMB == ‘raw mode’) {

 SKIPMBBIT 1

 }

 if (!DIRECTBBIT) {

 if (SKIPMBBIT) {

 BMVTYPE Variable size

 }

 else {

 BMV1 Variable size

 if (BMV1 does not indicate intra) {

 BMVTYPE Variable size

 }

 }

 }

 If (SKIPMBBIT)

 goto End2:

 if (BMV1 == ‘last’) {

 if (DQUANTFRM) {

 if (DQPROFILE == ‘all macroblocks‘) {

 MQDIFF Variable size

 if (MQDIFF == 7)

 ABSMQ 5

 }

 }

 if (‘Intra MB’)

 ACPRED 1

 }

 else {

 if (FORWARDMB == ‘INTERPOLATE’)

 BMV2 Variable size

 If (BMV2 == ‘LAST’)

 goto End;

 if (‘Intra MB’)

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 72

 ACPRED 1

 CBPCY Variable size

 if (DQUANTFRM) {

 if (DQPROFILE == ‘all macroblocks‘) {

 MQDIFF

 if (MQDIFF == 7) Variable size

 ABSMQ 5

 }

 } Variable size

 }

End:

 if (TTMBF == 0) {

 TTMB Variable size

 }

End2:

 for (‘all coded blocks in MB’) {

 BLOCK()

 }

}

The following tables show the syntax elements of the block-layer bitstream.

Table 20: Intra block layer bitstream in Progressive mode.

BLOCK() { Number of bits

 DCCOEF Variable size

 if (DCCOEF == ‘escape code’) {

 DCCOEFESC Variable size

 }

 else if (DCCOEF != 0) {

 if (QUANT == 1)

 DCCOEF_EXTQUANT1 2

 else if (QUANT == 2)

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 73

 DCCOEF_EXTQUANT2 1

 DCSIGN 1

 }

 while (‘not last run’) {

 ACCOEF1 Variable size

 if (ACCOEF1 == ‘escape code’) {

 ESCMODE Variable size

 if (‘escape mode 1 or 2’) {

 ACCOEF2 Variable size

 }

 else { /* ‘escape mode 3’ */

 ESCLR 1

 if (‘first escape mode 3 in this frame’) {

 ESCLVLSZ Variable size

 ESCRUNSZ 2

 }

 ESCRUN Calculated size

 LVLSGN2 1

 ESCLVL Calculated size

 }

 } /* ‘escape mode’ */

 if (‘not escape mode 3’) {

 LVLSIGN 1

 }

 } /* while () */

}

Table 21: Inter block layer bitstream in Progressive mode

BLOCK() { Number of bits

 if (TTMB == ‘block’) {

 TTBLK Variable size

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 74

 if (‘transform type is 8*4, 4*8 or 4*4, and other cond’) {

 SUBBLKPAT Variable size

 }

 while (‘not last run’) {

 ACCOEF1 Variable size

 if (ACCOEF1 == ‘escape code’) {

 ESCMODE Variable size

 if (‘escape mode 1 or 2’) {

 ACCOEF2 Variable size

 }

 else { /* ‘escape mode 3’ */

 ESCLR 1

 if (‘first escape mode 3 in this frame’) {

 ESCLVLSZ Variable size

 ESCRUNSZ 2

 }

 ESCRUN Calculated size

 LVLSGN2 1

 ESCLVL Calculated size

 }

 } /* ‘escape mode’ */

 if (‘not escape mode 3’) {

 LVLSIGN 1

 }

 } /* while () */

}

7.1.1 Picture layer

Data for each picture consists of a picture header followed by data for the macroblock layer. Figure 10 and Figure 12
show the bitstream elements that make up the I progressive picture layer in simple/main profile and advanced profile,
respectively, and Figure 14 and Figure 15 show the bitstream elements that make up the P progressive picture layer in
simple/main profile and advanced profile, respectively. The following sections give a short description of each of the
bitstream elements in the picture layer.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 75

7.1.1.1 Temporal Reference Frame Counter (TFCNTR) (8 bits)

TFCNTR is present only in advanced profile, and only if the sequence level syntax element TFCNTRFLAG is 1.
TFCNTR is an 8-bit fixed length field. When the sequence header includes a set of HRD parameters (HRD_flag set to
‘1’), TFCNTR of each coded frame shall increment by one modulo 256 when examined in display order at the output
of the decoding process, except when a sequence header occurs. Among the frames coded immediately after the
sequence header, the temporal reference of the coded frame that is displayed first shall be set to zero.

In interlace field pictures, the temporal reference coded in the frame header shall be associated with both field pictures
in the frame.

7.1.1.2 Picture Coding Type (FCM) (Variable size)

FCM is present only in advanced profile, and only if the sequence level syntax element INTERLACE has the value 1,
and it indicates whether the picture is coded as progressive, interlace-field or interlace-frame. Table 22 shows the VLC
codewords used to indicate the picture coding type. NB: B pictures shall be constrained to be the same type (i.e.
progressive, field-interlace or frame-interlace) as the first anchor frame that comes after them, i.e. all B pictures shall
be of the same picture coding type as its backward reference picture.

Table 22: Picture Coding Type VLC

FCM Picture
Coding Type

0 Progressive

10 Frame-
Interlace

11 Field-
Interlace

7.1.1.3 Top Field First (TFF) (1 bit)

TFF is a one bit element present in advanced profile picture headers if the sequence header element BROADCAST is
set to ‘1’ and the sequence header element INTERLACE = 1. Note that TFF is not part of the decoding process, but it
is used during display. TFF = 1 implies that the Top Field should be displayed first. If TFF = 0, the bottom field
should be displayed first.

7.1.1.4 Repeat First Field (RFF) (1 bit)

RFF is a one bit element present in advanced profile picture headers if the sequence header element BROADCAST is
set to ‘1’ and the sequence header element INTERLACE = 1. Note that RFF is not part of the decoding process, but it
is used during display. RFF = 1 implies that the first field should be repeated during display. RFF = 0 implies that no
repetition is necessary.

7.1.1.5 Repeat Frame Count (RPTFRM) (2 bits)

RPTFRM is a two bit syntax element present in advanced profile picture headers if the sequence header element
BROADCAST is set to ‘1’ and the sequence header element INTERLACE = 0. RPTFRM takes value from 0 to 3
which are coded in binary using 2 bits. RPTFRM is not part of the decoding process, but it is used during display. It
represents the number of a time is repeated during display.

7.1.1.6 Frame Interpolation Hint (INTERPFRM) (1 bit)

INTERPFRM is a 1-bit syntax element present in all progressive frame types for all profiles, if the syntax element
FINTERPFLAG in the sequence header is 1. This bit is not used in the decoding process. Its intended purpose is to

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 76

provide a hint to the post-decoding (display) process that the current temporal region is suitable for temporal
interpolation. The need to perform temporal frame interpolation or the method of doing so is outside the scope of this
document. If INTERPFRM = 0 then the current temporal region is considered unsuitable for temporal frame
interpolation. INTERPFRM = 1 then the current temporal region is considered suitable for temporal frame
interpolation. For example, the renderer may use interpolation to increase the displayed frame-rate when
INTERPFRM = 1. It is important to reemphasize that this interpolation is outside the decoding process.

7.1.1.7 Frame Count (FRMCNT) (2 bits)

FRMCNT is a 2-bit syntax element present in all picture headers for simple and main profiles. This syntax element
may have any of the values from 0 to 3. FRMCNT has no effect on the decoding or display process.

7.1.1.8 Range Reduction Frame (RANGEREDFRM) (1 bit)

RANGEREDFRM is a 1-bit syntax element present in all frame types, for main profile, if the sequence level flag
RANGERED = 1 (see section 6.1.23). If RANGEREDFRM = 1, then range reduction is used for the frame. If
RANGEREDFRM = 0, then range reduction is not used for the frame. See sections 8.1.1.4 and 8.3.4.12 for a
description of range reduction decoding.

7.1.1.9 Picture Type (PTYPE) (Variable size)

For simple and main profiles:

If the sequence level syntax element MAXBFRAMES = 0, then Table 23 is used to decode the PTYPE syntax element
in the picture header.

Table 23: Simple/Main Profile Picture Type FLC if MAXBFRAMES = 0

PTYPE FLC Picture Type

0 I

1 P

If MAXBFRAMES is greater than 0, then Table 24 is used to decoder the PTYPE syntax element in the picture
header.

Table 24: Main Profile Picture Type VLC if MAXBFRAMES > 0

PTYPE VLC Picture Type

1 P

01 I

00 B

For advanced profile:

Table 25 is used to decode the PTYPE syntax element in the picture header.

Table 25: Advanced Profile Picture Type VLC

PTYPE VLC Picture Type

110 I

0 P

10 B

1110 BI

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 77

1111 Skipped

A BI frame is treated as a B frame in the sense that it is coded out of order and is not used as a reference for other
frames but it is coded using the I frame syntax.

If PTYPE indicates that the frame is skipped then the frame is treated as a P frame which is identical to its reference
frame. The reconstruction of the skipped frame is equivalent conceptually to copying the reference frame. A skipped
picture means that no further data is transmitted for this frame. In simple and main profiles, if the size of any coded
picture is less than or equal to one byte, that picture is treated as a skipped frame. Note that the size of coded picture is
transmitted to the decoder via the Transport Layer in simple and main profiles.

7.1.1.10 B Picture Fraction (BFRACTION)(Variable size)

BFRACTION is variable-sized syntax element present in B picture headers. BFRACTION signals a fraction that may
take on a limited set of fractional values between 0 and 1, denoting the relative temporal position of the B frame
within the interval formed by its anchors. This fraction is used to scale collocated motion vectors for deriving the
direct motion vectors.

The mapping of BFRACTION is shown in Table 26. One symbol is unused in the codetable. When BFRACTION is
1111111, this means that the entire B frame is coded independent of its anchors, i.e. as an “Intra” frame. This frame
is referred to as an Intra B frame. This is not a true I frame, since there is no temporal dependency on the Intra B
frame, nor does this represent the start of an independently decodable segment.

Table 26: BFRACTION VLC Table

BFRACTION
VLC

Fraction BFRACTION
VLC

Fraction

000 1/2 1110101 2/7

001 1/3 1110110 3/7

010 2/3 1110111 4/7

011 1/4 1111000 5/7

100 3/4 1111001 6/7

101 1/5 1111010 1/8

110 2/5 1111011 3/8

1110000 3/5 1111100 5/8

1110001 4/5 1111101 7/8

1110010 1/6 1111110 Invalid

1110011 5/6 1111111 See note
below

1110100 1/7

Note regarding last entry in Table 26: For simple and main profiles the 1111111 codeword indicates that the B frame
is coded using the I frame syntax. For advanced profile this codeword is invalid since this case is coded using the
PTYPE syntax element.

7.1.1.11 Buffer Fullness (BF) (7 bits)

BF is a 7-bit syntax element that is only present in simple and main profile I picture headers. BF shall be set to zero,
and all other are forbidden.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 78

7.1.1.12 Rounding Control Bit (RNDCTRL)(1 bit)

RNDCTRL is a 1 bit syntax element that is present in progressive advanced profile picture headers (I, P, B). The flag
is used to indicate the type of rounding used for the current frame. If RNDCTRL = 1, the parameter R which controls
rounding is set to 1. Otherwise, R is set to zero. See Section 8.3.7 for more details on the effect of R on rounding.

7.1.1.13 UV Sampling Format (UVSAMP)(1 bit)

UVSAMP is a 1 bit syntax element that is only present in advanced profile picture headers (I, P, B), when the
sequence level field INTERLACE is 1. The flag is used to indicate the type of chroma subsampling used for the
current frame. If UVSAMP = 1, then progressive subsampling of the chroma is used, otherwise, interlace
subsampling of the chroma is used. This syntax element does not affect decoding of the bitstream.

7.1.1.14 Pan scan window coordinates (TOPLEFTX, TOPLEFTY, BOTRIGHTX, BOTRIGHTY)(4 X 16
bits)

TOPLEFTX, TOPLEFTY, BOTRIGHTX, BOTRIGHTY are four coordinates that specify each pan-scan window.
Each occupies 16 bits, and is sent only in advanced profile when PANSCANFLAG = 1.

7.1.1.15 Picture Quantizer Index (PQINDEX) (5 bits)

PQINDEX is a 5-bit syntax element that signals the quantizer scale index for the entire frame. It is present in all
picture types. If the quantizer is signaled implicitly (this is signaled by sequence syntax element QUANTIZER = 00,
see section 6.1.25), then PQINDEX specifies both the picture quantizer scale (PQUANT) and the quantizer (uniform
or nonuniform) used for the frame. See section 8.1.1.14 for details on dequantization using uniform as well as
nonuniform quantizers. Table 27 shows how PQINDEX is translated to PQUANT and the quantizer for this case.

Table 27: PQINDEX to PQUANT/Quantizer Translation (Implicit Quantizer)

PQINDEX PQUANT Quantizer PQINDEX PQUANT Quantizer

0 NA NA 16 13 Nonunifor
m

1 1 Uniform 17 14 Nonunifor
m

2 2 Uniform 18 15 Nonunifor
m

3 3 Uniform 19 16 Nonunifor
m

4 4 Uniform 20 17 Nonunifor
m

5 5 Uniform 21 18 Nonunifor
m

6 6 Uniform 22 19 Nonunifor
m

7 7 Uniform 23 20 Nonunifor
m

8 8 Uniform 24 21 Nonunifor
m

9 6 Nonunifor
m

25 22 Nonunifor
m

10 7 Nonunifor 26 23 Nonunifor

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 79

m m

11 8 Nonunifor
m

27 24 Nonunifor
m

12 9 Nonunifor
m

28 25 Nonunifor
m

13 10 Nonunifor
m

29 27 Nonunifor
m

14 11 Nonunifor
m

30 29 Nonunifor
m

15 12 Nonunifor
m

31 31 Nonunifor
m

If the quantizer is signaled explicitly at the sequence or frame level (signaled by sequence syntax element
QUANTIZER = 01, 10 or 11, see section 6.1.25), then PQINDEX is translated to the picture quantizer stepsize
PQUANT as indicated by Table 28.

Table 28: PQINDEX to PQUANT Translation (Explicit Quantizer)

PQINDEX PQUANT

Uniform

PQUANT

Nonuniform

PQINDEX PQUANT

Uniform

PQUANT

Nonuniform

0 NA NA 16 16 14

1 1 1 17 17 15

2 2 1 18 18 16

3 3 1 19 19 17

4 4 2 20 20 18

5 5 3 21 21 19

6 6 4 22 22 20

7 7 5 23 23 21

8 8 6 24 24 22

9 9 7 25 25 23

10 10 8 26 26 24

11 11 9 27 27 25

12 12 10 28 28 26

13 13 11 29 29 27

14 14 12 30 30 29

15 15 13 31 31 31

7.1.1.16 Half QP Step (HALFQP) (1 bit)

HALFQP is a 1-bit syntax element present in all frame types if PQINDEX is less than or equal to 8. The HALFQP
syntax element allows the picture quantizer to be expressed in half step increments over the low PQUANT range. If

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 80

HALFQP = 1, then the picture quantizer stepsize is PQUANT + ½. If HALFQP = 0, then the picture quantizer stepize
is PQUANT. Therefore, if the uniform quantizer is used, then half stepsizes are possible up to PQUANT = 9 (i.e.,
PQUANT = 1, 1.5, 2, 2.5 … 8.5, 9), and then only integer stepsizes are allowable above PQUANT = 9. For the
nonuniform quantizer, half stepsizes are possible up to PQUANT = 7 (i.e., 1, 1.5, 2, 2.5 … 6.5, 7).

7.1.1.17 Picture Quantizer Type (PQUANTIZER) (1 bit)

PQUANTIZER is a 1 bit syntax element present in all frame types if the sequence level syntax element QUANTIZER
= 01 (see section 6.1.25). In this case, the quantizer used for the frame is specified by PQUANTIZER. If
PQUANTIZER = 0, then the nonuniform quantizer is used for the frame. If PQUANTIZER = 1, then the uniform
quantizer is used.

7.1.1.18 Extended MV Range Flag (MVRANGE) (Variable size)

MVRANGE is a variable-sized syntax element present for sequences coded using the main and advanced profiles
when the sequence-layer EXTENDED_MV bit is set to 1. For the main profile, it is present in I, P and B pictures. For
the advanced profile, it is present in P, and B pictures. The default range of motion vectors is [-64 63.f] X [-32
31.f], where f is the fractional motion vector ¾ for ¼ pixel motion and ½ for ½ pixel motion resolution. In other
words, the default range for quarter-pixel motion modes is [-64 63¾] along the horizontal (X) axis and [-32 31¾]
along the vertical (Y) axis. The default range is chosen under Simple Profile, and when EXTENDED_MV is 0 under
Main Profile encoding.

Table 29 lists the four possible binary codewords for MVRANGE and the corresponding motion vector range signaled
by the codeword. Section 8.3.5.2 details the decoding of differential motion vectors for different ranges specified by
MVRANGE.

Table 29: Motion Vector Range Signaled by MVRANGE

Codeword in binary MV range in full pixel units (horiz x vert)

0 (also default) [-64, 63.f] x [-32, 31.f]

10 [-128, 127.f] x [-64, 63.f]

110 [-512, 511.f] x [-128, 127.f]

111 [-1024,1023.f] x [-256, 255.f]

7.1.1.19 Picture Resolution Index (RESPIC) (2 bits)

The RESPIC syntax element is present in progressive I and P pictures, in simple and main profiles, if MULTIRES =1
in the sequence layer. This syntax element specifies the scaling factor of the current frame relative to the full
resolution frame. Table 30 shows the possible values of the RESPIC syntax element. Refer to section 8.1.1.3 for a
description of variable resolution coding. NOTE: The RESPIC syntax element of a P picture header shall carry the
same value as the RESPIC syntax element of the closest temporally preceding I frame.

Table 30: Progressive picture resolution code-table

RESPIC
FLC

Horizontal
Scale

Vertical
Scale

00 Full Full

01 Half Full

10 Full Half

11 Half Half

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 81

7.1.1.20 Skipped Macroblock Bit Syntax Element (SKIPMB)(Variable size)

The SKIPMB syntax element is present only in P or B pictures. The SKIPMB syntax element encodes the skipped
macroblocks using a bitplane coding method. Refer to section 8.7 for a description of the bitplane coding method.

7.1.1.21 B Frame Direct Mode Macroblock Bit syntax element (DIRECTMB)(Variable size)

The DIRECTMB syntax element is present only in B pictures. The DIRECTMB syntax element uses bitplane coding
to indicate the macroblocks in the B picture that are coded in direct mode. The DIRECTMB syntax element may also
signal that the direct mode is signaled in raw mode, in which case the direct mode is signaled at the macroblock level
(see section 0). Refer to section 8.7 for a description of the bitplane coding method.

7.1.1.22 Motion Vector Mode (MVMODE) (Variable size)

The MVMODE syntax element is present in P and B picture headers. For P Pictures, the MVMODE syntax element
signals one of four motion vector coding modes or one intensity compensation mode. In the bitstream corresponds to
simple profile, the MVMODE syntax element shall not take the value corresponding to intensity compensation mode
Depending on the value of PQUANT, either Table 31 or Table 32 is used to decode the MVMODE syntax element.

Table 31: P Picture Low rate (PQUANT > 12) MVMODE codetable

MVMODE
VLC

Mode

1 1 MV Half-pel bilinear

01 1 MV

001 1 MV Half-pel

0001 Mixed MV

0000 Intensity Compensation

Table 32: P Picture High rate (PQUANT <= 12) MVMODE codetable

MVMODE
VLC

Mode

1 1 MV

01 Mixed MV

001 1 MV Half-pel

0001 1 MV Half-pel bilinear

0000 Intensity Compensation

Intensity compensation is not signaled for B Pictures, and only two motion modes are valid. Table 33 and Table 34
show the tables used to code the motion vector mode for B Pictures.

Table 33: B Picture High rate (PQUANT <= 12) MVMODE codetable

MVMODE
VLC

Mode

1 Quarter-pel Bicubic

000 Half-pel Bilinear

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 82

Table 34: B Picture Low rate (PQUANT > 12) MVMODE codetable

MVMODE
VLC

Mode

1 Half-pel Bilinear

01 Quarter-pel Bicubic

7.1.1.23 Motion Vector Mode 2(MVMODE2) (Variable size)

The MVMODE2 syntax element is only present in P pictures, and only if the picture header syntax element
MVMODE signals intensity compensation. Refer to section 8.3.4.3 for a description of motion vector mode/intensity
compensation. Table 35 and Table 36 are used to decode the MVMODE2 syntax element.

Table 35: P Picture Low rate (PQUANT > 12) MVMODE2 codetable

MVMODE2
VLC

Mode

1 1 MV Half-pel bilinear

01 1 MV

001 1 MV Half-pel

000 Mixed MV

Table 36: P Picture High rate (PQUANT <= 12) MVMODE2 codetable

MVMODE2
VLC

Mode

1 1 MV

01 Mixed MV

001 1 MV Half-pel

000 1 MV Half-pel bilinear

7.1.1.24 Luminance Scale (LUMSCALE)(6 bits)

The LUMSCALE syntax element is only present in P pictures, and only if the picture header syntax element
MVMODE signals intensity compensation. Refer to section 8.3.8 for a description of intensity compensation.

7.1.1.25 Luminance Shift (LUMSHIFT)(6 bits)

The LUMSHIFT syntax element is only present in P pictures, and only if the picture header syntax element MVMODE
signals intensity compensation. Refer to section 8.3.8 for a description of intensity compensation.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 83

7.1.1.26 Motion Vector Type Bitplane (MVTYPEMB)(Variable size)

The MVTYPEMB syntax element is present in P and B pictures if MVMODE or MVMODE2 indicates that Mixed
MV motion vector mode is used. The MVTYPEMB syntax element uses bitplane coding to signal the motion vector
type (1 or 4 MV) for each macroblock in the frame. Refer to section 8.7 for a description of the bitplane coding
method. Refer to section 8.3.5.2 for a description of the motion vector decode process.

7.1.1.27 Motion Vector Table (MVTAB) (2 bits)

The MVTAB syntax element is a 2-bit value present only in P and B frames. The MVTAB syntax element indicates
which of four Huffman tables is used to encode the motion vector data. Refer to section 8.3.5.2 for a description of the
motion vector decoding process.

Table 37: MVTAB code-table

FLC Motion Vector Huffman Table

00 Huffman Table 0

10 Huffman Table 1

01 Huffman Table 2

11 Huffman Table 3

The motion vector Huffman tables are listed in section 11.10.

7.1.1.28 Coded Block Pattern Table (CBPTAB) (2 bits)

The CBPTAB syntax element is a 2-bit value present only in P and B frames. This syntax element signals the Huffman
table used to decode the CBPCY syntax element (described in section 7.2.5.5) for each coded macroblock in P-
pictures. Refer to section 8.3.4.6 for a description of how the CBP Huffman table is used in the decoding process.

The CBPCY Huffman tables are listed in sections 11.5 and 11.6.

7.1.1.29 Macroblock Quantization (VOPDQUANT) (Variable size)

The VOPDQUANT syntax element is made up of several bitstream syntax elements as shown in Figure 18.
VOPDQUANT is present in Progressive P and B pictures when the sequence header DQUANT syntax element is
nonzero. VOPDQUANT is present in Progressive I pictures only in advanced profile when the sequence header
DQUANT syntax element is nonzero. The syntax of VOPDQUANT is dependent on the value of DQUANT.

Case 1: DQUANT = 1.

 There are four possibilities in this case:

1. The macroblocks located on the boundary are quantized with a second quantization step size
(ALTPQUANT), while the rest of the macroblocks are quantized with the frame quantization step size
(PQUANT). Here boundary macroblocks are those macroblocks along the picture edges.

2. Two adjacent edges are signaled (see Table 40), and those macroblocks located on the two edges are
quantized with ALTPQUANT while the rest of the macroblocks are quantized with PQUANT.

3. One edge is signaled and those macroblock located on the edge are quantized with ALTPQUANT while
the rest of the macroblocks are quantized with PQUANT.

4. Every single macroblock may be quantized differently. In this case, it will be indicated whether each
macroblock may select from two quantization steps (PQUANT or ALTPQUANT), or each macroblock
may be arbitrarily quantized using any step size.

Case 2: DQUANT = 2.

The macroblocks located on the boundary (picture edges) are quantized with ALTPQUANT while the rest of the
macroblocks are quantized with PQUANT.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 84

7.1.1.30 VOPDQUANT Syntax Elements

The syntax elements are as follows:

• Differential Quantizer Frame DQUANTFRM (1 bit)

The DQUANTFRM syntax element is a 1-bit value that is present only when DQUANT = 1. If
DQUANTFRM = 0, then the current picture is only quantized with PQUANT.

• Differential Quantizer Profile DQPROFILE (2 bits)

The DQPROFILE syntax element is a 2-bits value that is present only when DQUANT = 1 and
DQUANTFRM = 1. It indicates where it is allowable to change quantization step sizes within the current
picture.

Table 38: Macroblock Quantization Profile (DQPROFILE) Code Table

FLC Location

00 All four Edges

01 Double Edges

10 Single Edges

11 All Macroblocks

• Differential Quantizer Single Boundary Edge DQSBEDGE (2 bits)

The DQSBEDGE syntax element is a 2-bits value that is present when DQPROFILE = Single Edge. It
indicates which edge will be quantized with ALTPQUANT.

Table 39: Single Boundary Edge Selection (DQSBEDGE) Code Table

FLC Boundary Edge

00 Left

01 Top

10 Right

11 Bottom

• Differential Quantizer Double Boundary Edge DQDBEDGE (2 bits)

The DQDBEDGE syntax element is a 2-bits value that is present when DQPROFILE = Double Edge. It
indicates which two edges will be quantized with ALTPQUANT.

Table 40: Double Boundary Edges Selection (DQDBEDGE) Code Table

FLC Boundary Edges

00 Left and Top

01 Top and Right

10 Right and Bottom

11 Bottom and Left

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 85

• Differential Quantizer Binary Level DQBILEVEL (1 bit)

The DQBILEVEL syntax element is a 1-bit value that is present when DQPROFILE = All Macroblock. If
DQBILEVEL = 1, then each macroblock in the picture may take one of two possible values (PQUANT or
ALTPQUANT). If DQBILEVEL = 0, then each macroblock in the picture may take on any quantization step
size.

• Picture Quantizer Differential PQDIFF (3 bits)

PQDIFF is a 3 bit syntax element that encodes either the PQUANT differential or an escape code.

If PQDIFF does not equal 7, then PQDIFF encodes the differential, and the ABSPQ syntax element does not
follow in the bitstream. In this case:

 ALTPQUANT = PQUANT + PQDIFF + 1

Note that the value of ALTPQUANT has to be in the range of 1 to 31 for the bitstream to be valid. If PQDIFF
equals 7, then the ABSPQ syntax element follows in the bitstream, and ALTPQUANT is decoded as:

 ALTPQUANT = ABSPQ

• Absolute Picture Quantizer ABSPQ (5 bits)

ABSPQ is present in the bitstream if PQDIFF equals 7. In this case, ABSPQ directly encodes the value of
ALTPQUANT as described above.

7.1.1.31 Macroblock-level Transform Type Flag (TTMBF) (1 bit)

This syntax element is present only in P- and B- picture headers and only if the sequence-level syntax element
VSTRANSFORM = 1 (described in section 6.1.19). If TTMBF = 1, then the TTFRM syntax element is also present in
the picture layer. See section 8.3.4.8 for a description.

7.1.1.32 Frame-level Transform Type (TTFRM) (2 bits)

This syntax element is present in P- and B- picture headers if VSTRANSFORM = 1 and TTMBF = 1. The TTFRM
syntax element is decoded using Table 41. See section 8.3.4.9 for a description.

Table 41: Transform type select code-table

FLC Transform type

00 8x8 Transform

01 8x4 Transform

10 4x8 Transform

11 4x4 Transform

7.1.1.33 AC Prediction (ACPRED)(Variable size)

For advanced profile I and BI pictures, the 1-bit ACPRED syntax elements present in all macroblocks are jointly coded
using a bitplane coded syntax element that indicates the AC prediction status for each macroblock in the picture. The
decoded bitplane represents the AC prediction status for each macroblock as a syntax element of 1-bit values in raster
scan order from upper left to lower right. Refer to section 7.2 for a description of the bitplane coding. See section
8.1.1.8 for a description of AC prediction.

7.1.1.34 Conditional Overlap Flag (CONDOVER) (Variable size)

This syntax element is present only in I pictures, and only in advanced profile, and only when OVERLAP is on and
PQUANT is less than or equal to 8 (regardless of HALFQP). CONDOVER may take the values 0 binary, 10 binary,
and 11 binary. For the meaning of these values, and how CONDOVER affects overlap smoothing in advanced profile,
see section 8.5.2.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 86

7.1.1.35 Conditional Overlap Macroblock Pattern Flags (OVERFLAGS) (Variable size)

This syntax element is present only in I pictures, and only in advanced profile, and only when CONDOVER has the
binary value 11. OVERFLAGS is coded as a bitplane, which in raw mode requires that each macroblock carry its
local information, OVERFLAGMB.

7.1.1.36 Post Processing (POSTPROC)(2 bits)

POSTPROC is a 2-bits syntax element that occurs in all pictures in advanced profile when the sequence level flag
POSTPROCFLAG is set to 1. It is used to suggest to the decoder on the level of post processing that should be used
for the current frame. The four suggested modes are tabulated below:

POSTPROC Suggested Post processing

00 No Post Processing

01 De-blocking

10 De-ringing

11 De-block + De-ringing

Post processing is outside the decoding loop and is therefore not a normative part of the VC-9 specification1.

7.1.1.37 Frame-level Transform AC Coding Set Index (TRANSACFRM) (Variable size)

This syntax element is present in all progressive frame types and all interlaced frame types in Advanced. Table 42 is
used to decode the TRANSACFRM syntax element. See section 8.3.4.10 for a description of the TRANSACFRM
syntax element.

Table 42: Transform AC coding set index code-table

VLC Coding set
index

0 0

10 1

11 2

See section 8.1.1.10 for a description of the Transform AC coding sets.

7.1.1.38 Frame-level Transform AC Table-2 Index (TRANSACFRM2) (Variable size)

This syntax element is present in progressive I frames and interlaced I frames in Advanced Profile. Table 42 is used to
decode the TRANSACFRM2 syntax element. See section 8.1.1.10 for a description of the Transform AC coding sets.

7.1.1.39 Intra Transform DC Table (TRANSDCTAB) (1 bit)

This syntax element is present in all frame types. See section 8.1.1.2 for a description.

7.1.2 Slice Layer

A slice represents one or more contiguous rows of macroblocks that are scanned in raster-scan order. Slice-layer is
present only in the advanced profile. Even in advanced profile, slice layer is optional, and may be skipped by coding a

1 An informative comment: MPEG-4 style deblocking and deringing operations may be used as post processing filters
by a VC-9 decoder.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 87

picture as a single independent decodable unit (IDU). When a picture is coded in multiple IDUs, slices are used. Note
that a slice always begins at the first macroblock in a row, and ends at the last macroblock in the same or another row.
Thus, a slice contains an integer number of complete rows. A slice is always byte-aligned, and each slice is transmitted
in a different IDU. The beginning of a new slice is detected through search for start-codes as outlined in Annex E.

When a new slice begins, motion vector predictors, predictors for AC and DC coefficients, and the predictors for
quantization parameters are reset. In other words, with respect to prediction, the first row of macroblocks in the slice is
considered to be the first row of macroblocks in the picture. This ensures that there is no inter-slice dependency in
predictors. Further, when slices are used, all bitplane information is carried in raw mode which ensures that each
macroblock carries its own local information. For the purposes of deblocking, each slice is treated independently. In
other words, the top and bottom macroblock rows of each slice are treated as if they are the top and macroblocks rows
of the picture in the deblocking process. Thus, there is no loop-filtering across slices.

Figure 19 shows the structure for the slice layer. The elements that make up the slice layer are described in the
following sections.

7.1.2.1 Slice Address (SLICE_ADDR)(9 bits)

SLICE_ADDR is a fixed-length 9-bit syntax element. The row address of the first macroblock row in the slice is
binary encoded in this syntax element. The range of this syntax element is from 0 to 511. (Informative – The
maximum picture size of 8192 corresponds to a maximum of 512 macroblock rows).

7.1.2.2 Picture Header Present Flag (PIC_HEADER_FLAG)(1 bit)

PIC_HEADER_FLAG is a 1-bit syntax element that is present in the slice header. If PIC_HEADER_FLAG = 0, then
the picture header information is not repeated in the slice header. If the PIC_HEADER_FLAG = 1, the picture header
information is repeated in the slice header.

7.1.3 Macroblock Layer

Data for each macroblock consists of a macroblock header followed by the block layer. Figure 20 – Figure 23, and
Table 16 - Table 19 show the macroblock layer structure for I picture and P picture macroblocks. The elements that
make up the macroblock layer are described in the following sections. The picture types that the macroblock layer
syntax elements occur in, are indicated in the square brackets.

7.1.3.1 Conditional Overlap Macroblock Pattern Flag (OVERFLAGMB) (1 bit) [I]

This syntax element is present only in I pictures, only in advanced profile, and only when CONDOVER has the binary
value 11, and when the raw mode is chosen to encode the OVERFLAGS plane. In this case, one bit is sent in the
macroblock header to indicate whether or not to perform overlap filtering to edge pixels within the block and
neighboring blocks. See section 8.5.2 for a description.

7.1.3.2 MV Mode Bit (MVMODEBIT)(1 bit)[P]

MVMODEBIT is a 1-bit syntax element present in P frame macroblocks if the frame level syntax element
MVTYPEMB (see section 7.1.1.26) indicates that raw mode is used. For definition of raw mode, see section 7.2. If
MVMODEBIT = 0, then the macroblock is coded in 1MV mode, and if MVMODEBIT = 1, then the macroblock is
coded in 4MV mode.

7.1.3.3 Skip MB Bit (SKIPMBBIT)(1 bit)[P,B]

SKIPMBBIT is a 1-bit syntax element present in P and B frame macroblocks if the frame level syntax element
SKIPMB (see section 7.1.1.20) indicates that raw mode is used. For definition of raw mode, see section 7.2. If
SKIPMBBIT = 1, then the macroblock is skipped. See section 8.3.4.4 for details on skipped macroblocks.

7.1.3.4 Coded Block Pattern (CBPCY) (Variable size)[I, P,B]

CBPCY is a variable-length syntax element present in I picture, P picture and B macroblock layers. Section 8.1.1.5
describes the CBPCY syntax element in I picture macroblocks and section 7.2.5.5 describes the CBPCY syntax
element in P picture and B picture macroblocks.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 88

7.1.3.5 AC Prediction Flag (ACPRED)(1 bit)[I, P,B]

The ACPRED syntax element is present in all I picture macroblocks and in Intra macroblocks in P pictures and B
Pictures. The (see section 8.3.5.1 for a description of the macroblock types). ACPRED is also present in a 4MV
macroblock in P pictures, if atleast one of the blocks in that macroblock is intra-coded, and if that block(s) has a non-
zero predictor. (See section 8.3.6.1.2 for details on determining if a block has a non-zero predictor). This is a 1-bit
syntax element that specifies whether the blocks were coded using AC prediction. ACPRED = 0 indicates that AC
prediction is not used. ACPRED = 1 indicates that AC prediction is used. In advanced profile I pictures, this bit could
be jointly coded using bitplane coding and sent at the picture layer instead of being sent at the macroblock level. See
section 8.1.1.6 for a description of the ACPRED syntax element in I pictures and section 8.3.6.1 for a description of
the ACPRED syntax element in P and B pictures.

7.1.3.6 Macroblock Quantizer Differential (MQDIFF)(Variable size)[I,P,B]

MQDIFF is a variable-sized syntax element present in Progressive P and B pictures. MQDIFF is also present in
progressive I pictures in advanced profile. It is present only if the picture layer syntax element DQPROFILE = All
Macroblocks. The syntax depends on the DQBILEVEL syntax element as described below.

If DQBILEVEL = 1, then MQDIFF is a 1 bit syntax element and the ABSMQ syntax element does not follow in the
bitstream. If MQDIFF = 0, then MQUANT = PQUANT (meaning that PQUANT is used as the quantization step
size for the current macroblock). If MQDIFF = 1, then MQUANT = ALTPQUANT.

If DQBILEVEL = 0, then MQDIFF is a 3 bit syntax element. In this case MQDIFF decodes either to an MQUANT
differential or to an escape code as follows:

If MQDIFF does not equal 7, then MQDIFF encodes the differential, and the ABSMQ syntax element does not follow
in the bitstream. In this case:

 MQUANT = PQUANT + MQDIFF

Note that MQUANT has to be in the range of 1 to 31 for the bitstream to be valid. If MQDIFF equals 7, then the
ABSMQ syntax element follows in the bitstream, and MQUANT is decoded as:

 MQUANT = ABSMQ

7.1.3.7 Absolute Macroblock Quantizer Scale (ABSMQ)(5 bits)[I,P,B]

ABSMQ is present in the bitstream if MQDIFF equals 7. In this case, ABSMQ directly encodes the value of
MQUANT as described above.

7.1.3.8 Motion Vector Data (MVDATA)(Variable size)[P]

MVDATA is a variable sized syntax element present in P picture macroblocks. This syntax element encodes the
motion vector(s) for the macroblock. The Huffman table used to decode this syntax element is specified by the
MVTAB syntax element in the picture layer as specified in section 7.1.1.27. See section 8.3.5.2.1 for a description of
the motion vector decode process.

7.1.3.9 Block-level Motion Vector Data (BLKMVDATA)(Variable size)[P]

BLKMVDATA is a syntax element that contains motion information for the block. It is a variable sized syntax
element and is only present in certain situations. The Huffman table used to decode this syntax element is specified by
the MVTAB syntax element in the picture layer as specified in section 7.1.1.27. See section 8.3.5.2.1 for a description
of when the BLKMVDATA syntax element is present and how it is used.

7.1.3.10 Hybrid Motion Vector Prediction (HYBRIDPRED)(1 bit)[P]

HYBRIDPRED is a 1-bit syntax element per motion vector, present in P picture macroblocks. Section 8.3.5.3.4
describes how HYBRIDPRED is used in the decoding process.

7.1.3.11 MB-level Transform Type (TTMB)(Variable size)[P,B]

The TTMB syntax element is a variable syntax element present in P and B picture macroblocks, if the picture layer
syntax element TTMBF = 0. As shown in Table 43, Table 44, and

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 89

Table 45, the TTMB syntax element specifies the transform type, the signal level and the subblock pattern. If the
signal type specifies macroblock mode, the transform type decoded from the TTMB syntax element is used to decode
all coded blocks in the macroblock. If the signal type signals block mode, then the transform type decoded from the
TTMB syntax element is used to decode the first coded block in the macroblock. The transform type of the remaining
blocks is coded at the block level. If the transform type is 8x4 or 4x8, then the subblock pattern indicates the subblock
pattern of the first block.

The table used to decode the TTMB syntax element depends on the value of PQUANT. For PQUANT less than or
equal to 4, Table 43 is used. For PQUANT greater than 4 and less than or equal to 12, Table 44 is used. For PQUANT
greater than 12,

Table 45 is used.The subblock pattern indicates which of 8x4 or 4x8 subblocks have at least one non-zero coefficient.

Table 43: High Rate (PQUANT < 5) TTMB VLC Table

TTMB VLC Transform
Type

Signal Level Subblock
Pattern

11 8x8 Block NA

101110 8x4 Block Bottom

1011111 8x4 Block Top

00 8x4 Block Both

10110 4x8 Block Right

10101 4x8 Block Left

01 4x8 Block Both

100 4x4 Block NA

10100 8x8 Macroblock NA

1011110001 8x4 Macroblock Bottom

101111001 8x4 Macroblock Top

101111011 8x4 Macroblock Both

101111000000 4x8 Macroblock Right

101111000001 4x8 Macroblock Left

10111100001 4x8 Macroblock Both

101111010 4x4 Macroblock NA

Table 44: Medium Rate (5 <= PQUANT < 13) TTMB VLC Table

TTMB VLC Transform
Type

Signal Level Subblock
Pattern

110 8x8 Block NA

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 90

0110 8x4 Block Bottom

0011 8x4 Block Top

0111 8x4 Block Both

1111 4x8 Block Right

1110 4x8 Block Left

000 4x8 Block Both

010 4x4 Block NA

10 8x8 Macroblock NA

0010100 8x4 Macroblock Bottom

0010001 8x4 Macroblock Top

001011 8x4 Macroblock Both

001001 4x8 Macroblock Right

00100001 4x8 Macroblock Left

0010101 4x8 Macroblock Both

00100000 4x4 Macroblock NA

Table 45: Low Rate (PQUANT >= 13) TTMB VLC Table

TTMB VLC Transform
Type

Signal Level Subblock
Pattern

110 8x8 Block NA

000 8x4 Block Bottom

1110 8x4 Block Top

00101 8x4 Block Both

010 4x8 Block Right

011 4x8 Block Left

0011 4x8 Block Both

1111 4x4 Block NA

10 8x8 Macroblock NA

0010000001 8x4 Macroblock Bottom

00100001 8x4 Macroblock Top

001001 8x4 Macroblock Both

00100000001 4x8 Macroblock Right

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 91

001000001 4x8 Macroblock Left

0010001 4x8 Macroblock Both

00100000000 4x4 Macroblock NA

7.1.3.12 Direct B Frame Coding Mode (DIRECTBBIT)(1 bit)[B]

DIRECTBBIT is a 1-bit syntax element present in B frame macroblocks if the frame level syntax element DIRECTMB
(see section 7.1.1.21) indicates that raw mode is used. If DIRECTBBIT = 1, then the macroblock is coded using
direct mode. See section 8.4.3.2 for details on direct mode.

7.1.3.13 B Macroblock Motion Vector 1 (BMV1)(Variable size)[B]

BMV1 is a variable sized syntax element present in B picture macroblocks. This syntax element encodes the first
motion vector for the macroblock. See section 8.3.5.2 for a description of the motion vector decode process.

7.1.3.14 B Macroblock Motion Vector 2 (BMV2)(Variable size)[B]

BMV2 is a variable sized syntax element present in B picture macroblocks if the Interpolation mode is used. This
syntax element encodes the second motion vector for the macroblock. See section 8.3.5.2 for a description of the
motion vector decode process.

7.1.3.15 B Macroblock Motion Prediction Type (BMVTYPE)(Variable size)[B]

BMVTYPE is a variable sized syntax element present in B frame macroblocks that indicates whether the macroblock
uses forward, backward or interpolated prediction. As Table 46 shows, the value of BFRACTION (in the picture
header, see section 7.1.1.10) along with BMVTYPE determine which type is used.

Table 46: B Frame Motion Prediction Type

Motion Prediction Type BMVTYPE
VLC

BFRACTION <= 1/2 BFRACTION > 1/2

0 Backward Forward

10 Forward Backward

11 Interpolated Interpolated

7.1.4 Block Layer

Figure 24 and Figure 25 show the block layer syntax elements for intra and inter-coded blocks. The elements that
make up the block layer are described in the following sections. Specified in square brackets are the types (intra, inter
or both) in which the block elements occur.

7.1.4.1 Block-level Transform Type (TTBLK)(Variable size)[inter]

The TTBLK syntax element is present only in inter-coded blocks and only if the macroblock level syntax element
TTMB (see section 7.1.3.11) indicates that the signaling level is Block. The 8x8 error blocks may be transformed
using an 8x8 Transform, two 8x4 Transforms, two 4x8 Transforms or four 4x4 Transforms. The TTBLK syntax
element codes the transform type for the block as well as the subblock pattern if the transform type is 8x4 or 4x8. The
table used to decode the TTBLK syntax element depends on the value of PQUANT. If PQUANT is less than or equal
to 4, then Table 47 is used. If PQUANT is greater than 4 and less than or equal to 12, then Table 48 is used. If
PQUANT is greater than 12, then Table 49 is used. The TTBLK syntax element is not present for the first block in
each macroblock since the transform type and subblock pattern decoded in TTMB is used for the first block. TTBLK is
present for each coded block after the first. The subblock pattern indicates which of 8x4 or 4x8 subblocks have at least
one non-zero coefficient.

Table 47: High Rate (PQUANT < 5) TTBLK VLC Table

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 92

TTBLK
VLC

Transfor
m Type

Subblock
Pattern

00 8x4 Both

01 4x8 Both

11 8x8 NA

101 4x4 NA

10000 8x4 Top

10001 8x4 Bottom

10010 4x8 Right

10011 4x8 Left

Table 48: Medium Rate (5 =< PQUANT < 13) TTBLK VLC Table

TTBLK
VLC

Transfor
m Type

Subblock
Pattern

11 8x8 NA

000 4x8 Right

001 4x8 Left

010 4x4 NA

011 8x4 Both

101 4x8 Both

1000 8x4 Bottom

1001 8x4 Top

Table 49: Low Rate (PQUANT >= 13) TTBLK VLC Table

TTBLK
VLC

Transfor
m Type

Subblock
Pattern

01 8x8 NA

000 4x8 Both

001 4x4 NA

100 8x4 Bottom

110 4x8 Right

111 4x8 Left

1010 8x4 Both

1011 8x4 Top

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 93

7.1.4.2 Transform sub-block pattern (SUBBLKPAT)(Variable size)[inter]

The SUBBLKPAT syntax element is only present in inter-coded blocks and only if the transform type for the block is
8x4, 4x8 or 4x4.

For 4x4 transform types, the SUBBLKPAT syntax element indicates which of the 4 4x4 subblocks have at least one
non-zero coefficient.

Figure 26: 4x4 Subblocks

The subblock pattern is coded as a 4 bit syntax element where each bit indicates whether the corresponding subblock
contains at least one non-zero coefficient. Figure 26 shows the labeling of the 4 subblocks that make up an 8x8 block.
The subblock pattern is coded is coded as follows:

Subblock pattern = 8 * SB0 + 4 * SB1 + 2 * SB2 + SB3

Where:

SBx = 0 if the corresponding subblock does not contain any non-zero coefficients, and

SBx = 1 if the corresponding subblock contains at least one non-zero coefficient.

The following tables show the VLC codewords used to encode the subblock pattern. The table used depends on the
value of PQUANT. If PQUANT is less than or equal to 4, then Table 50 is used. If PQUANT is greater than 4 and less
than or equal to 12, then Table 51 is used. If PQUANT is greater than 12, then Table 52 is used.

Table 50: High Rate (PQUANT < 5) SUBBLKPAT VLC Table

SUBBLKPAT
VLC

Subblock
Pattern

SUBBLKPAT
VLC

Subblock
Pattern

1 15 01010 8

0000 11 01011 4

0001 13 01100 2

0010 7 01110 1

00110 12 01111 14

00111 3 011010 6

01000 10 011011 9

01001 5

Table 51: Medium Rate (5 =< PQUANT < 13) SUBBLKPAT VLC Table

SUBBLKPAT Subblock SUBBLKPAT Subblock

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 94

VLC Pattern VLC Pattern

01 15 1111 4

000 2 00100 6

0011 12 00101 9

1000 3 10110 14

1001 10 10111 7

1010 5 11000 13

1101 8 11001 11

1110 1

Table 52: Low Rate (PQUANT >= 13) SUBBLKPAT VLC Table

SUBBLKPAT
VLC

Subblock
Pattern

SUBBLKPAT
VLC

Subblock
Pattern

010 4 1111 15

011 8 00000 6

101 1 00001 9

110 2 10010 14

0001 12 10011 13

0010 3 11100 7

0011 10 11101 11

1000 5

Figure 27: 8x4 and 4x8 Subblocks

For 8x4 or 4x8 transform types, the SUBBLKPAT syntax element specifies which of the two sub-blocks have at least
one non-zero coefficient. The data is encoded with the following VLC table (an X indicates that the sub-block
contains at least one non-zero coefficient):

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 95

Table 53: 8x4 and 4x8 Transform sub-block pattern code-table for Progressive pictures

8x4 Sub-block pattern 4x8 Sub-block pattern SUBBLKPAT
VLC

Top Bottom Left Right

0 X X

10 X X X X

11 X X

7.1.4.3 Transform DC Coefficient (DCCOEF)(Variable size)[intra]

The DCCOEF syntax element is only present in intra-coded blocks. This is a variable-length codeword that encodes
the Transform DC differential. Refer to section 8.1.1.7 for a description of the Transform DC decoding process. One of
two code tables is used to encode the DC differentials (the table is signaled in the TRANSDCTAB syntax element in
the picture header as described in section 8.1.1.2). Section 11.7 lists the DC Huffman tables.

7.1.4.4 Transform DC Coefficient (DCCOEFESC)(variable size)[intra]

The DCCOEFESC syntax element is only present in intra-coded blocks and only if DCCOEF decodes to the escape
code. The size of DCCOEFESC syntax element may be 8, 9 or 10 bits, depending on the quantization step size of the
block. Refer to section 8.1.1.7 for a description of the Transform DC decoding process.

7.1.4.5 Transform DC Coefficient Extension for Quant1 (DCCOEF_EXTQUANT1)(Variable size)[intra]

The DCCOEF_EXTQUANT1 is a 2-bit syntax element is only present in intra-coded blocks, and only if DCCOEF is
decodes to a non-zero, and non-escape code value, and if the quantizer step size for the block has the value 1. This
syntax element is used in conjunction with DCCOEF to determine the value of the DC differential when the quantizer
step size takes the value 1. Refer to section 8.1.1.7 for a description of the Transform DC decoding process.

7.1.4.6 Transform DC Coefficient Extension for Quant2 (DCCOEF_EXTQUANT2)(Variable size)[intra]

The DCCOEF_EXTQUANT2 is a 1-bit syntax element is only present in intra-coded blocks, and only if DCCOEF is
decodes to a non-zero, and non-escape code value, and if the quantizer step size for the block has the value 2. This
syntax element is used in conjunction with DCCOEF to determine the value of the DC differential when the quantizer
step size takes the value 2. Refer to section 8.1.1.7 for a description of the Transform DC decoding process.

7.1.4.7 Transform DC Sign (DCSIGN)(1 bit)[intra]

DCSIGN is a one-bit value that indicates the sign of the DC differential. It is present only if DCCOEF decodes to a
non-zero value. If DCSIGN = 0, then the DC differential is positive. If DCSIGN = 1, then the DC differential is
negative.

7.1.4.8 Transform AC Coefficient 1 (ACCOEF1)(Variable size)[both]

ACCOEF1 is present in both intra and inter blocks. This is a variable-length codeword that encodes the run, level and
last_flag for each non-zero AC coefficient. Refer to section 8.1.1.10 for a description of the Transform AC decoding
process. One of three code tables is used to encode ACCOEF1. The table is signaled in the picture or macroblock
headers. Section 11.8 lists the AC Huffman tables.

7.1.4.9 Transform AC Coefficient 2 (ACCOEF2)(Variable size)[both]

ACCOEF2 may be present in both intra and inter blocks. It is only present if ACCOEF1 decodes to the escape code
and if the ESCMODE syntax element (described in section 7.1.4.10) specifies AC decoding escape mode 1 or 2 (refer
to section 8.1.1.10 for a description of the Transform AC decoding process). One of three code tables is used to encode
ACCOEF2. The table is signaled in the picture or macroblock headers. Section 11.8 lists the AC Huffman tables.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 96

7.1.4.10 Transform AC Escape Decoding Mode (ESCMODE)(Variable size)[both]

ESCMODE may be present in both intra and inter blocks. It is only present if ACCOEF1 decodes to the escape code.
ESCMODE is a variable-length codeword that signals which of three escape decoding methods are used to decode the
AC coefficient. Table 54 shows the code-table used to encode the escape modes.

Table 54: AC escape decoding mode code-table

ESCMODE
VLC

AC Escape
Decoding
Mode

1 Mode 1

01 Mode 2

00 Mode 3

If mode 1 or mode 2 decoding is specified, then the bitstream contains the ACCOEF2 element as described in section
7.1.4.9. If mode 3 is specified, then the bitstream contains the ESCLR, ESCRUN, ESCLVL and LVLSIGN2 elements
and may contain the ESCLVLSZ and ESCRUNSZ elements, as described in sections 6.1.4.9 - 7.1.4.17.

7.1.4.11 Transform AC Level Sign (LVLSIGN)(1 bit)[both]

LVLSIGN may be present in both intra and inter blocks. It will always be present unless ESCMODE specifies AC
decoding mode 3. LVLSIGN is a one-bit value that specifies the sign of the AC level. Refer to section 8.1.1.10 for a
description of the Transform AC decoding process. If LVLSIGN = 0, then the level is positive. If LVLSIGN = 1, then
the level is negative.

7.1.4.12 Escape Mode 3 Last Run (ESCLR)(1 bit)[both]

ESCLR may be present in both intra and inter blocks. It is only present if ESCMODE specifies AC decoding escape
mode 3. ESCLR is a one-bit value that specifies whether this coefficient is the last non-zero coefficient in the block. If
ESCLR = 1, then this is the last non-zero coefficient. If ESCLR = 0, then this is not the last non-zero coefficient.

7.1.4.13 Escape Mode 3 Run (ESCRUN)(Calculated size)[both]

ESCRUN may be present in both intra and inter blocks. It is only present if ESCMODE specifies AC decoding escape
mode 3. The size of the ESCRUN codeword is fixed throughout the frame, with the size being specified in the
ESCRUNSZ syntax element described in section 7.1.4.17. ESCRUN directly encodes the run value for the coefficient.
For example, if the size (from ESCRUNSZ) is 4 bits and the value is [0101], then the run is decoded as 5.

7.1.4.14 Escape Mode 3 Level (ESCLVL)(Calculated size)[both]

ESCLVL may be present in both intra and inter blocks. It is only present if ESCMODE specifies AC decoding escape
mode 3. The size of the ESCLVL codeword is fixed throughout the frame, with the size being specified in the
ESCLVLSZ syntax element described in section 7.1.4.16. ESCLVL directly encodes the level value for the coefficient.
For example, if the size (from ESCLVLSZ) is 3 bits and the value is [110], then the run is decoded as 6.

7.1.4.15 Escape Mode 3 Level Sign (LVLSGN2)(1 bit)[both]

LVLSGN2 may be present in both intra and inter blocks. It is only present if ESCMODE specifies AC decoding escape
mode 3. LVLSGN2 is a one-bit value that specifies the sign of the decoded level value (ESCLVL). If LVLSGN2 = 0,
then the level is positive. If LVLSGN2 = 1, then the level is negative.

7.1.4.16 Escape Mode 3 Level Size (ESCLVLSZ)(Variable size)[both]

ESCLVLSZ may be present in both intra and inter blocks. It is only present if ESCMODE specifies AC decoding
escape mode 3 and if this is the first time mode 3 has been signaled within the current frame (in other words, all
subsequent instances of escape mode 3 coding within this frame do not have this syntax element). ESCLVLSZ is used

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 97

to specify the codeword size for the mode 3 escape-coded level values for the entire frame. Two different VLC tables
are used to encode ESCLVLSZ, depending on the value of PQUANT, and other information.

The conservative table is used when PQUANT is between 1 and 7, both values inclusive. The efficient table is used
when PQUANT is 8 and higher. The conservative table covers the widest range of possible transform values, whereas
the efficient table covers a limited subset and is therefore used when the values may be guaranteed to be within the
available range. When DQUANT is used within a frame, the conservative table is used regardless of PQUANT.

The two tables are as follows:

Table 55: Escape mode 3 level codeword size conservative code-table (used typically for 1 <= PQUANT <= 7)

1 <= PQUANT <= 7

ESCLVLSZ
VLC

Level codeword size

001 1

010 2

011 3

100 4

101 5

110 6

111 7

00000 8

00001 9

00010 10

00011 11

Table 56: Escape mode 3 level codeword size efficient code-table (used typically for 8 <= PQUANT <= 31)

8 <= PQUANT <= 31

ESCLVLSZ
VLC

Level codeword size

1 2

01 3

001 4

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 98

0001 5

00001 6

000001 7

000000 8

7.1.4.17 Escape Mode 3 Run Size (ESCRUNSZ)(2 bits)[both]

ESCRUNSZ may be present in both intra and inter blocks. It is only present if ESCMODE specifies AC decoding
escape mode 3 and is only present the first time escape mode 3 is signaled within the frame. ESCRUNSZ is used to
specify the codeword size for the mode 3 escape-coded run values for the entire frame. The run codeword size is
encoded according to Table 57:

Table 57: Escape mode 3 run codeword size code-table

ESCRUNSZ FLC Run codeword size

00 3

01 4

10 5

11 6

7.2 Bitplane Coding Syntax
Various frame-level syntax elements use a bitplane coding scheme to indicate the status of the macroblocks that make
up the frame. For example, in P and B frames, the presence of skipped macroblocks is signaled with a bit set to 0 and
the presence of a non-skipped macroblock is signaled with a bit set to 1. These bits are coded as a frame-level bitplane.
The following diagram shows the elements that make up the bitplane.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 99

Figure 28: Syntax diagram for the bitplane coding

7.2.1 Invert Flag (INVERT)

The INVERT syntax element is a 1-bit value. Refer to section 8.7.1 for a description of how the INVERT value is used
in decoding the bitplane.

7.2.2 Coding Mode (IMODE)

The IMODE syntax element is a variable length value that indicates the coding mode used to encode the bitplane.
Table 58 shows the codetable used to encode the IMODE syntax element. Refer to section 7.6.2 for a description of
how the IMODE value is used in decoding the bitplane.

Table 58: IMODE VLC Codetable

IMODE
VLC

Coding Mode

10 Norm-2

11 Norm-6

010 Rowskip

011 Colskip

001 Diff-2

0001 Diff-6

0000 Raw

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 100

7.2.3 Bitplane Coding Bits (DATABITS)

The DATABITS syntax element is variable sized syntax element that encodes the bitplane. The method used to encode
the bitplane is determined by the value of IMODE. Refer to section 8.7.3 for a description the different coding
methods.

8 Progressive Decoding Process
This section describes the decoding process for progressive I pictures, and Progressive P pictures.

8.1 Progressive I Frame Decoding
The following sections describe the process for decoding progressive I pictures.

8.1.1 Progressive I Picture Layer Decode

Figure 10 shows the elements that make up the I picture layer header for simple and main profiles. Figure 12 shows
the elements that make up the I picture layer header for advanced profile. Some of the elements are self-explanatory.
The following sections provide extra detail for some of the elements.

8.1.1.1 Frame-level Transform AC Table Index

TRANSACFRM and TRANSACFRM2 are variable-length syntax elements that are present in the picture layer. The
TRANSACFRM and TRANSACFRM2 syntax elements provide the indices that select the coding sets used to decode
the Transform AC coefficients for the Y and U/V blocks, respectively. Table 42 is used to decode the
TRANSACFRM and TRANSACFRM2 syntax elements. Refer to section 8.1.1.10 for a description of AC coefficient
decoding.

8.1.1.2 Intra Transform DC Table

TRANSDCTAB is a one-bit syntax element that signals which of two Huffman tables is used to decode the Transform
DC coefficients in intra-coded blocks. If TRANSDCTAB = 0, then the low motion huffman table is used. If
TRANSDCTAB = 1, then the high motion huffman table is used. Section 11.7 lists the Transform DC Huffman tables.

8.1.1.3 Picture Resolution Index

The RESPIC syntax element in I pictures, in simple and main profiles, specifies the scaling factor of the decoded I
picture relative to a full resolution frame. The decoded picture may be full resolution or half the original resolution in
either the horizontal or vertical dimensions or half resolution in both dimensions. Table 30 shows how the scaling
factor is encoded in the RESPIC syntax element.

The resolution encoded in the I picture RESPIC syntax element also applies to all subsequent P pictures until the next
I picture. In other words, all P pictures are encoded at the same resolution as the first I picture. The RESPIC syntax
element that is present in a P picture header shall carry the same value as the RESPIC syntax element of the closest
temporally preceding I frame.

The following pseudo-code illustrates how the new frame dimensions are calculated if a downsampled resolution is
indicated.

X = full resolution horizontal dimension in samples

Y = full resolution vertical dimension in samples

x = new horizontal resolution

y = new vertical resolution

hscale = horizontal scaling factor (0 = full resolution, 1= half resolution)

vscale = vertical scaling factor (0 = full resolution, 1= half resolution)

x = X

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 2

y = Y

if (hscale == 1)

{

 x = X / 2

 if ((x & 15) != 0)

 x = x + 16 – (x & 15)

}

if (vscale == 1)

{

 y = Y / 2

 if ((y & 15) != 0)

 y = y + 16 – (y & 15)

}

Figure 29: Calculation of Frame Dimensions in Multires Downsampling Pseudo-code

If the decoded picture is one of the subsampled resolutions, then it shall be upsampled to full resolution prior to
display. Since this upsampling process is outside the decoding loop, the implementer is free to use any upsampling
filter. However, attention should be paid to the relative spatial positioning of the samples produced from the
upsampling and downsampling processes. In particular, spatial alignment of the video samples of the downsampled
frame with respect to the video samples of the frame at the original resolution should follow the specification in Annex
B.

8.1.1.4 Range Reduction Frame - I Frame (RANGEREDFRM)

The RANGEREDFRM is only signaled when RANGERED is signaled at the sequence level.

When RANGEREDFRM is signaled for the current I Frame, the current decoded frame shall be scaled up prior to
display while keeping the original reconstructed frame for use in future motion compensation. Let Y, U, V denote the
YCbCr planes of the output frame. The pixels are scaled up according to the following formula:

Y[n] = CLIP ((Y[n] – 128) * 2 + 128);

U[n] = CLIP ((U[n] – 128) * 2 + 128);

V[n] = CLIP ((V[n] – 128) * 2 + 128);

Macroblock Layer Decode

Figure 3 shows how the frame is composed of macroblocks. The macroblocks are coded in raster scan order form left
to right. Figure 20 shows the elements that make up the I picture macroblock layer.

8.1.1.5 Coded Block Pattern

The coded block pattern specifies which of the six blocks that make up the macroblock have AC coefficient
information coded within the bitstream. The coded block pattern is derived from the six-bit value obtained from
decoding the variable-length CBPCY syntax element in the macroblock header (the Huffman table used to decode
CBPCY is listed in section 11.5). The coded block pattern (cbpcy) is derived from the six-bit value decoded from the
CBPCY syntax element (decoded_cbpcy) as follows:

cbpcy = (predicted_Y0<< 5)| (predicted_Y1 << 4) | (predicted_Y2 << 3) | (predicted_Y3 << 2)|
(decoded_cbpcy&0x03)

where predicted_Y0 .. predicted_Y3 are each one-bit values calculated as follows:

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 3

predicted_Y0 =
L1, if LT3 equals T2
T2 otherwise

predicted_Y0 ^= ((decoded_cbpcy >> 5) & 0x01);

predicted_Y1 =
predicted_Y0, if T2 equals T3
T3 otherwise

predicted_Y1 ^= ((decoded_cbpcy >> 4) & 0x01);

predicted_Y2 =
L3, if L1 equals predicted_Y0
predicted_Y0 otherwise

predicted_Y2 ^= ((decoded_cbpcy >> 3) & 0x01);

predicted_Y3 =
predicted_Y2, if predicted_Y0 equals predicted_Y1
predicted_Y1 otherwise

predicted_Y3 ^= ((decoded_cbpcy >> 2) & 0x01);

L0, L1, L2, L3, LT3, T0, T1, T2 and T3 are one-bit values representing the coded status of the neighboring luminance
blocks as illustrated in Figure 30. If the neighboring block is outside the frame boundaries, or if the neighboring block
belongs to a different slice, its coded status is set to zero. The figure shows the four luminance blocks which make up
the current macroblock outlined in a heavy border along with blocks from the neighboring macroblocks. The values of
T0, T1, etc indicate whether the corresponding block was coded or not. For example, if L0 = 1, then block Y0 in the
macroblock to the immediate left of the current macroblock was coded. If L0 = 0, then the block was not coded.

Figure 30: CBP encoding using neighboring blocks

The six-bit coded block pattern (cbpcy) specifies which of the six blocks that make up the macroblock have at least one
non-zero AC coefficient coded in the block layer bitstream. The bit positions in the six-bit coded block pattern syntax
element correspond to the six blocks as shown in Table 59 (bit position 0 is the rightmost bit):

Table 59: Coded block pattern bit position

Coded Block Pattern Bit Position

5 4 3 2 1 0

Block Y1 Y2 Y3 Y4 Cb Cr

T0 T1

T2 T3

L0 L1

L2 L3

LT3

Current
Macroblock
(Y Blocks)

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 4

A bit value of 1 in the coded block pattern indicates that the corresponding block has at least one non-zero AC
coefficient coded in the block layer bitstream. A value of zero indicates that there are no AC coefficients coded in the
block layer bitstream.

8.1.1.6 AC Prediction Flag

The ACPRED syntax element in the macroblock header is a one-bit syntax element that specifies whether AC
prediction is used to decode the AC coefficients for all the blocks in the macroblock. Section 8.1.1.13 describes the AC
prediction process. If ACPRED is 1, then AC prediction is used, otherwise it is not used.

Block Decode

Figure 3 illustrates how each macroblock is made up of 6 blocks. As the figure shows, the 4 blocks that make up the Y
component of the macroblock are coded first followed by the Cb and Cr blocks. This section describes the process used
to reconstruct the blocks.

Figure 4 shows the forward intra-coding steps used to encode the 8x8 pixel blocks. Figure 31 shows the inverse
process used to reconstruct the 8x8 blocks.

Figure 31: Intra block reconstruction

As Figure 31 shows, the DC and AC Transform coefficients are coded using separate techniques. The DC coefficient is
coded differentially. An optional differential coding of the left or top AC coefficients may be used. The following
sections describe the process for reconstructing intra blocks in I pictures

8.1.1.7 DC Differential Bitstream Decode

The DC coefficient is coded differentially with respect to an already-decoded DC coefficient neighbor. This section
describes the process used to decode the bitstream to obtain the DC differential.

Predicted

DC

AC

....

run level

Quantized DCT

AC VLD

DC VLD

Inverse
Quantiz

Inverse

Trans

RLD

Inverse
zig-

 sca

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 5

Figure 24 shows the bitstream elements used to encode the DC differential. DCCOEF is decoded using one of two
VLC code tables. The table is specified by the TRANSDCTAB syntax element in the picture header (see section
8.1.1.2). Based on the value of TRANSDCTAB, one of the two Huffman tables listed in section 11.7 is used to decode
DCCOEF. This will yield either:

1) Zero, or

2) the absolute value of the DC differential, or

3) The escape code.

If DCCOEF decodes to zero, the value of the DC differential is also zero. Other wise, further decoding is necessary to
determine the value of DC differential. If the DCCOEF decodes to the escape code, the absolute value of the DC
differential is encoded in the DCCOEFESC syntax element (section 7.1.4.4). The size of the DCCOEFESC syntax
element may be 8, 9 or 10 bits depending on the quantization step size of the block. If the DCCOEF does not decode to
the escape code, and the quantizer step size is 1, an additional 2-bit syntax element DCCOEF_EXTQUANT1 is
decoded, and this is used to refine the value of DC differential. If the DCCOEF does not decode to the escape code,
and the quantizer stepsize is 2, an additional 1-bit syntax element DCCOEF_EXTQUANT2 is decoded, and this
quantizer step size is used to refined the value of the DC differential. The sign of the DC differential is obtained from
the DCSIGN syntax element (section 7.1.4.7).

The following pseudo-code, where QUANT refers to MQUANT, illustrates the DC differential decoding process:

DCDifferential = vlc_decode()

if(DCDifferential != 0) {

 if(DCDifferential == ESCAPECODE) {

 if(QUANT == 1)

 DCDifferential = flc_decode(10);

 else if(QUANT == 2)

 DCDifferential = flc_decode(9);

 else // QUANT is > 2

 DCDifferential = flc_decode(8);

 }

 else { // DCDifferential is not ESCAPECODE

 if(QUANT == 1)

 DCDifferential = DCDifferential*4 + flc_decode(2) – 3;

 else if(QUANT == 2)

 DCDifferential = DCDifferential*2 + flc_decode(1) – 1;

 }

 DCSign = flc_decode(1)

 if (DCSign == 1)

 DCDifferential = -DCDifferential

}

Figure 32: DC Differential Decoding Pseudo-code

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 6

8.1.1.8 DC Predictor

Figure 33: DC predictor candidates

The quantized DC value for the current block is obtained by adding the DC predictor to the DC differential obtained as
described in section 8.1.1.7. In the simple and main profiles, the DC predictor is obtained directly from the DC
coefficients of one of the previously decoded adjacent blocks. In the advanced profile, there is an additional coefficient
scaling step if the macroblocks quantizers of the neighbouring blocks are different than that of the current block. The
DC coefficient scaling (along with AC coefficient scaling) for prediction in advanced profile is described in section
8.1.1.15, and these scaled DC coefficients are used for computing the prediction direction, as well as the actual
prediction. Figure 33 shows the current block and the candidate predictors from the adjacent blocks. The values A,
B and C represent the quantized DC values for the top, top-left and left adjacent blocks respectively.

In the following cases there are no adjacent blocks:

1) The current block is in the first block row of the frame. In this case there are no A or B (and possibly C)
blocks

2) The current block is in the first block column in the frame. In this case there are no B and C (and possibly A)
blocks.

For these cases the DC predictor is set to either 0 (Rule A) or the following (Rule B):

 DCPredictor = (1024 + (DCStepSize >> 1)) / DCStepSize

Rule B is used only for Intra (and BI) frames coded in the simple/main profile with overlap filtering turned off. All
other cases use the value of 0 for the default DC predictor. Since DQUANT is not enabled for I and BI frames in the
simple and main profiles, Rule B is never applied with DQUANT.

Refer to section 8.1.1.9 for a description of how to compute DCStepSize.

A prediction direction is formed based on the values of A, B and C and either the A or C predictor is chosen. The
prediction direction is calculated for Rule A and Rule B as follows:

Rule A

If there are no adjacent intra blocks, the DC predictor is set to zero. If there is only one adjacent block, this block is
used for prediction and its DC value used as the DC predictor (appropriately scaled as specified in section 8.1.1.15 if
necessary). If only the left and top blocks are intra, and top-left block (block B in Figure 33) is inter coded, then the
left block C is used as the predictor. If all three neighbors A, B and C are available, then the procedure of Figure 34 is
applied.

Rule B

When Rule B is used, the DC component of unavailable neighbors is assumed to be DCPredictor (specified in the
above equation). If the absolute value of (B - A) is less than or equal to the absolute value of (B – C), then the
prediction is made from the left (C is the predictor). Otherwise the prediction is made from the top (A is the predictor).
In pseudo-code, the process is as follows:

if (|B – A| <= |B – C|)

{

 PredDirection = left;

 DCPredictor = C;

Current
Block

A

C

B

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 7

}

else

{

 PredDirection = top;

 DCPredictor = A;

}

Figure 34: Prediction selection pseudo-code

The quantized DC coefficient is then calculated by adding the DC differential and the DC predictor as follows:

 DCCoeffQ = DCPredictor + DCDifferential

8.1.1.9 DC Inverse-quantization

The quantized DC coefficient is reconstructed by performing the following de-quantization operation:

 DCCoefficient = DCCoeffQ * DCStepSize

The value of DCStepSize is based on the value of MQUANT (obtained in the picture header from PQUANT and the
VOPDQUANT syntax elements) as follows:

For MQUANT equal to 1 or 2:

 DCStepSize = 2 * MQUANT

For MQUANT equal to 3 or 4:

 DCStepSize = 8

For MQUANT greater than or equal to 5:

 DCStepSize = MQUANT / 2 + 6

8.1.1.10 AC Coefficient Bitstream Decode

The non-zero quantized AC coefficients are coded using a 3D run-level method. A set of tables and constants are used
to decode the run, level and last-flag values. For descriptive purposes, the set of tables and constants is called an AC
coding set. Following is a description of the tables and constants that make up an AC coding set.

Tables: The first step in reconstructing the AC Transform coefficients is to decode the bitstream to obtain the run,
level and last-flag triplets that represent the location and quantized level for each non-zero AC coefficient.

Huffman table (HuffTable): The code table used to decode the ACCOEF1 and ACCOEF2 variable-length encoded
syntax elements.

Run table (RunTable): The table of run values indexed by the value decoded in the ACCOEF1 or ACCOEF2 syntax
elements

Level table (LevelTable): The table of level values indexed by the value decoded in the ACCOEF1 or ACCOEF2
syntax elements.

Not-last delta run table (NotLastDeltaRunTable): The table of delta run values indexed by the level value as
illustrated in pseudo-code of Figure 35. Used in escape coding mode 2.

Last delta run table (LastDeltaRunTable): The table of delta run values indexed by the level value as illustrated in
pseudo-code of Figure 35. Used in escape coding mode 2.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 8

Not-last delta level table (NotLastDeltaLevelTable): The table of delta level values indexed by the run value as
illustrated in pseudo-code of Figure 35. Used in escape coding mode 1.

Last delta level table (LastDeltaLevelTable): The table of delta level values indexed by the run value as illustrated
in pseudo-code of Figure 35. Used in escape coding mode 1.

Presence of Fixed Length Codes – Mode3 (first_mode3): This is used in escape coding mode 3 (where events are
coded by fixed length codes). It is set to one at the beginning of a frame or a slice. It is set to zero, whenever mode
3 is used for the first time.

Constants

Start index of last coefficient (StartIndexOfLast): The HuffTable encodes index values from 0 to N. The index
values are used to obtain the run and level values from RunTable and LevelTable respectively. The first
(StartIndexOfLast-1) of these index values correspond to run, level pairs that are not the last pair in the block. The
next StartIndexOfLast to N-1 index values correspond to run, level pairs that are the last pair in the block. The last
value, N, is the Escape Index (see next).

Escape Index (EscapeIndex): The last in the set of indices encoded by HuffTable. See the description above and the
pseudo-code of Figure 35 for a description of how this constant is used.

The following pseudo-code illustrates how the tables and constants are used to decode a run, level and last-flag triplet.

last_flag = 0;

index = vlc_decode(); ## Use HuffTable to decode VLC codeword (ACCOEF1)

If (index != EscapeIndex)

{

 run = RunTable[index];

 level = LevelTable[index];

 sign = get_bits(1);

 if (sign == 1)

 level = -level;

 if (index >= StartIndexOfLast)

 last_flag = 1;

}

else

{

 escape_mode = vlc_decode(); ## Use Table 54 to decode ESCMODE syntax element

 if (escape_mode == mode1)

 {

 index = vlc_decode(); ## Use HuffTable to decode VLC codeword (ACCOEF2)

 run = RunTable[index];

 level = LevelTable[index];

 if (index >= StartIndexOfLast)

 last_flag = 1;

 if (last_flag == 0)

 level = level + NotLastDeltaLevelTable[run];

 else

 level = level + LastDeltaLevelTable[run];

 sign = get_bits(1);

 if (sign == 1)

 level = -level;

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 9

 }

 else if (escape_mode == mode2)

 {

 index = vlc_decode(); ## Use HuffTable to decode VLC codeword (ACCOEF2)

 run = RunTable[index];

 level = LevelTable[index];

 if (index >= StartIndexOfLast)

 last_flag = 1;

 if (last_flag == 0)

 run = run + NotLastDeltaRunTable[level];

 else

 run = run + LastDeltaRunTable[level];

 sign = get_bits(1);

 if (sign == 1)

 level = -level;

 }

 else if escape_mode == mode3 (fixed-length encoding)

 {

 last_flag = get_bits(1);

 if (first_mode3 == 1)

 {

 first_mode3 = 0;

 level_code_size = vlc_decode(); ## Use Table 55 or Table 56 to decode

 run_code_size = 3 + get_bits(2);

 }

 run = get_bits(run_code_size);

 sign = get_bits(1);

 level = get_bits(level_code_size);

 if (sign == 1)

 level = -level;

 }

}

Figure 35: Coefficient decode pseudo-code

The process illustrated in Figure 35 above for decoding the non-zero AC is repeated until last_flag = 1. This flag
indicates the last non-zero coefficient in the block.

To improve coding efficiency, there are eight AC coding sets. The eight coding sets are divided into two groups of
four, nominally called intra and inter coding sets. For Y blocks, one of the four intra coding sets is used. For Cb and
Cr blocks one of the four inter coding sets is used. Section 11.8 lists the tables that make up each coding set. The
particular set used to decode a block is signaled by an index value in either the picture header. The following two
tables shows how the index corresponds to the coding set for Y and Cb/Cr blocks. As the tables show, if the value of
PQINDEX (see section 7.1.1.15) is less than or equal to 7, then the high rate coding set is used for index 0. If
PQINDEX is greater than 7, then the low motion coding set is used for index 0.

Table 60: Coding Set Correspondence for PQINDEX <= 7

Y blocks Cb and Cr blocks

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 10

Inde
x

Table Index Table

0 High Rate Intra 0 HighRate Inter

1 High Motion Intra 1 High Motion Inter

2 Mid Rate Intra 2 Mid Rate Inter

Table 61: Coding Set Correspondence for PQINDEX > 7

Y blocks Cb and Cr blocks

Inde
x

Table Index Table

0 Low Motion Intra 0 Low Motion Inter

1 High Motion Intra 1 High Motion Inter

2 Mid Rate Intra 2 Mid Rate Inter

The value decoded from the TRANSACFRM2 syntax element is used as the coding set index for Y blocks and the
value decoded from the TRANSACFRM syntax element is used as the coding set index for Cb and Cr blocks.

8.1.1.11 AC Run-level Decode

The ordered run and level pairs obtained as described in section 8.1.1.10 are used to form an array of 63 elements by
employing a run-level decode process as illustrated in the pseudo-code of Figure 36.

array[63] = {0}; ## 63 element array initialized to zero.

curr_position = 0;

do {

 decode_symbol(&run, &level, &last_flag); ## decode the bitstream as described in Figure 35 to

 ## obtain run, level and last_flag values for coefficient

 array[curr_position + run] = level;

 curr_postion = curr_postion + run + 1;

} while (last_flag != 1)

Figure 36: Run-level decode pseudo-code

8.1.1.12 Zig-zag Scan of AC Coefficients

Decoding the run-level pairs as described in section 8.1.1.11 produces a one-dimensional array of 63 quantized AC
coefficients. The elements in the array are scanned out into an 8x8 two-dimension array in preparation for the Inverse
Transform. Figure 37 shows the elements in an 8x8 array labeled in raster scan order from 0 to 63. The DC coefficient
is in position 0. A mapping array is used to scan out the remaining 63 AC coefficients in the one-dimensional array to

the 8x8 array. As an example,

Figure 39 shows the mapping array used to produce the one-dimensional to two-dimensional scan out pattern shown in
Figure 38.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 11

0

181716

262524

343332

424140

504948

56 57 58 59

51

43

35

27

19

15141312

20 21 22 23

28 29 30 31

36 37 38 39

44 45 46 47

52 53 54 55

63626160

111098

7654321

Figure 37: 8x8 array with positions labeled

Figure 38: Example zig-zag scanning pattern

Figure 39: Zig-zag scan mapping array

One of three scan arrays is used to scan out the one-dimensional array depending on the AC prediction status for the
block (see section 8.1.1.13 for description of AC prediction). Table 62 shows how the AC prediction status determines
which scan array is used.

Table 62: Scan Array Selection

AC Prediction AC Scan Array

Top prediction Horizontal scan

Left prediction Vertical scan

No prediction Normal scan

 49 30 37 44 51 58 57 50 43 36 29 22 15 7 14 21 28 35 42 60 59 52 45 38 31 23 53 56

39 55 62 61 54 47 46

 8 12 19 26 33 40 32 25 18 11 4 3 10 17 24 16 9 2 1 41 34 27 20 13 6 5 48 0

63

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 12

The tables for the horizontal, vertical and normal scan arrays are listed in section 11.9.1.

8.1.1.13 AC Prediction

If the ACPRED syntax element in the macroblock layer specifies that AC prediction is used for the blocks, then the top
row or left column of AC coefficients in the decoded block are treated as differential values from the coefficients in the
corresponding row or column in a predicted block. The predictor block is either the block immediately above or to the
left of the current block. For each block, the direction chosen for the DC predictor is used for the AC predictor (see
section 8.1.1.8). Figure 40 shows that for top prediction the first row of AC coefficients in the block immediately
above is used as the predictor for the first row of AC coefficients in the current block. For left prediction the first
column of AC coefficients in the block to the immediate left is used as the predictor for the first column of AC
coefficients in the current block. In the simple profile, these AC coefficients are used directly for prediction. In the
main and advanced profiles, there is an additional coefficient scaling step if the macroblocks quantizers of the
neighboring blocks are different than that of the current block. The AC coefficient scaling (along with DC coefficient
scaling) for prediction in advanced profile is described in section 8.1.1.15, and these scaled AC coefficients are used
for prediction.

Top Prediction Left Prediction

Figure 40: AC prediction candidates

If a block does not exist in the predicted direction, then the predicted values for all 7 coefficients are set to zero. For
example, if the prediction is up but the block is in the top row, then there is no adjacent block in the up direction.

When the ACPRED syntax element specifies that AC prediction is not used for the blocks, the predictors for the 7 AC
coefficients in the first row or first column are in effect set to zero.

The AC coefficients in the predicted row or column are added to the corresponding decoded AC coefficients in the
current block to produce the fully reconstructed quantized Transform coefficient block.

8.1.1.14 Inverse AC Coefficient Quantization

Depending on whether the uniform or nonuniform quantizer is used (see section 7.1.1.15 and 7.1.1.17), the non-zero
quantized AC coefficients reconstructed as described in the sections above are inverse quantized according to the
following formula:

dequant_coeff = quant_coeff * double_quant (if uniform quantizer), or

dequant_coeff = quant_coeff * double_quant + sign(quant_coeff) * quant_scale (if nonuniform quantizer)

where:

quant_coeff is the quantized coefficient

dequant_coeff is the inverse quantized coefficient

double_quant = 2 * MQUANT + HalfStep

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 13

quant_scale = MQUANT

MQUANT is encoded in the macroblock layer, or may be derived from the picture layer PQUANT, as described in
sections 7.1.1.15, 7.1.1.29, 7.1.3.6 and 7.1.3.7. HalfStep is encoded in the picture layer as described in section
7.1.1.16.

8.1.1.15 Coefficient Scaling

For DC and AC prediction, in the advanced profile, the coefficients in the predicted blocks are scaled if the
macroblocks quantizers are different than that of the current block. The scaling process is described below.

18)200000][*(>>+∗= xDCSTEPDQScaleDCSTEPDCDC cppp ,

 18)200000][*(>>+∗= xSTEPDQScaleSTEPACAC cppp

where

 pDC is the scaled DC coefficient in the predictor block

 pDC is the original DC coefficient in the predictor block

 pDCSTEP is the DCStepSize of the predictor block

 cDCSTEP is the DCStepSize in the current block

 pAC is the scaled AC coefficient in the predictor block

 pAC is the original AC coefficient in the predictor block

 pSTEP is the MQUANT in the predictor block

 cSTEP is the MQUANT in the current block

 DQScale is an integer look up table with inputs from 1 to 31.

Table 63: DQScale

Index DQScale[Index]

1 262144

2 131072

3 87381

4 65536

5 52429

6 43691

7 37449

8 32768

9 29127

10 26214

11 23831

12 21845

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 14

13 20165

14 18725

15 17476

16 16384

17 15420

18 14564

19 13797

20 13107

21 12483

22 11916

23 11398

24 10923

25 10486

26 10082

27 9709

28 9362

29 9039

30 8738

31 8456

8.1.1.16 Inverse TRANSFORM

After reconstruction of the TRANSFORM coefficients, the resulting 8 × 8 blocks are processed by a separable
two-dimensional inverse transform of size 8 by 8. The inverse transform output has a dynamic range of 10 bits. See
section 8.8 regarding INVERSETRANSFORM conformance.

Subsequent to the inverse transform, the process of overlap smoothing is carried out if signaled. This is covered in
Section 7.5. Finally, the constant value of 128 is added to the reconstructed and possibly overlap smoothed intra
block. This result is clamped to the range [0 255] and forms the reconstruction prior to loop filtering.

For simple and main profile I frames, the constant 128 is not added prior to clamping to [0 255].

8.2 Progressive BI Frame Decoding
When B frames are used (in main and advanced profiles only), we code a special type of frame that is in some ways a
hybrid of I and B frames. The syntax of BI frames is almost identical to that of I, but they are usually coded at higher
QP’s and can never be used as an anchor or reference frame to predict other frames.

We will only mention the few differences between BI and I frames in this section. The remainder of BI decoding is
identical to I decoding.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 15

8.2.1 BFRACTION following picture type (main profile only)

The BFRACTION syntax element (section 7.1.1.10) immediately follows the picture type in a BI frame sent in main
profile. The specific code word that indicates that this I frame is to be re-interpreted as BI- is the BFRACTION
codeword: “1111111”.

8.2.2 No picture resolution index (RESPIC)

RESPIC is not sent in a BI frame. BI frames, along with B frames are constrained to operate at the same resolution as
its neighboring anchor frames.

8.2.3 No range reduction (RANGEREDFRM)

RANGEREDFRM is not sent in a BI frame. BI frames, along with B frames are constrained to operate at the same
dynamic range as the neighboring anchor frames.

8.3 Progressive P Frame Decoding
Figure 51 shows the steps required to decode and reconstruct blocks in P frames. The following sections describe the
process for decoding P pictures.

8.3.1 Skipped P Frames

In the main and simple profiles, frame skipping is to be signaled through additional means. If ASF Transport Layer is
used for this purpose, frame skipping may be signaled via the total length of data comprising a compressed frame. As
a coded frame will always contain more than 8 bits of data, if the total length of the data comprising a compressed
frame is 8 bits, this signals that the frame was coded as a P frame with no motion or residual error information present
(a non-coded frame). Note that the decoder does not decode the 8 bits used for frameskipping as they do not represent
an actual codeword.

In the advanced profile, a skipped frame is signaled by the PTYPE syntax element in the picture header. If a frame is
signaled as skipped then it is treated as if it were a P frame which was identical to the reference frame. Therefore, the
reconstruction of the skipped frame may be treated conceptually as copying the reference frame.

8.3.2 Out-of-bounds Reference Pixels

The previously decoded frame is used as the reference for motion-compensated predictive coding of the current P
frame. The motion vectors used to locate the predicted blocks in the reference frame may include pixel locations that
are outside the boundary of the reference frame. In these cases, the out-of-bounds pixel values are the replicated values
of the edge pixel. Figure 41 illustrates pixel replication for the upper-left corner of the frame. Note that in advanced
profile, “frame edge”, “frame corner” and “outside the boundary” refer to the true frame dimensions, not the
dimensions right or top/bottom justified to the edge of the macroblock. In other words, the right and bottom pixels that
are repeated to infinity for a 200 x 300 image begin at column 304 and row 208 for the simple and main profiles.
However, for the advanced profile, these begin respectively at column 300 and row 200.

28 32 36 34 33 ... 28 32 36 34 33 ...

28 32 36 34 33 ...
28 32 36 34 33 ...
28 32 36 34 33 ...

.... 28 28 28 28 28 28

.... 28 28 28

.... 28 28 28

.... 28 28 28

.

.

.

.

.

.

32 34 33 36 39 32 32 32

Horizontal pixel padding Vertical pixel padding

Figure 41: Horizontal and vertical pixel replication for out-of-bounds reference

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 16

8.3.3 P Picture Types

P pictures may be one of 2 types: 1-MV and Mixed-MV. The following sections describe each P picture type.

8.3.3.1 1-MV P Picture

In 1-MV P pictures, a single motion vector is used to indicate the displacement of the predicted blocks for all 6 blocks
in the macroblock. The 1-MV mode is signaled by the MVMODE and MVMODE2 picture layer syntax elements as
described in section 8.3.4.3.

8.3.3.2 Mixed-MV P Picture

In Mixed-MV P pictures, each macroblock may be encoded as a 1-MV or a 4-MV macroblock. In 4-MV macroblocks,
each of the 4 luminance blocks has a motion vector associated with it. The 1-MV or 4-MV mode for each macroblock
is indicated by the MVTYPEMB bitplane syntax element in the picture layer as described in section 8.3.4.3. The
Mixed-MV mode is signaled by the MVMODE and MVMODE2 picture layer syntax elements as described in section
8.3.4.3.

8.3.4 P Picture Layer Decode

Figure 14 shows the elements that make up the progressive P picture layer header. Some of the elements are self-
explanatory. The following sections provide extra detail for some of the elements.

8.3.4.1 Picture-level Quantizer Scale

The frame level quantizer scale PQUANT is decoded from the 5-bit picture layer syntax element PQINDEX as
described in section 7.1.1.15. PQUANT specifies the frame level quantizer scale (a value between 1 and 31) for the
macroblocks in the current picture. When the seq. header DQUANT = 0, then PQUANT is used as the quantization
step size for every macroblock in the current picture. When DQUANT != 0, then PQUANT is used as described in
section 7.1.1.29. The PQINDEX syntax element also specifies whether the uniform or nonuniform quantizer is used
for all macroblocks in the frame.

8.3.4.2 Picture Resolution Index

The RESPIC syntax element in P pictures, in simple and main profiles, shall carry the same resolution as the RESPIC
syntax element of the closest temporally preceding I frame. In other words, the resolution of an I picture determines
the resolution of all subsequent P pictures until the next I picture. For example, if an I picture speficies a resolution
index of 1 (full vertical resolution, half horizontal resolution), then all subsequent P pictures will specify the same
resolution until the next I picture.

All P pictures that are coded at less than full resolution shall be upsampled to full resolution prior to display. Since this
upsampling process is outside the reconstruction loop the implementer is free to use whatever upsampling process he
or she choses. The spatial alignment of video samples of the downsampled frame with respect to the video samples of
the original frame is described in Annex B.

8.3.4.3 Picture Layer Motion Compensation and Intensity Compensation Decoding

The P picture layer contains syntax elements that control the motion compensation mode and intensity compensation
for the frame. The MVMODE syntax element is a variable sized value that signals either: 1) one of four motion vector
modes for the frame or 2) that intensity compensation is used in the frame. If intensity compensation is signaled, then
the MVMODE2, LUMSCALE and LUMSHIFT syntax elements follow in the picture layer. In this case, MVMODE2
signals the motion vector mode and LUMSCALE and LUMSHIFT are 6-bit values which specify parameters used in
the intensity compensation process. Refer to section 8.3.8 for a description of intensity compensation decode.

Table 31 and Table 32 show the codetables used to decode the MVMODE syntax element. Table 31 is used if
PQUANT is greater than 12 and Table 32 is used if PQUANT is less than or equal to 12. In a similar fashion, Table
35 and Table 36 are used to decode the MVMODE2 syntax element. Either MVODE or MVMODE2 will signal one of
four motion vector modes. If the motion vector mode is mixed MV mode, then the MVTYPEMB syntax element is
present in the picture layer. MVTYPEMB is a bitplane coded syntax element that indicates the 1-MV/4-MV motion
vector status for each macroblock in the picture. The decoded bitplane represents the motion vector status for each
macroblock as a syntax element of 1-bit values in raster scan order from upper left to lower right. Refer to section 8.7

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 17

for a description of the bitplane coding. A value of 0 indicates that the macroblock is coded in 1-MV mode. A value of
1 indicates that the macroblock is coded in 4-MV mode. Refer to section 8.3.5.2 for a description of the motion vector
decoding process.

8.3.4.4 Skipped Macroblock Decoding

The P picture layer contains the SKIPMB syntax element which is a bitplane coded syntax element that indicates the
skipped/not-skipped status of each macroblock in the picture. The decoded bitplane represents the skipped/not-skipped
status for each macroblock as a syntax element of 1-bit values in raster scan order from upper left to lower right. Refer
to section 8.7 for a description of the bitplane coding. A value of 0 indicates that the macroblock is not skipped. A
value of 1 indicates that the macroblock is coded as skipped. A skipped status for a macroblock means that the
macroblock may only contain the HYBRIDPRED syntax element as a qualifier to the predicted motion vector(s). Note
that a skipped macroblock does not contain any prediction error information. Refer to section 8.3.5.2 for a
description of how the HYBRIDPRED syntax element is used in the decoding process.

8.3.4.5 Motion Vector Huffman Table

MVTAB is 2-bit syntax element in the picture layer that indicates the Huffman table used to decode the motion vector
differentials for the macroblocks in the picture. The Huffman tables are encoded as shown in Table 64. Section 11.10
contains the Motion Vector Differential Huffman tables. Refer to section 8.3.5.2 for a description of the motion vector
decode process.

Table 64: Motion vector Huffman table

MVTAB
FLC

Huffman table

00 Motion Vector Table 0

01 Motion Vector Table 1

10 Motion Vector Table 2

11 Motion Vector Table 3

8.3.4.6 Coded Block Pattern Huffman Table

CBPTAB is 2-bit syntax element in the picture layer that indicates the Huffman table used to decode the coded block
pattern (CBPCY) for the macroblocks in the picture. The Huffman tables are encoded as shown in Table 65. Section
11.6 contains the CBP Huffman tables. See section 8.3.5.2 for a description of how CBPCY is used.

Table 65: CBP Huffman table

CBPTAB
FLC

Huffman table

00 CBP Table 0

01 CBP Table 1

10 CBP Table 2

11 CBP Table 3

8.3.4.7 Macroblock-level Quantizer Mode Flag

See section 7.1.3.6.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 18

8.3.4.8 Macroblock-level Transform Type Flag

TTMBF is a one-bit syntax element that signals whether transform type coding is enabled at the frame or macroblock
level. If TTMBF = 1, then the same transform type is used for all blocks in the frame. In this case, the transform type
is signaled in the TTFRM syntax element that follows. If TTMBF = 0, then the transform type may vary throughout
the frame and is signaled at the macroblock or block levels.

8.3.4.9 Frame-level Transform Type

TTFRM is a variable-length syntax element that is present in the picture layer if TTMBF = 1. TTFRM is decoded
using Table 41 and signals the Transform type used to transform the 8x8 pixel error signal in predicted blocks. The
8x8 error blocks may be transformed using an 8x8 Transform, two 8x4 Transforms, two 4x8 Transforms or four 4x4
Transforms.

8.3.4.10 Frame-level Transform AC Coding Set Index

TRANSACFRM is a variable-length syntax element that is present in the picture layer. This syntax element indexes
the coding set used to decode the Transform AC coefficients for the intra- and inter-coded blocks. Table 42 is used to
decode the TRANSACFRM syntax element.

8.3.4.11 Intra Transform DC Table

The TRANSDCTAB syntax element has the same meaning as the TRANSDCTAB syntax element in I pictures. See
section 8.1.1.2 for a description.

8.3.4.12 Range Reduction Frame - P Frame (RANGEREDFRM)

The RANGEREDFRM is only signaled when RANGERED is signaled at the sequence level.

When RANGEREDFRM is signaled for the current P Frame, the current decoded frame shall be scaled up prior to
display, similar to I Frame, while keeping the current reconstructed frame intact. Let Y, U, V denote the YCbCr
planes of the output frame. The pixels are scaled up according to the following formula:

Y[n] = CLIP ((Y[n] – 128) * 2 + 128);

U[n] = CLIP ((U[n] – 128) * 2 + 128);

V[n] = CLIP ((V[n] – 128) * 2 + 128);

In addition, the previously reconstructed frame shall be scaled up prior to using it for motion compensation if the
current frame and previous frame are operating at different range. The process will be applied to the reconstructed
frame as the first stage of decoding prior to Intensity compensation, motion compensation, and macroblock level
decoding.

More specifically, there are two cases that require scaling the previous reconstructed frame. Let Y, U, V denote the
YCbCr planes of the previously reconstructed frame.

• Current frame’s RANGEREDFRM is signaled and the previous frame’s RANGEREDFRM is not signaled.
In this case, the previously reconstructed frame is scaled down as follows:

Y[n] = ((Y[n] – 128) >> 1) + 128;

U[n] = ((U[n] – 128) >> 1) + 128;

V[n] = ((V[n] – 128) >> 1) + 128;

• Current frame’s RANGEREDFRM is not signaled and the previous frame’s RANGEREDFRM is signaled.
In this case, the previous reconstructed frame is scaled as follows:

Y[n] = CLIP((Y[n] – 128) * 2 + 128);

U[n] = CLIP((U[n] – 128) * 2 + 128);

V[n] = CLIP((V[n] – 128) * 2 + 128);

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 19

8.3.5 Macroblock Layer Decode

8.3.5.1 Macroblock Types

Macroblocks in P pictures may be one of 3 possible types: 1MV, 4MV, and Skipped. The macroblock type is indicated
by a combination of picture and macroblock layer syntax elements. The following sections describe each type and how
they are signaled.

8.3.5.1.1 1MV Macroblocks

1MV macroblocks may occur in 1-MV and Mixed-MV P pictures. A 1MV macroblock is one where a single
MVDATA syntax element is associated with all blocks in the macroblock. The MVDATA syntax element signals
whether the blocks are coded as Intra or Inter type. If they are coded as Inter, then the MVDATA syntax element also
indicates the motion vector differential. See section 8.3.6.1 for a description of how to decode Intra blocks in P pictures
and see section 8.3.6.2 for a description of how to decode Inter blocks.

If the P picture is of type 1MV, then all the macroblocks in the picture are of type 1MV so there is no need to
individually signal the macroblock type.

If the P picture is of type Mixed-MV, then the macroblocks in the picture may be of type 1MV or 4MV. In this case
the macroblock type (1MV or 4MV) is signaled in the MVTYPEMB syntax element in the picture layer. See section
8.3.4.3 for a description of how the MVTYPEMB syntax element signals the 1MV/4MV macroblock type.

8.3.5.1.2 4MV Macroblocks

4MV macroblocks may only occur in Mixed-MV P pictures. A 4MV macroblock is indicated by signaling that the
macroblock is 4-MV in the MVTYPEMB picture layer syntax element. Individual blocks within a 4MV macroblock
may be coded as Intra blocks. For the 4 luminance blocks, the Intra/Inter state is signaled by the BLKMVDATA
syntax element associated with that block. The CBPCY syntax element that indicates which blocks have
BLKMVDATA syntax elements present in the bitstream. See section 8.3.5.2 for a description of how the CBPCY
syntax element is used in 4MV macroblocks.

The Inter/Intra state for the chroma blocks is derived from the luminance Inter/Intra states. If 3 or 4 of the luminance
blocks are coded as Intra, then the chroma blocks are also coded as Intra.

8.3.5.1.3 Skipped Macroblocks

Skipped macroblocks may occur in 1-MV, and Mixed-MV P pictures. In all cases, a skipped macroblock is signaled by
the SKIPMB bitplane syntax element in the picture layer. See section 8.3.4.4 for a description of the SKIPMB syntax
element.

8.3.5.2 Macroblock Decoding Process

The following sections describe the macroblock layer decoding process for P picture macroblocks.

Refer to section 8.3.6.2 for a description of the inverse quantization process.

8.3.5.2.1 Decoding Motion Vector Differential

The MVDATA or BLKMVDATA syntax elements encode motion information for the blocks in the macroblock. 1MV
macroblocks have a single MVDATA syntax element, and 4MV macroblocks may have between zero and four
BLKMVDATA syntax elements (see section 8.3.5.2 for a description of how the CBPCY syntax element is used to
encode the number of MVDATA syntax elements in 4MV macroblocks).

Each MVDATA or BLKMVDATA syntax element in the macroblock layer jointly encodes three things: 1) the
horizontal motion vector differential component, 2) the vertical motion vector differential component and 3) a binary
flag indicating whether any Transform coefficients are present. Whether the macroblock (or block for 4MV) is Intra
or Inter-coded is coded as one of the horizontal/vertical motion vector possibilities, i.e., one of the VLC entries for

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 20

differential MV indicates that the block is actually intra-coded. See the pseudo-code for decoding MV in section
8.3.5.2.1.

The MVDATA or BLKMVDATA syntax element is a variable length Huffman codeword followed by a fixed length
codeword. The value of the Huffman codeword determines the size of the fixed length codeword. The MVTAB syntax
element in the picture layer specifies the Huffman table used to decode the variable sized codeword.

The following psuedocode illustrates how the motion vector differential, Inter/Intra type and last-flag information are
decoded. Note that the motion vector differentials decoded in this pseudocode are modulo differentials. The
computation of motion vectors from these differentials is shown in section 8.3.5.4.1.

The values: ‘last flag’, intra_flag, dmv_x and dmv_y are computed in the following pseudocode. The values are
defined as follows:

‘last flag’: binary flag indicating whether any Transform coefficients are present (1 = coefficients present, 0 =
coefficients not present)

intra_flag: binary flag indicating whether the block or macroblock is intra-coded (0 = inter-coded, 1 = intra-coded)

dmv_x: differential horizontal motion vector component

dmv_y: differential vertical motion vector component

k_x, k_y: fixed length for long motion vectors

k_x and k_y depend on the motion vector range as defined by the MVRANGE symbol (section 7.1.1.16) according to
Table 66.

Table 66: k_x and k_y specified by MVRANGE

MVRANGE k_x k_y range_
x

range_
y

0 (default) 9 8 256 128

10 10 9 512 256

110 12 10 2048 512

111 13 11 4096 1024

The value halfpel_flag used in the following pseudocode is a binary value indicating whether half-pel or quarter-pel
precision is used for the picture. The value of halfpel_flag is determined by the picture layer syntax element
MVMODE (see section 8.3.4.3). If MVMODE specifies the mode as 1MV or Mixed MV, then halfpel_flag = 0 and
quarter-pel precision is used. If MVODE specifies the mode as 1MV Half-pel or 1MV Half-pel Bilinear, then
halfpel_flag = 1 and half-pel precision is used.

The tables size_table and offset_table are arrays used in the following pseudocode and are defined as follows:
size_table[6] = {0, 2, 3, 4, 5, 8}

offset_table[6] = {0, 1, 3, 7, 15, 31}

index = vlc_decode() // Use the Huffman table indicated by MVTAB in the picture layer

index = index + 1

if (index >= 37)

{

 ‘last flag’ = 1

 index = index - 37

}

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 21

else

 ‘last flag’ = 0

intra_flag = 0

if (index == 0)

{

 dmv_x = 0

 dmv_y = 0

}

else if (index == 35)

{

 dmv_x = get_bits(k_x – halfpel_flag)

 dmv_y = get_bits(k_y – halfpel_flag)

}

else if (index == 36)

{

 intra_flag = 1

 dmv_x = 0

 dmv_y = 0

}

else

{

index1 = index % 6

if (halfpel_flag == 1 && index1 == 5)

 hpel = 1

else

 hpel = 0

 val = get_bits (size_table[index1] - hpel)

 sign = 0 - (val & 1)

 dmv_x = sign ^ ((val >> 1) + offset_table[index1])

 dmv_x = dmv_x - sign

index1 = index / 6

if (halfpel_flag == 1 && index1 == 5)

 hpel = 1

else

 hpel = 0

 val = get_bits (size_table[index1] - hpel)

 sign = 0 - (val & 1)

 dmv_y = sign ^ ((val >> 1) + offset_table[index1])

 dmv_y = dmv_y - sign

}

Figure 42: Decoding MV Differential in Progressive Pictures: Pseudo-code

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 22

8.3.5.3 Motion Vector Predictors

Motion vectors are computed by adding the motion vector differential computed in the previous section to a motion
vector predictor. The predictor is computed from three neighboring motion vectors. If a neighbouring block is intra-
coded, its motion vector is set to be zero for the purposes of prediction. The following sections describe how the
predictors are calculated for macroblocks in 1MV P pictures, and Mixed-MV P pictures.

8.3.5.3.1 Motion Vector Predictors In 1MV P Pictures

Figure 43 shows the three motion vectors used to compute the predictor for the current macroblock. As the figure
shows, the predictor is taken from the left, top and top-right macroblocks, except in the case where the macroblock is
the last macroblock in the row. In this case, Predictor B is taken from the top-left macroblock instead of the top-right.

For the special case where the frame is one macroblock wide, the predictor is always Predictor A (the top predictor).

Figure 43: Candidate Motion Vector Predictors in 1MV P Pictures

8.3.5.3.2 Motion Vector Predictors In Mixed-MV P Pictures

Figure 44 and Figure 45 show the 3 candidate motion vectors for 1MV and 4MV macroblocks in Mixed-MV P
pictures. In the following figures, the larger rectangles are macroblock boundaries and the smaller rectangles are block
boundaries.

For the special case where the frame is one macroblock wide, the predictor is always Predictor A (the top predictor).

Figure 44: Candidate Motion Vectors for 1MV Macroblocks in Mixed-MV P Pictures

Figure 44 shows the candidate motion vectors for 1MV macroblocks. The neighboring macroblocks may 1MV or 4
MV macroblocks. The figure shows the candidate motion vectors assuming the neighbors are 4MV (i.e., predictor A is

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 23

the motion vector for block 2 in the macroblock above the current and predictor C is the motion vector for block 1 in
the macroblock immediately to the left of the current). If any of the neighbors are 1MV macroblocks, then the motion
vector predictors shown in Figure 44 are taken to be the vectors for the entire macroblock. As the figure shows, if the
macroblock is the last macroblock in the row, then Predictor B is from block 3 of the top-left macroblock instead of
from block 2 in the top-right macroblock as is the case otherwise.

Figure 45: Candidate Motion Vectors for 4MV Macroblocks in Mixed-MV P Pictures

Figure 45 shows the predictors for each of the 4 luminance blocks in a 4MV macroblock. For the case where the
macroblock is the first macroblock in the row, Predictor B for block 0 is handled differently than the remaining blocks
in the row. In this case, Predictor B is taken from block 3 in the macroblock immediately above the current
macroblock instead of from block 3 in the macroblock above and to the left of current macroblock as is the case
otherwise. Similarly, for the case where the macroblock is the last macroblock in the row Predictor B for block 1 is
handled differently. In this case, the predictor is taken from block 2 in the macroblock immediately above the current
macroblock instead of from block 2 in the macroblock above and to the right of the current macroblock as is the case
otherwise. If the macroblock is in the first macroblock column, then Predictor C for blocks 0 and 2 are set equal to 0.

8.3.5.3.3 Calculating the Preliminary Motion Vector Predictor

Given the 3 motion vector predictor candidates, the following pseudocode illustrates the process for calculating the
preliminary motion vector predictors. These preliminary predictors are used in the next section to compute the actual
motion vector predictors.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 24

if (predictorC is out of bound || predictorC is intra) {

 predictorC_x = predictorC_y = 0;

}

if (predictorA is out of bound || predictorA is intra) {

 predictorA_x = predictorA_y = 0;

}

if (predictorB is out of bound || predictorB is intra) {

 predictorB_x = predictorB_y = 0;

}

if (predictorA is not out of bound) {

 if (predictorC is out of bound && predictorB is out of bound) {

 predictor_pre_x = predictorA_x;

predictor_pre_y = predictorA_y;

} else {

// calculate predictor from A, B and C predictor candidates

predictor_pre_x = median3(predictorA_x, predictorB_x, predictorC_x);

predictor_pre_y = median3(predictorA_y, predictorB_y, predictorC_y);

 }

} else if (predictorC is not out of bound) {

 predictor_pre_x = predictorC_x;

 predictor_pre_y = predictorC_x;

} else {

 predictor_pre_x = predictor_pre_y = 0;

}

Figure 46: Calculating MV Predictior: Pseudo-code

See section 4.9 for the definition of median3.

Note that a predictor candidate is considered to be out of bounds, if either the corresponding block is outside the frame
boundary, or if the corresponding neighbouring block is part of a different slice.

After the predicted motion vectors are computed, a “pull-back’ operation is performed, if necessary, on its values. The
pull-back operation consists of follows: The predicted motion vector is checked to see if the block/macroblock
referenced by it lies outside of the reference frame. If yes, the predictor motion vectors (MV) are clipped such that at
least one line of the reference frame is inside the block/macroblock referenced by the predictor. This goal is achieved
by adjusting the horizontal component MVx (if needed), followed by adjusting the vertical component MVy (if
needed). As an example, consider a block N pixels wide and M pixels high.

Horizontal Adjustment: If the top left pixel of the block (pointed by the predicted MV) is to the left of (N-1)th column
in the reference frame, then adjust predicted MVx so that the top left point lies along the (N-1)th column. Similarly, if
the top left point of the block (pointed by the predicted MV) is to the right of (picture_width – 1)th column, then adjust
predicted MVx so that the top left point lies along the (picture_width – 1)th column.

Vertical Adjustment: If the top left point of the block (pointed by the predicted MV) is to the top of –(M-1)th row in
the reference frame, then adjust predicted MVy so that the top left point of the block lies along to –(M-1)th
row. Similarly if the top left point of the block is to the bottom of (picture_height – 1)th row, then adjust predicted
MVy so that the top left point lies along the (picture_height – 1)th row.

As a result of this pull-back operation, the predicted motion vectors obey the following constraints:

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 25

1. For 16x16 mv: restrict the top-left point of the 16x16 area pointed to by the predicted MV to be -15 to
picture width -1.

2. For 8x8 mv: restrict the top-left point of the 8x8 area pointed to by the predicted MV to be -7 to picture
width – 1.

8.3.5.3.4 Hybrid Motion Vector Prediction

If the P picture is 1MV or Mixed-MV, then the motion predictor calculated in the previous section is tested relative to
the A and C predictors to see if the predictor is explicitly coded in the bitstream. If so, then a bit is decoded that
indicates whether to use predictor A or predictor C as the motion vector predictor. Hybrid motion vectors may exist
even for skipped MBs, i.e. macroblocks which have zero differential motion vectors. The following pseudocode
illustrates hybrid motion vector prediction decoding.

The variables are defined as follows in the pseudocode:

predictor_pre_x: The horizontal motion vector predictor as calculated in the above section

predictor_pre_y: The vertical motion vector predictor as calculated in the above section

predictor_post_x: The horizontal motion vector predictor after checking for hybdrid motion vector prediction

predictor_post_y: The vertical motion vector predictor after checking for hybdrid motion vector prediction

if ((predictorA is out of bounds) || (predictorC is out of bounds))

{

 predictor_post_x = predictor_pre_x

 predictor_post_y = predictor_pre_y

}

else

{

 if (predictorA is intra)

 sum = abs(predictor_pre_x) + abs(predictor_pre_y)

 else

 sum = abs(predictor_pre_x – predictorA_x) + abs(predictor_pre_y – predictorA_y)

 if (sum > 32)

 {

 // read next bit to see which predictor candidate to use

 if (get_bits(1) == 0) // HYBRIDPRED syntax element

 {

 // use top predictor

 predictor_post_x = predictorA_x

 predictor_post_y = predictorA_y

 }

 else

 {

 // use left predictor

 predictor_post_x = predictorC_x

 predictor_post_y = predictorC_y

 }

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 26

 else

 {

 if (predictorC is intra)

 sum = abs(predictor_pre_x) + abs(predictor_pre_y)

 else

 sum = abs(predictor_pre_x – predictorC_x) + abs(predictor_pre_y – predictorC_y)

 if (sum > 32)

 {

 // read next bit to see which predictor candidate to use

 if (get_bits(1) == 0)

 {

 // use top predictor

 predictor_post_x = predictorA_x

 predictor_post_y = predictorA_y

 }

 else

 {

 // use left predictor

 predictor_post_x = predictorC_x

 predictor_post_y = predictorC_y

 }

 }

 else

 {

 predictor_post_x = predictor_pre_x

 predictor_post_y = predictor_pre_y

 }

 }

}

Figure 47: Hybrid Motion Vector: Preliminary Prediction

8.3.5.3.5 Motion Vector Predictors in Skipped Macroblocks

If a macroblock is coded as skipped, then the predicted motion vector computed as described above is used as the
motion vector for the block, macroblock or syntax element. The block, syntax element or macroblock referenced by the
motion vector is used as the current block or macroblock in the current picture. A single bit may be present in the
macroblock layer indicating which of the predictor candidates to use. A macroblock with 4 motion vectors may have
upto 4 hybrid motion predictor (HYBRIDPRED) syntax elements, i.e. upto 4 bits.

8.3.5.4 Reconstructing Motion Vectors

The following sections describe how to reconstruct the luminance and chroma motion vectors for 1MV and 4MV
macroblocks.

8.3.5.4.1 Luminance Motion Vector Reconstruction

In all cases (1MV and 4MV macroblocks) the luminance motion vector is reconstructed by adding the differential to
the predictor as follows:

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 27

mv_x = (dmv_x + predictor_x) smod range_x

mv_y = (dmv_y + predictor_y) smod range_y

The modulus operation “smod” is a signed modulus, defined as follows:

A smod b = ((A + b) % 2 b) - b

ensures that the reconstructed vectors are valid. (A smod b) lies within –b and b – 1. range_x and range_y depend
on MVRANGE and are specified in Table 66.

Following are the notes about luminance motion vectors in 1MV and 4MV macroblocks.

1MV Macroblock Notes

In 1MV macroblocks there will be a single motion vector for the 4 blocks that make up the luminance component of
the macroblock.

If dmv_x decodes to indicate that the macroblock is Intra-coded (as described in the section “Decoding Motion Vector
Differential” above), then no motion vectors are associated with the macroblock.

If the SKIPMB syntax element in the picture layer indicates that the macroblock is skipped, then dmv_x = 0 and
dmv_y = 0 (mv_x = predictor_x and mv_y = predictor_y).

4MV Macroblock Notes

Each of the Inter-coded luminance blocks in a macroblock will have its own motion vector. Therefore there will be
between 0 and 4 luminance motion vectors in each 4MV macroblock.

A non-coded block in 4MV macroblocks may occur in one of two ways: 1) if the SKIPMB syntax element in the
picture layer indicates that the macroblock is skipped and the MVTYPEMB syntax element in the picture layer
indicates that the macroblock is 4MV. All blocks in the macroblock are skipped in this case, or 2) if the CBPCY
syntax element (described in the next section) in the macroblock indicates that the block is non-coded. If a block is not
coded, then dmv_x = 0 and dmv_y (mv_x = predictor_x and mv_y = predictor_y).

8.3.5.4.2 Chroma Motion Vector Reconstruction

The chroma motion vectors are derived from the luminance motion vectors. Also, for 4MV macroblocks, the decision
of whether to code the chroma blocks as Inter or Intra is made based on the status of the luminance blocks or syntax
elements. The following sections describe how to reconstruct the chroma motion vectors for 1MV and 4MV
macroblocks. The chroma vectors are reconstructed in two steps.

As a first step, the nominal chroma motion vector is obtained by combining and scaling the luminance motion vectors
appropriately. The scaling is performed in such a way that half-pixel offsets are preferred over quarter pixel locations.

In the second stage, a sequence level 1-bit syntax element FASTUVMC syntax element is used to determine if further
rounding of chroma motion vectors is necessary. The purpose of this mode is speed optimization of the decoder. If
FASTUVMC = 0, no rounding is performed in the second stage. If FASTUVMC = 1, the chroma motion vectors that
are at quarter pel offsets will be rounded to the nearest half or full pel positions as described in Section 8.3.5.4.5.

Only bilinear filtering will be used for all chroma interpolation

In the sections below cmv_x and cmv_y denote the chroma motion vector components and lmv_x and lmv_y denote
the luminance motion vector components.

8.3.5.4.3 First-stage Chroma Motion Vector Reconstruction - 1MV Chroma Motion Vector Case:

If a MV macroblock, the chroma motion vectors are derived from the luminance motion vectors as follows:

// s_RndTbl[0] = 0, s_RndTbl[1] = 0, s_RndTbl[2] = 0, s_RndTbl[3] = 1

cmv_x = (lmv_x + s_RndTbl[1mv_x & 3]) >> 1

cmv_y = (lmv_y + s_RndTbl[1mv_y & 3]) >> 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 28

8.3.5.4.4 First-stage Chroma Motion Vector Reconstruction - 4MV Chroma Motion Vector Case:

The following pseudocode illustrates how the chroma motion vectors are derived from the motion information in the 4
luminance blocks in 4MV macroblocks. In this section, ix and iy are temporary variables.

if (all 4 luminance blocks are Inter-coded)

{

 // lmv0_x, lmv0_y is the motion vector for block 0

 // lmv1_x, lmv1_y is the motion vector for block 1

 // lmv2_x, lmv2_y is the motion vector for block 2

 // lmv3_x, lmv3_y is the motion vector for block 3

 ix = median4(lmv0_x, lmv1_x, lmv2_x, lmv3_x)

 iy = median4(lmv0_y, lmv1_y, lmv2_y, lmv3_y)

}

else if (3 of the luminance blocks are Inter-coded)

{

 // lmv0_x, lmv0_y is the motion vector for the first Inter-coded block

 // lmv1_x, lmv1_y is the motion vector for the second Inter-coded block

 // lmv2_x, lmv2_y is the motion vector for the third Inter-coded block

 ix = median3(lmv0_x, lmv1_x, lmv2_x)

 iy = median3(lmv0_y, lmv1_y, lmv2_y)

}

else if (2 of the luminance blocks are Inter-coded)

{

 // lmv0_x, lmv0_y is the motion vector for the first Inter-coded block

 // lmv1_x, lmv1_y is the motion vector for the second Inter-coded block

 ix = (lmv0_x + lmv1_x) / 2

 iy = (lmv0_y + lmv1_y) / 2

}

else

 Chroma blocks are coded as Intra

// s_RndTbl[0] = 0, s_RndTbl[1] = 0, s_RndTbl[2] = 0, s_RndTbl[3] = 1
cmv_x = (ix + s_RndTbl[ix & 3]) >> 1

cmv_y = (iy + s_RndTbl[iy & 3]) >> 1

Figure 48: Chroma MV Reconstruction for Progressive: Pseudo-Code

See section 4.9 for the definition of median3 and median4.

8.3.5.4.5 Second Stage Chroma Rounding

If the sequence level bit FASTUVMC = 1, then a second level of rounding is done on the chroma motion vectors as
follows –
 // RndTbl[-1] = +1, RndTbl[0] = 0, RndTbl[1] = -1

 cmv_x = cmv_x + RndTbl[cmv_x % 2];

cmv_y = cmv_y + RndTbl[cmv_y % 2];

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 29

In the above, cmv_x and cmv_y represent the x and y coordinates of the chroma motion vector in units of quarter pels.
% represents the modulus (or remainder) operation, which is defined thus: (x % a) = -(-x % a), i.e. the modulus of a
negative number is equal to the negative of the modulus of the corresponding positive number. Thus, when cmv_x (or
cmv_y) is divisible by 4, there is an integer offset; when cmv_x % 4 = +/-2, there is a half pel offset, and when cmv_x
% 2 = +/-1 there is a quarter pel offset. As may be seen by the above re-mapping operation, the quarter pel positions
are being disallowed by rounding the chroma motion vector to the nearest integer or half pel position towards zero
(half pel positions are left unaltered).

This forces the chroma co-ordinates to be remapped to integer and half pel positions. Second stage rounding is not
performed if FASTUVMC = 0.

8.3.5.5 Coded Block Pattern

Figure 22 shows the position of the CBPCY syntax element within the P picture macroblock layer. The CBPCY syntax
element is a variable-length code that decodes to a 6-bit syntax element.

The Huffman codetable used to decode CBPCY is specified by the CBPTAB syntax element in the picture layer. See
section 8.3.4.6 for a description of the CBPTAB syntax element.

The CBPCY syntax element is used differently depending on whether the macroblock is 1MV or 4MV. The following
sections describe how CBPCY is used in each macroblock type.

8.3.5.5.1 CBPCY in 1MV Macroblocks

The CBPCY syntax element is present in the 1MV macroblock layer if:

1) The MVDATA syntax element indicates that the macroblock is Intra-coded or,

2) The MVDATA syntax element indicates the macroblock is inter-coded, and that at least one block contains
coefficient information. This is indicated by the ‘last’ value decoded from MVDATA. See section 8.3.5.2 for
a description of MVDATA decoding.

If the CBPCY syntax element is present, then it decodes to a 6-bit syntax element indicating which of the blocks
contain at least one non-zero coefficient. Figure 49 shows how the CBPCY bitsyntax element corresponds to the block
numbers.

Figure 49: Bit-position/block correspondence for CBPCY

A ‘1’ in one of the positions indicates that the corresponding block has at least one non-zero AC coefficient if the
macroblock is Intra-coded or at least one non-zero DC or AC coefficient if the macroblock is Inter-coded.

A ‘0’ in one of the positions indicates that the corresponding block does not contain any non-zero AC coefficients if
the macroblock is Intra-coded or any non-zero DC or AC coefficients if the macroblock is Inter-coded.

8.3.5.5.2 CBPCY in 4MV Macroblocks

The CBPCY syntax element is always present in the 4MV macroblock layer. The CBPCY bit positions for the
luminance blocks (bits 0-3) have a slightly different meaning than the bit positions for chroma blocks (bits 4 and 5).

For the luminance blocks:

A ‘0’ indicates that the corresponding block does not contain motion vector information or any non-zero
coefficients. In this case, the BLKMVDATA syntax element is not present for that block and the predicted motion
vector is used as the motion vector and there is no residual data. If the motion vector predictors indicate that
hybrid motion vector prediction is used, then a single bit is present indicating the motion vector predictor
candidate to use. Refer to section 8.3.5.2 for a description of computing the motion vector predictor.

A ‘1’ indicates that the BLKMVDATA syntax element is present for the block. The BLKMVDATA syntax
element indicates whether the block is Inter or Intra-coded and whether there is coefficient data for the block. If it

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 30

is Inter coded, the BLKMVDATA syntax element also contains the motion vector differential. If the ‘last flag’
decoded from BLKMVDATA (described in section 8.3.5.2) decodes to 0, then no AC coefficient information is
present if the block is Intra-coded or no DC or AC coefficient is present if the block is Inter-coded. If ‘last flag’
decodes to 1, then there is at least one non-zero AC coefficient if the block is Intra-coded or at least one non-zero
DC or AC coefficient if the block is Inter-coded.

For the chroma blocks:

A ‘0’ indicates that the block does not contain any non-zero AC coefficients if the block is Intra-coded or any non-
zero DC or AC coefficients if the block is Inter-coded.

A ‘1’ indicates that the corresponding block has at least one non-zero AC coefficient if the block is Intra-coded or
at least one non-zero DC or AC coefficient if the block is Inter-coded.

8.3.5.6 MB-level Transform Type

The TTMB syntax element is present only in Inter macroblocks. As described in section 7.1.3.11 TTMB encodes the
transform type, the signaling mode and the transform subblock pattern.

If the signaling mode is macroblock signaling, then the transform type decoded from the TTMB syntax element is the
same for all blocks in the macroblock. If the transform type is 8x4 or 4x8, then a subblock pattern is also decoded from
the TTMB syntax element. In this case, the subblock pattern applies to the first coded block in the macroblock. If the
transform type is 4x4, then the subblock pattern in encoded in the SUBBLKPAT syntax element at the block level. If
the transform type is 8x4 or 4x8, then the subblock patterns for all the blocks after the first one are coded in the
SUBBLKPAT syntax element at the block level.

If the signaling mode is block signaling, then the transform type decoded from the TTMB syntax element is applied to
the first coded block in the macroblock and the TTBLK syntax element is not present for the first coded block. For the
remaining coded blocks, the TTBLK syntax element indicates the transform type for that block. If TTMB syntax
element indicates that the first transform type is 8x4 or 4x8, then a subblock pattern is also decoded from the TTMB
syntax element. In this case, the subblock pattern applies to the first coded block in the macroblock.

8.3.6 Block Layer Decode

8.3.6.1 Intra Coded Block Decode

The process for decoding Intra blocks in P pictures is similar to the process for decoding Intra blocks in I pictures as
described in section 0 with the following differences.

8.3.6.1.1 Coefficient Scaling

The process for coefficient scaling is same as described in section 8.1.1.15.

8.3.6.1.2 AC Prediction in Intra blocks in 4MV.

Refer to section 8.1.1.13 for a description of AC prediction. AC prediction in Intra-coded blocks within 4MV
macroblocks is similar. The following sections describe how AC prediction is performed in 4MV macroblocks.

If the top predictor is selected, then the top row of AC coefficients from the block above the current block are used as
the predictors for the top row of AC coefficients from the current block. If the left predictor is selected, then the first
column of AC coefficients from the block to the left of the current block are used as the predictors for the left column
of AC coefficients from the current block. The pseudocode below illustrates the process for deciding the AC predictors
in Intra blocks in 4MV macroblocks.

In the pseudocode, predictorA is the block immediately above the current block, predictorC is the block immediately to
the left of the current block and predictorB is the block immediately above and to the left of the current block. The
result of the pseudocode is that the variable use_ac_prediction determines whether AC prediction is used and
prediction_direction determines which block is used as the predictor.

Note that in the following pseudocode, the coefficients in the predictor blocks are scaled if the macroblock quantizer
scales are different. The previous section describes the scaling operation.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 31

use_ac_prediction = FALSE

is_nonzero_predictor = FALSE

if ((predictorA is Intra) && (predictorC is Intra))

{

 Is_nonzero_predicor = TRUE;

 if (predictorB is not intra)

 {

 set predictorB’s DC coefficient to be the default predictor which is zero.

 }

 if (abs(predictorB’s DC coefficient – predictorC’s DC coefficient) <

 abs(predictorB’s DC coefficient – predictorA’s DC coefficient))

 {

 prediction_direction = UP

 }

 else

 prediction_direction = LEFT

}

else if ((predictorA is Intra) || (predictorC is Intra))

{

 is_nonzero_predictor = TRUE

 if (predictorA is Intra)

 prediction_direction = UP

 else

 prediction_direction = LEFT

}

Figure 50: Calculating DC Predictor Direction: Pseudo-Code

After all the upto six predictors are computed (for the upto six intra blocks in the 4MV macroblock), and only when at
least one of the blocks has the flag is_nonzeropredictor set to the value TRUE, the one bit element defining ACPRED
is read.

 if (get_bits(1) == 0) // ACPRED syntax element

 use_ac_prediction = TRUE

8.3.6.1.3 AC Prediction in Intra blocks in 1MV macroblocks

AC prediction in Intra blocks within 1MV macroblocks is the same as Intra blocks in I pictures as described in section
8.1.1.13. The exception is if the top predictor block and left predictor block are not Intra-coded, then AC prediction is
not used, even if ACPRED = 1 in the macroblock layer. If just one of the predictors is Intra coded (either the top or the
left), then it is used as the predictor. If both are Intra-coded, then the method described in section 8.1.1.13 is used. In
this case, if the top-left block is not Intra, then the DC value is assumed to be 0.

8.3.6.1.4 Zig-zag Scan

The zig-zag scan order used to scan the run-length decoded Transform coefficients into the 8x8 array is the same as
that used for the 8x8 Inter block as described in section 8.3.6.2. This differs from Intra blocks in I pictures which use
one of 3 zig-zag scans depending on the prediction direction.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 32

8.3.6.1.5 Coding Sets

If the coding set used to decode the AC coefficients is signaled at the frame level, then the TRANSACFRM syntax
element is used to specify the coding set index used for decoding the Y and Cb/Cr AC coefficients (see section 8.1.1.10
for a description of the AC coding sets). The index decoded from the TRANSACFRM syntax element is used to select
the intra coding set used to decode the Y blocks and is used to select the inter coding set used to decode the Cb/Cr
blocks. This differs from the process used for I pictures where the TRANSACFRM specifies the index for the inter
coding set and the TRANSACFRM2 syntax element specifies the index for the intra coding set. The P picture header
does not contain the TRANSACFRM2 syntax element. The correspondence between the coding set index and the
coding set depends on the value of PQINDEX. Tables Table 67 and Table 68 below show the correspondence for
PQINDEX <= 7 and PQINDEX > 7. Section 11.8 contains the table information.

Table 67: Index/Coding Set Correspondence for PQINDEX <= 7

Y blocks Cb and Cr blocks

Inde
x

Table Table

0 High Rate Intra High Rate Inter

1 High Motion Intra High Motion Inter

2 Mid Rate Intra Mid Rate Inter

Table 68: Index/Coding Set Correspondence for PQINDEX > 7

Y blocks Cb and Cr blocks

Inde
x

Table Table

0 Low Motion Intra Low Motion Inter

1 High Motion Intra High Motion Inter

2 Mid Rate Intra Mid Rate Inter

8.3.6.2 Inter Coded Block Decode

Figure 51 shows the steps required reconstructing Inter blocks. For illustration the figure shows the reconstruction of a
block whose 8x8 error signal is coded with two 8x4 Transforms. The 8x8 error block may also be transformed with
two 4x8 Transforms or one 8x8 Transform. The steps required to reconstruct an inter-coded block include: 1)
transform type selection, 2) sub-block pattern decode, 3) coefficient decode, 4) inverse Transform, 5) obtain predicted
block and 6) motion compensation (add predicted and error blocks). The following sections describe these steps.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 33

Figure 51: Inter block reconstruction

8.3.6.2.1 Transform Type Selection

Figure 52: Transform Types

If variable-sized transform coding is enabled (signaled by the sequence-level syntax element VSTRANSFORM =
1 as described in section 6.1.14), then the 8x8 error block may be transformed using one 8x8 Transform, or as
shown in Figure 52, divided vertically and transformed with two 8x4 Transforms or divided horizontally and

transformed with two 4x8 Transforms or divided into 4 quadrants and transformed with 4 4x4 Transforms. The
transform type is signaled at the picture, macroblock or block level. As shown in Tables Table 43,

TTMB VLC Transform Signal Level Subblock

8x8 Trans 8x4 Trans 4x8 Trans 4x4 Trans

.......
RLD

Inverse zig-
zag

Inverse
quant/

8x4 IDCT

Quantized 8x4
DCT

coefficient

Top 8x4 Error
bloc

VLD

.......
RLD

Inverse zig-
zag

Inverse
quant/

8x4 ITrans

Quantized 8x4
Trans

coefficient

Bottom 8x4
Error block

VLD

Run Level Last

Run Level Last

Motion vector
(specifie
 displacement of

predicted block
 reference

Predicted 8x8
bloc

MVx, MVy

reconstructed
bloc

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 34

Type Pattern

11 8x8 Block NA

101110 8x4 Block Bottom

1011111 8x4 Block Top

00 8x4 Block Both

10110 4x8 Block Right

10101 4x8 Block Left

01 4x8 Block Both

100 4x4 Block NA

10100 8x8 Macroblock NA

1011110001 8x4 Macroblock Bottom

101111001 8x4 Macroblock Top

101111011 8x4 Macroblock Both

101111000000 4x8 Macroblock Right

101111000001 4x8 Macroblock Left

10111100001 4x8 Macroblock Both

101111010 4x4 Macroblock NA

Table 44: Medium Rate (5 <= PQUANT < 13) TTMB VLC Table

 and

TTMB VLC Transform
Type

Signal Level Subblock
Pattern

110 8x8 Block NA

0110 8x4 Block Bottom

0011 8x4 Block Top

0111 8x4 Block Both

1111 4x8 Block Right

1110 4x8 Block Left

000 4x8 Block Both

010 4x4 Block NA

10 8x8 Macroblock NA

0010100 8x4 Macroblock Bottom

0010001 8x4 Macroblock Top

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 35

001011 8x4 Macroblock Both

001001 4x8 Macroblock Right

00100001 4x8 Macroblock Left

0010101 4x8 Macroblock Both

00100000 4x4 Macroblock NA

Table 45 if TTMB indicates that the signal level is Block, then the transform type is signaled at the block level. If the
transform type is specified at the block level, then the TTBLK syntax element is present within the bitstream as shown
in Figure 25. This syntax element indicates the transform type used for the block. Tables Table 47Table 48Table 49
show the code tables used to encode the transform types if block mode signaling is used.

If variable-sized transform coding is not enabled, then the 8x8 Transform is used for all blocks.

8.3.6.2.2 Subblock Pattern Decode

If the transform type is 8x4, 4x8 or 4x4, then the decoder shall receive information about which of the subblocks have
non-zero coefficients. For 8x4 and 4x8 transform types, the subblock pattern is decoded as part of the TTMB or
TTBLK syntax element. If the transform type is 4x4, then the SUBBLKPAT syntax element is present in the bitstream
as shown in Figure 25. Section 7.1.4.2 describes the SUBBLKPAT syntax element.

If the subblock pattern indicates that no non-zero coefficients are present for the subblock, then no other information
for that subblock is present in the bitstream. For the 8x4 transform type, the data for the top subblock (if present) is
coded first followed by the bottom subblock. For the 4x8 transform type, the data for the left subblock (if present) is
coded first followed by the right subblock. For the 4x4 transform type, the data for the upper left subblock is coded first
followed, in order, by the upper right, lower left and lower right subblocks.

8.3.6.2.3 Coefficient Bitstream Decode

The first step in reconstructing the inter-coded block is to reconstruct the Tranform coefficients. The process for
decoding the bitstream to obtain the run, level and last_flag for each non-zero coefficient in the block or sub-block is
nearly identical to the process described in section 8.1.1.10 for decoding the AC coefficients in intra blocks. The two
differences are:

1) Unlike the decoding process for intra blocks, the DC coefficient is not differentially coded. No distinction is
made between the DC and AC coefficients and all coefficients are decoded using the same method.

2) Unlike the decoding process for intra blocks in I pictures (described in section 8.1.1.10) where the Y block
coefficients are decoded using one of the three intra coding sets and the Cb and Cr block coefficients are
decoded using one of the three inter coding sets, the Y and Cb/Cr inter blocks all use the same inter coding
set.

3) The correspondence between the coding set index and the coding set depends on the value of PQINDEX. The
following tables show the correspondence for PQINDEX <= 6 and PQINDEX > 6.

Table 69: Index/Coding Set Correspondence for PQINDEX <= 6

Y, Cb and Cr blocks

Inde
x

Table

0 High Rate Inter

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 36

1 High Motion Inter

2 Mid Rate Inter

Table 70: Index/Coding Set Correspondence for PQINDEX > 6

Y, Cb and Cr blocks

Inde
x

Table

0 Low Motion Inter

1 High Motion Inter

2 Mid Rate Inter

8.3.6.2.4 Run-level Decode

The process for decoding the run-level pairs obtained in the coefficient decoding process described above is nearly the
same as described in section 8.1.1.11. The difference is that because all coefficients are run-level encoded (not just the
AC coefficients as in intra blocks) the run-level decode process produces a 16-element array in the case of 4x4
Transform, a 32-element array in the case of 8x4 or 4x8 Transform blocks or a 64-element array in the case of 8x8
Transform blocks.

8.3.6.2.5 Zig-zag Scan of Coefficients

The one-dimensional array of quantized coefficients produced in the run-level decode process described above are
scanned out into a two-dimensional array in preparation for the Inverse Transform. The process is similar to that
described in section 8.1.1.12 for intra blocks. The differences are:

1) Each Transform type has an associated zig-zag scan array.

2) The scan arrays for some transform types are different in the interlace mode and progressive mode of
advanced profile.

3) Unlike the zig-zag scanning process for intra blocks where one of three arrays are used depending on the DC
prediction direction, only one array is used for inter blocks.

The zigzag scan arrays for Inter blocks in simple and main profiles are given in Table 226 to Table 229 in section
11.9.2. The scan arrays in the advanced profile depend on whether interlace or progressive mode is used.

In progressive mode of advanced profile, the scan arrays for Inter 8x8 and 4x4 blocks are identical to those for simple
and main profiles, as in Table 226 and Table 229. The scan arrays for Inter 8x4 and 4x8 blocks are defined in Table
230 and Table 231. In interlaced mode of the advanced profile, the scan arrays for Inter 8x8, 8x4, 4x8 and 4x4 blocks
are defined in Table 232 to Table 235.

8.3.6.3 Inverse Quantization

The non-zero quantized coefficients reconstructed as described in the sections above are inverse quantized in one of
two ways depending on the value of PQUANT.

If the uniform quantizer is used, the following formula describes the inverse quantization process:

dequant_coeff = quant_coeff * (2 * quant_scale + halfstep)

If the nonuniform quantizer is used, the following formula describes the inverse quantization process:

dequant_coeff = quant_coeff * (2 * quant_scale + halfstep) + sign(quant_coeff) * quant_scale

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 37

where:

quant_coeff is the quantized coefficient

dequant_coeff is the inverse quantized coefficient

quant_scale = The quantizer scale for the block (either PQUANT or MQUANT)

halfstep = The half step encoded in the picture layer as described in section 7.1.1.16.

PQUANT is encoded in the picture layer as described in section 7.1.1.15.

MQUANT is encoded as described in section 8.3.5.2.

8.3.6.4 Inverse TRANSFORM

After reconstruction of the TRANSFORM coefficients, the resulting 8x8, 8x4, 4x8 or 4x4 blocks are processed by the
appropriate two-dimensional inverse transforms (INVERSETRANSFORM). The 8x8 blocks are transformed using the
8x8 INVERSETRANSFORM, the 8x4 blocks are transformed using the 8x4 INVERSETRANSFORM, the 4x8 blocks
are transformed using the 4x8 INVERSETRANSFORM and the 4x4 blocks are transformed using the 4x4
INVERSETRANSFORM. The inverse transforms output ranges from -256 to +255 after clipping to be represented
with 9 bits.

See section 8.8 regarding INVERSETRANSFORM implementation and conformance.

8.3.6.5 Motion Compensation

The 8x8, 8x4, 4x8 or 4x4 error block or blocks are added to the predicted 8x8 block to produce the reconstructed
block. The motion vector decoded in the macroblock header (described in section 8.3.5.2) is used to obtain the
predicted block in the reference frame.

The horizontal and vertical motion vector components represent the displacement between the block currently being
decoded and the corresponding location in the reference frame. Positive values represent locations that are below and
to the right of the current location. Negative values represent locations that are above and to the left of the current
location.

If the picture layer syntax element MVMODE (see section 7.1.1.22) indicates that 1MV Halfpel or 1MV Halfpel
Bilinear is used as the motion compensation mode, then all motion vectors are expressed in half-pixel resolution. For
example, a horizontal motion component of 4 would indicate a position 2 pixels to the right of the current position and
a value of 5 would indicate a position of 2 ½ pixels to the right. If the picture layer syntax element MVMODE (see
section 7.1.1.22) indicates that 1MV or Mixed MV is used as the motion compensation mode, then all motion vectors
are expressed in quarter-pixel resolution. For example, a horizontal motion component of 4 would indicate a position 1
pixel to the right of the current position and a value of 5 would indicate a position of 1 1/4 pixels to the right. In
1MV Halfpel Bilinear mode, all non-integer pixel motion vector offsets use a bilinear filter to compute the interpolated
pixels. Otherwise, all non-integer pixel motion vector offsets use a bicubic filter to compute the interpolated pixels

8.3.6.5.1 Bilinear Interpolation

The following sections describe the bilinear filter operations. The bilinear filter operates as shown in Figure 53.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 38

Figure 53: Bilinear filter operation

Figure 53 shows all the possible unique interpolated positions. They are:

Case 1: full-pel horizontal, half-pel vertical

Case 2: half-pel horizontal, full-pel vertical

Case 3: half-pel horizontal, half-pel vertical

Case 4: full-pel horizontal, quarter-pel vertical

Case 5: quarter-pel horizontal, full-pel vertical

Case 6: quarter-pel horizontal, quarter-pel vertical

Case 7: quarter-pel horizontal, half-pel vertical

Case 8: half-pel horizontal, quarter-pel vertical

Although the bilinear interpolator is defined for quarter pixel motion vector resolution, only half pixel motion is
allowed for the luminance blocks. In other words, in Figure 53, only cases 1, 2 and 3 are permitted for luminance.
Cases 4 through 8 are used only for chrominance. The reference pixels a, b, c, d are used to generate the interpolated
pixel as follows:

For the cases 1, 2 and 3, the interpolated pixel p is given by the following equations:

p = (a + b + 1 – R) >> 1 :case 1

p = (a + d + 1 – R) >> 1 :case 2

p = (a + b + c + d + 2 – R) >> 2 :case 3

where R is the frame level rounding control value as described in section 8.3.7.

The general rule that applies to all cases is shown below. The indices x and y are the sub-pixel shifts in the horizontal
and vertical directions, multiplied by 4. Their values range from 0 through 4 within the area bounded by the four
pixels shown in Figure 53, with the origin located at a. Tables F and F’ are the filter coefficients. F[] = { 4, 3, 2, 1,
0 } and G[] = { 0, 1, 2, 3, 4 }. The interpolated value p is given by:

p = (F[x] F[y] a + F[x] G[y] b + G[x] G[y] c + G[x] F[y] d +8 – R) >> 4

For example, consider case 8. The subpixel shifts for case 8 are x=2, y=1. p is therefore:

p = (6 a + 2 b + 2 c + 6 d + 8 – R) >> 4

The above expression is identical to

p = (3 a + b + c + 3 d + 4 – R) >> 3

a d

b c

Ca e 3

Ca e 6

Ca e 2

Ca e 1

Ca e 4

Ca e 5

Integer locations
Ca e 7 Case

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 39

when R is 0 or 1, which is the case with the rounding control value. Similarly, it may be shown that cases 1 through 3
simplify to their earlier definitions.

Integer precision of 12 bits or more is required to implement the the bilinear interpolator.

8.3.6.5.2 Bicubic Interpolation

The following section describes the bicubic filter operations.

Case 3

Case 6

Case 2

Case 1

Case 4

Case 5

Integer locations
Case 7 Case 8

Figure 54: Quarter pel bicubic filter cases

Figure 54 shows all the possible unique interpolated positions. They are:

Case 1: full-pel horizontal, half-pel vertical

Case 2: half-pel horizontal, full-pel vertical

Case 3: half-pel horizontal, half-pel vertical

Case 4: full-pel horizontal, quarter-pel vertical

Case 5: quarter-pel horizontal, full-pel vertical

Case 6: quarter-pel horizontal, quarter-pel vertical

Case 7: quarter-pel horizontal, half-pel vertical

Case 8: half-pel horizontal, quarter-pel vertical

One-dimensional Bicubic Interpolation (Cases 1, 2, 4 and 5)

In Figure 54, cases 1, 2, 4 and 5 represent the cases where interpolation occurs in only one dimension – either
horizontal or vertical. The following filters are used for the possible shift locations:

½ pel shift F1: [-1 9 9 -1]

¼ pel shift F2: [-4 53 18 -3]

¾ pel shift F3: [-3 18 53 -4]

Figure 55 shows the pixels that are used to compute the interpolated pixels for each case. S denotes the sub-pixel
position. P1, P2, P3 and P4 represent the integer pixel positions. The figure shows horizontal interpolation but the
same operation applies to vertical interpolation.

½ Pixel Shift

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 40

¼ Pixel Shift

¾ Pixel Shift

Figure 55: Pixel Shifts

The following equations show the filtering operation for each case:

 (-1*P1 + 9*P2 + 9*P3 -1*P4 + 8 – r) >> 4 (1/2 pixel shift)

 (-4*P1 + 53*P2 + 18*P3 – 3*P4 + 32 – r) >> 6 (1/4 pixel shift)

 (-3*P1 + 18*P2 + 53*P3 -4*P4 +32 – r) >> 6 (3/4 pixel shift)

The value r in the equations above depends on R, the frame-level round control value (see section 8.3.7 for a
description) and the interpolation direction as follows:

⎩
⎨
⎧

−
−−

=
)52(

)41(1

andcasesdirectionhorizontalR

andcasesdirectionverticalR
r

Two-dimensional Bicubic Interpolation

In Figure 54, cases 3, 6, 7 and 8 are the cases where interpolation occurs in both the horizontal and vertical directions.

Two-dimensionally interpolated pixel locations first interpolate along the vertical direction, and then along the
horizontal direction using the appropriate filter among F1, F2 and F3 specified above. Rounding is applied after
vertical filtering and after horizontal filtering. The rounding rule ensures retention of maximum precision permitted
by 16 bit arithmetic in the intermediate results.

The rounding rule after vertical filtering is defined as

(S + rndCtrlV) >> shiftV

 where

 S = vertically filtered result, i.e. -1*P1 + 9*P2 + 9*P3 -1*P4 for ½ pixel shift

 shiftV = { 1, 5, 3, 3 } for cases 3, 6, 7 and 8 respectively.

 rndCtrlV = 2shiftV-1 - 1 + R (see section 8.3.7 for a description of R)

The rounding rule after horizontal filtering is:

(S + 64 – R) >> 7.

 where

S = horizontally filtered result

 R = frame level round control value (see section 8.3.7)

All of the bicubic filtering cases may potentially produce an interpolated pixel whose value is negative, or larger than
the maximum range (255). In these cases, the output is clipped to lie within the range – underflows are set to 0 and
overflows to 255.

8.3.6.5.3 Adding Error and Predictor

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 41

The 8x8 predicted block is added to the 8x8 error block to form the reconstructed 8x8 block. The pseudo-code in
Figure 56 illustrates this process.

for (row= 0; row < 8; row++)

{

for (col = 0; col < 8; col++)

reconblock[row*8 + col] = clip(predblock[row*8 + col] + errorblock[row*8 + col])

}

where:

clip(n) =

 0 if n < 0

 255 if n > 255

 n otherwise

Figure 56: Inter block reconstruction pseudo-code

8.3.7 Rounding Control

Section 8.3.6.2 describes the interpolation operations used to generate subpixel values in the reference blocks.
Rounding is controlled by a value R called the rounding control value.

In simple and main profiles, the value of R toggles back and forth between 0 and 1 at each P frame. At each I frame,
the value of R is reset to 0. Therefore, the value of R for the first P frame following an I frame is 0.

In advanced profile, the value is R is decoded from the RNDCTRL syntax element in the picture header.

8.3.8 Intensity Compensation

If the picture layer syntax element MVMODE indicates that intensity compensation is used for the frame, then the
pixels in the reference frame are remapped prior to using them as predictors for the current frame. As section 8.3.4.3
describes, when intensity compensation is used, the LUMSCALE and LUMSHIFT syntax elements are present in the
picture bitstream. The following pseudocode illustrates how the LUMSCALE and LUMSHIFT values are used to build
the lookup table used to remap the reference frame pixels.

if (LUMSCALE == 0)

{

 iScale = - 64

 iShift = 255 * 64 + 32 - LUMSHIFT *2 * 64

}

else {

 iScale = LUMSCALE + 32

 if (LUMSHIFT > 31)

 iShift = LUMSHIFT * 64 - 64 * 64;

 else

 iShift = LUMSHIFT * 64;

 }

// build LUTs

for (i = 0; i < 256; i++)

{

 j = (iScale * i + iShift + 32) >> 6

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 42

 if (j > 255)

 j = 255

 else if (j < 0)

 j = 0

 LUTY[i] = j

 j = (iScale * (i - 128) + 128 * 64 + 32) >>6

 if (j > 255)

 j = 255

 else if (j < 0)

 j = 0

 LUTUV[i] = j

}

The Y component of the reference frame is remapped using the LUTY[] table generated above and the Cb/Cr
components are remapped using the LUTUV[] table as follows:

][YY pLUTYp =

][UVUV pLUTUVp =

Where Yp is the original luminance pixel value in the reference frame and Yp is the remapped luminance pixel

value in the reference frame and UVp is the original Cb or Cr pixel value in the reference frame and UVp is the

remapped Cb or Cr pixel value in the reference frame.

8.4 Progressive B Frame Decoding
At the top level, most B frames are coded as bidirectionally predicted frames as the name suggests. When using B
frames, both forward and backward frames are needed for motion compensation. In certain cases however it is more
economical to code a frame independent of its anchors – in other words as an intra B frame. An intra B frame has the
same frame level syntax an inter B frame, but its macro block level decoding follows that of a I frame.

Normal B frames are coded by coding 16x16 tiles of the image (macro blocks). Unlike P frames there is no “4MV”
motion compensation mode. At the frame level, only two choices for motion vector resolution are permitted – quarter
pel bicubic and half pel bilinear.

8.4.1 Skipped Anchor Frames

If an anchor frame is coded as skipped then it is treated as a P frame which is identical to its reference frame.
Therefore, the reconstruction of that frame may be treated conceptually as a copy of the reference frame. In this case,
both anchor frames are identical for the intervening B frames. For example, if the frames are coded as follows in
display order:

I0 B1 P2 B3 P4 B5 S6 (I0 P2 B1 P4 B3 S6 B5 in coding order) where S6 is the skipped frame

then this is treated as:

I0 B1 P2 B3 P4 B5 P4

because the skipped frame (S6) is treated as being identical to its reference (P4).

See section 8.3.1 for a description of skipped P frames. The method used to signal skipped P frames is the same
method used to signal skipped B frames.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 43

8.4.2 B Picture Layer Decode

Some B frame specific information is transmitted at the frame level. Apart from the frame type (PTYPE), a symbol
called the B frame fraction (BFRACTION) is sent at the frame header. For main profile this indicates whether the B
frame is coded using the I picture syntax, and if not, the scaling factor used to derive the direct motion vectors
(explained in section 7.1.1.10). For advanced profile, BFRACTION only signals the scaling factor. The
RANGEREDFRM syntax element is present in main profile B picture header if enabled at the sequence layer. It is not
allowable to change the range at a B frame so this element is ignored. The remainder of the section deals only with
predicted or “normal” B frames, i.e. those that aren’t coded using the I picture syntax.

8.4.2.1 Bitplane Coding

As in P frames, some information is coded as a compressed bitplane that is sent at the frame level. For progressive B
frames, two such bitplanes are sent – one denoting skipped macro blocks and the other denoting direct coded macro
blocks. This information is sent at the macro block level when the raw coding mode is chosen. See section 7.2 for a
description of bitplane coding.

8.4.2.2 Rounding Control

The rounding control parameter used by B frames is identical to that used by the previously decoded anchor.

8.4.2.3 Sync Markers

B frames do not contain sync markers.

8.4.2.4 Picture Resolution

If variable resolution coding is enabled for the sequence (signaled by the MULTIRES flag in the sequence header, see
section 6.1.13), then the resolution of the B frame is determined by the resolution of the two reference frames. See
section 8.1.1.3 for a description of how the current resolution is signaled. The resolution of the B frame is the same as
the resolution of the two reference frames. The two reference frames shall always have the same resolution. This will
always be the case for B frames that occur temporally between two P frames since a resolution change may only occur
at I frames. This restriction means that B frames may never occur temporally between an I and P or two I frames
where the I frame is a different resolution than the preceding I or P frame.

8.4.2.5 Range Reduction Frame (RANGEREDFRM)

The RANGEREDFRM is only signaled when RANGERED is signaled at the sequence level. The RANGEREDFRM
shall carry the same value as the RANGEREDFRM syntax element of the temporally subsequent anchor frame. This
implies that no scaling shall be performed for performing motion compensation from the temporally subsequent frame.
However, scaling shall be performed for prediction from the temporally preceding anchor frame. This scaling is
identical to the scaling performed for predicting P frames, and is described in section 8.3.4.12.

8.4.3 B Macroblock Layer Decode

Macro blocks in B frames are identified as belonging to one of four modes, viz. backward, forward, direct and
interpolated. The forward mode is akin to conventional P picture prediction. In the forward mode, the B macro
block is interpolated from its temporally previous anchor frame only. Likewise, backward mode macro blocks are
entirely interpolated from their temporally subsequent anchor frame.

8.4.3.1 Long and Short Types

When a B frame is closer to its temporally previous reference, it may be expected that the forward coding mode will be
used more often. Likewise, when a B frame is closer to the end of its inter-anchor interval, it may be expected that it
references the future anchor more often. This statistical behavior is exploited by flagging the backward and forward
mode using two codewords whose interpretation is switched across two sides of the midpoint of the inter-anchor
interval.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 44

8.4.3.2 Direct and Interpolated Modes

Macroblocks for which BMVTYPE is direct or interpolated use both the anchors for prediction. They use two sets of
motion vectors (MV’s), one each to reference into the previous and next anchor frame. In both cases the pixels are
interpolated from the two reference frames followed by a pixel average operation with round-up to compute the pixels
in the motion compensated macroblock –

Pixel value = (Interpolated value from anchor 1 + Interpolated value from anchor 2 + 1) >> 1

In interpolated mode the forward and backward motion vectors are explicitly coded within the bitstream. In direct
mode the forward and backward motion vectors are derived by scaling the corresponding motion vectors from the
backward reference frame.

We buffer both forward and backward motion vectors for the current (B) frame, as well as all the motion vectors from
the next anchor frame (P) to use with the direct mode. All direct mode MV’s (motion vectors) are treated as (0, 0)
when the co-located macroblock (of the next anchor frame) is INTRA. This is also true when the previously decoded
frame (i.e. the temporally "next" anchor frame) is an I-frame.

If the P frame's co-located MV was 1 MV then that MV is simply buffered for the next B to be coded, else we take
median4 to average the 4 MV's. [Special cases are when we use average (integer division with truncation towards
zero) of 2 non-intra's if 2 out of 4 MV's are intra, and median3 non-intra's if 1 of the 4 MV's is intra]. If all 4 MV's are
intra then the direct mode's MV is also intra (treated as 0,0 for the direct mode). NB: median3 and median4 operations
are defined in the document.

Given that the subsequent anchor frame was a P frame (in case the next frame was I, all the motion vectors are
assumed to be (0,0)), and the collocated macroblock contained a motion vector MV (MV_X, MV_Y), the direct mode
computes two sets of motion vectors, one referencing into the forward or previous anchor frame, (MV_XF ,
MV_YF)and the other referencing into the subsequent anchor frame, (MV_XB, MV_YB) in the following manner –

Scale_Direct_MV (IN MV_X, IN MV_Y, OUT MV_XF , OUT MV_YF, OUT MV_XB, OUT MV_YB)

 if (Half pel units) {

 MV_XF = 2 * ((MV_X * ScaleFactor + 255) >> 9);

 MV_YF = 2 * ((MV_Y * ScaleFactor + 255) >> 9);

 MV_XB = 2 * ((MV_X * (ScaleFactor - 256) + 255) >> 9);

 MV_YB = 2 * ((MV_Y * (ScaleFactor - 256) + 255) >> 9);

 }

 else { /* Quarter pel units */

 MV_XF = (MV_X * ScaleFactor + 128) >> 8;

 MV_YF = (MV_Y * ScaleFactor + 128) >> 8;

 MV_XB = (MV_X * (ScaleFactor - 256) + 128) >> 8;

 MV_YB = (MV_Y * (ScaleFactor - 256) + 128) >> 8;

 }

End Scale_Direct_MV

If the collocated macroblock is an intra macroblock, we set (MV_X, MV_Y) to be zero. If the collocated macroblock
contains 4 motion vectors, (MV_X, MV_Y) is computed as the “median” of the 4 motion vectors. If all 4 blocks were
non-intra blocks, the median4 operator is used on the 4 motion vectors. If three of the blocks are non-intra, the
median3 operator is used on the 3 motion vectors. If two of them were non intra, the arithmetic mean of the two
motion vectors is used.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 45

“ScaleFactor” is computed at the start of decoding each B frame, as follows –

Int NumShortVLC[] = {1, 1, 2, 1, 3, 1, 2};

Int DenShortVLC[] = {2, 3, 3, 4, 4, 5, 5};

Int NumLongVLC[] = {3, 4, 1, 5, 1, 2, 3, 4, 5, 6, 1, 3, 5, 7};

Int DenLongVLC[] = {5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8};

Int Inverse[] = { 256, 128, 85, 64, 51, 43, 37, 32 };

Frame_Initialization(code word)

if (long code word)

{

 Numerator = NumLongVLC[code word - 112];

 Denominator = DenLongVLC[code word - 112];

}

else /* short code word */

{

 Numerator = NumShortVLC[code word];

 Denominator = DenShortVLC[code word];

}

FrameReciprocal = Inverse[Denominator - 1];

ScaleFactor = Numerator * FrameReciprocal;

End Frame_Initialization

And “code word” is obtained by decoding the frame level syntax element BFRACTION, as shown in Table 26. In this
VLC table, the code-words 000 through 110 are known as the “short” code words, and the others are known as the
“long” code words.

Figure 57 shows how direct mode scales the motion vectors from the next P frame.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 46

(x,y)

(x+dx/2,y+dy/2)

(x+dx,y+dy)

B
2

B
1

B
3

P frame (time t)

B frame (time t+1)

P frame (time t+2)

MV (dx,dy)

Figure 57: Direct Mode Prediction

8.4.3.3 Motion Vector Prediction

MV prediction for frame B pictures follows exactly the same rules as in P frames, and will not be repeated here. The
only additional point to note is that two separate MV buffers are kept for forward and backward MV’s, and the MV
prediction rules are applied on each of these while decoding an MV of the like type, i.e. forward MV’s are used to
predict an incoming forward MV, and backward MV’s are used to predict an incoming backward MV. In the
interpolated mode we use both forward and backward prediction to predict the two incoming MV’s, and in the direct
mode we scale the next field P’s collocated MV.

Macro blocks that use the direct or interpolate modes have valid forward and backward motion vectors associated with
them. Macro blocks that are coded as forward or backward do not have valid backward and forward components
respectively. For these cases, the direct mode motion vectors used in backward and forward directions respectively
are used to fill in (see 8.4.3.2).

For intra coded macro blocks, the “intra motion vector” is used to fill in both forward and backward motion prediction
planes. An “intra motion vector” is simply a unique large constant (0X4000 which exceeds the range of valid MV’s)
that is filled into the MV arrays to indicate that the MB was coded as intra.

In progressive B frames the direct mode motion vector has to be calculated even for an MB that is only forward (or
backward predicted). If it is forward predicted we calculate the backward pointing direct mode MV and put that in the
buffer of backward MV’s (the reconstructed forward MV which is obtained from the bit stream would go into the
buffer of forward MV’s), and if the MB is backward predicted you will calculate the forward pointing direct mode MV
and put that in the buffer of forward MV’s (the reconstructed backward MV is inserted into the backward MV buffer
as usual).

8.4.3.4 Motion Vector Transmission

Whether or not a macro block is coded as direct is known at the start of decoding macro block level information.
Non-direct macro blocks have one or two associated residual motion vectors, direct macro blocks have none. Skipped
macro blocks that are direct coded have zero residual Transform coefficients (Transform AC for intra macro blocks),
and skipped non-direct coded macro blocks have zero residual motion as well. If an MB is "skipped", the MB mode
shall be signaled, to identify whether the "skipped" MB shall use direct, forward, backward or interpolated prediction.
Skipping in the context of B frames means shall imply that the MV prediction error is zero, i.e. decoding is carried on
as usual (treating each mode with the appropriate decoding rules), and the predicted MV's will be exactly the ones we
use.

It is possible to gain some efficiency by coding the mode of the non-direct macro block after sending the first motion
vector. Since VC-9 jointly codes motion vector information with the intra flag, intra macro blocks are identified after
decoding the first motion vector. It is not necessary to send any mode information subsequently after an intra motion
vector is received.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 47

When the first motion vector is non-intra, the macro block type is sent. This is based on the efficient remapping of
forward and backward into short and long types as explained earlier. The second motion vector is sent only if the
macro block is interpolated, and if the last flag (see section 8.3.5.2.1) component of the first motion vector is nonzero.
If the ‘last flag’ component is zero for an interpolated macro block, it is implied that the second residual motion
vector of the interpolated block is zero, and so are the residual Transform terms.

8.4.3.5 Subpixel Interpolation

Subpixel interpolation of B frames is performed in the same manner as interpolation of P frames. The valid modes are
quarter pel bicubic and half pel bilinear.

8.4.3.6 Pixel Averaging

Macroblocks that are coded using the direct or interpolated modes have two associated predictions drawn from the two
reference anchors. These predictions are merged into one by averaging. A pixelwise mean operation with upwards
rounding is employed to perform averaging.

8.4.3.7 Reconstructing and Adding Error

The decoding, dequantization, Inverse Transform, error addition and clamping of residuals to the predicted macro
blocks is performed in a manner identical to that used in P frames. Intra macro blocks are also coded as they would
be in P frames. However, the overlapped smoothing operation applied to edges between intra blocks in P frames is
not performed in B frames. The exception is with a B frame encoded as an I frame. In this case, the overlap smoothing
operation is performed.

8.4.4 B Block Layer Decode

Block decoding syntax and operations are the same as for P pictures and will not be repeated. I-MB’s in B frames are
also the same as those in P frames.

8.5 Overlapped Transform
If the sequence layer syntax element OVERLAP is set to 1, then a filtering operation is conditionally performed across
edges of two neighboring Intra blocks, for both the luminance and chrominance channels. This filtering operation
(referred to as overlap smoothing) is performed subsequent to decoding the frame, and prior to in-loop deblocking.
However, overlap smoothing may be done after the relevant macroblock slices are decoded as this is functionally
equivalent to smoothing after decoding the entire frame.

Overlapped transforms are modified block based transforms that exchange information across the block boundary.
With a well designed overlapped transform, blocking artifacts may be minimized. For intra blocks, VC-9 simulates
an overlapped transform by coupling an 8x8 TRANSFORM-like block transform with overlap smoothing. Edges of
an 8x8 block that separate two intra blocks are smoothed – in effect an overlapped transform is implemented at this
interface.

Figure 58 shows a portion of a P frame with I blocks. This could be either the Y or U/V channel. I blocks are gray
(or crosshatched) and P blocks are white. The edge interface over which overlap smoothing is applied is marked with
a crosshatch pattern. Overlap smoothing is applied to two pixels on either side of the separating boundary. The
right bottom area of frame is shown here as an example. Pixels occupy individual cells and blocks are separated by
heavy lines. The dark circle marks the 2x2 pixel corner subblock that is filtered in both directions.

The lower inset in Figure 58 shows four labeled pixels, a0 and a1 are to the left and b1, b0 to the right of the vertical
block edge. The upper inset shows pixels marked p0, p1, q1 and q0 straddling a horizontal edge. The next section
describes the filter applied to these four pixel locations.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 48

a0 a1 b1 b0

p0

p1

q1

q0

Figure 58: Example showing overlap smoothing

8.5.1 Overlap Smoothing in Main and Simple Profiles

Overlap smoothing in main and simple profiles is applied subject to the following conditions:

1. All 8x8 block boundaries (except those at the periphery of the frame) are smoothed for I frames

2. Only block boundaries separating two intra blocks are smoothed for P frames

3. No overlap smoothing is performed for predicted B frames, i.e. B frames that are not encoded as Intra

4. Subject to the above, overlap smoothing is applied only if the frame level quantization step size PQUANT is 9
or above

5. There is no dependence on DQUANT or differential quantization across macroblocks

Overlap smoothing is carried out on the unclamped 10 bit reconstruction. In other words, the input to the overlap
smoothing process is raw, unclamped 10 bit inverse transformed spatial pixels. This is necessary because the forward
process associated with overlap smoothing may result in range expansion beyond the permissible 8 bit range for pixel
values. The result of overlap smoothing is clamped down to 8 bits, in line with the remainder of the pixels not
touched by overlap smoothing.

Vertical edges (pixels a0, a1, b1, b0 in the above example) are filtered first, followed by the horizontal edges (pixels
p0, p1, q1, q0). The intermediate result following the first stage of filtering (vertical edge smoothing) is stored in 16
bit. The core filters applied to the four pixels straddling either edge are given below:

3

7001

1711

1171

1007

1

0

1

0

3

2

1

0

3

2

1

0

>>

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

r

r

r

r

x

x

x

x

y

y

y

y

The original pixels being filtered are (x0, x1, x2, x3). r0 and r1 are rounding parameters, which take on alternating
values of 3 and 4. For both horizontal and vertical edge filters, the rounding values are r0 = 4, r1 = 3 for odd-indexed
columns and rows respectively, assuming the numbering within a block to start at 1. For even-indexed columns /
rows, r0 = 3 and r1 = 4. Filtering is defined as an in-place 16 bit operation – thus the original pixels are overwritten
after smoothing. For vertical edge filtering, the pixels (a0, a1, b1, b0) correspond to (x0, x1, x2, x3), which in turn
get filtered to (y0, y1, y2, y3). Likewise, for horizontal edge filtering, the correspondence is with (p0, p1, q1, q0)
respectively.

Pixels in the 2x2 corner, shown by the dark circle in Figure 58, are filtered in both directions. The order of filtering
determines their final values, and therefore it is important to maintain the order – vertical edge filtering followed by
horizontal edge filtering – for bit exactness.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 49

8.5.2 Overlap Smoothing in Advanced Profile

Overlap smoothing is applied subject to the following conditions:

1. No overlap smoothing is performed for any frame if the sequence level OVERLAP flag is FALSE – the
remainder of these rules apply only when OVERLAP is TRUE

2. No overlap smoothing is performed for predicted B frames, i.e. B frames that are not encoded as Intra

3. Only block boundaries separating two intra blocks are smoothed for P frames such that

a. Picture level quantization step size PQUANT is 9 or higher, regardless of HALFQP

4. For I frames, and B frames encoded as I, 8x8 block boundaries (except those at the periphery of the frame) are
smoothed as per the following rules

b. When picture level quantization step size PQUANT is 9 or higher (regardless of HALFQP), all 8x8
block boundaries (except those at the periphery of the frame) are smoothed

c. When picture level quantization step size PQUANT is 8 or lower (regardless of HALFQP), no 8x8
block boundaries are smoothed if the conditional overlap flag CONDOVER is 0 binary.

d. When picture level quantization step size PQUANT is 8 or lower (regardless of HALFQP), all 8x8
block boundaries (except those at the periphery of the frame) are smoothed if the conditional overlap
flag CONDOVER is 10 binary

e. When picture level quantization step size PQUANT is 8 or lower (regardless of HALFQP), some 8x8
block boundaries (except those at the periphery of the frame) are smoothed if the conditional overlap
flag CONDOVER is 11 binary as per the following rules

i. Internal 8x8 block boundaries within the luminance plane of a macroblock are smoothed
when the OVERFLAGS pattern for the macroblock is 1

ii. 8x8 block boundaries between adjacent macroblocks (both luminance and chrominance) are
smoothed only when the OVERFLAGS pattern for both adjacent macroblocks are 1

5. There is no dependence on DQUANT or differential quantization across macroblocks

Conditional overlap is applicable only for I frames. Conditional overlap allows the selective smoothing of 8x8 block
boundaries within macroblocks and between adjacent macroblocks. The signaling is based on one binary symbol per
macroblock – which is interpreted in a strict sense to mean that an edge between macroblocks is filtered only if both
macroblocks’ OVERFLAGS are 1. There is no block or block edge level control.

Overlap smoothing is carried out on the unclamped 10 bit reconstruction. This is necessary because the forward
process associated with overlap smoothing may result in range expansion beyond the permissible 8 bit range for pixel
values. The result of overlap smoothing is clamped down to 8 bits, in line with the remainder of the pixels not
touched by overlap smoothing.

Vertical edges (pixels a0, a1, b1, b0 in the above example) are filtered first, followed by the horizontal edges (pixels
p0, p1, q1, q0). The intermediate result following the first stage of filtering (vertical edge smoothing) is stored in 16
bit. The core filters applied to the four pixels straddling either edge are given below:

3

7001

1711

1171

1007

1

0

1

0

3

2

1

0

3

2

1

0

>>

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

r

r

r

r

x

x

x

x

y

y

y

y

The original pixels being filtered are (x0, x1, x2, x3). r0 and r1 are rounding parameters, which take on alternating
values of 3 and 4 to ensure statistically unbiased rounding. The original values are filtered by the matrix with entries
that are clearly easy to implement. These values, after adding the rounding factors, are bit shifted by three bits to give
the filtered output (y0, y1, y2, y3).

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 50

For both horizontal and vertical edge filters, the rounding values are r0 = 4, r1 = 3 for odd-indexed columns and rows
respectively, assuming the numbering within a block to start at 1. For even-indexed columns / rows, r0 = 3 and r1 =
4. Filtering is defined as an in-place operation – thus the original pixels are overwritten after smoothing. For
vertical edge filtering, the pixels (a0, a1, b1, b0) correspond to (x0, x1, x2, x3), which in turn get filtered to (y0, y1,
y2, y3). Likewise, for horizontal edge filtering, the correspondence is with (p0, p1, q1, q0) respectively.

Pixels in the 2x2 corner, shown by the dark circle in Figure 58, are filtered in both directions. The order of filtering
determines their final values, and therefore it is important to maintain the order – vertical edge filtering followed by
horizontal edge filtering – for bit exactness. Conceptually, clamping is to be performed subsequent to the two
directional filtering stages, on all pixels that are filtered. However, there may be some computational advantage to
combining clamping with filtering – this is an implementation issue as long as it is done carefully to generate the
correct output.

8.6 In-loop Deblock Filtering
If the sequence layer syntax element LOOPFILTER = 1, then a filtering operation is performed on each reconstructed
frame. This filtering operation is performed prior to using the reconstructed frame as a reference for motion predictive
coding. Therefore, it is necessary that the decoder perform the filtering operation strictly as defined. When there are
multiple slices in a picture, the loopfilter for each slice is performed independently as described in section 7.1.2.

Since the intent of loop filtering is to smooth out the discontinuities at block boundaries the filtering process operates
on the pixels that border neighboring blocks. For P pictures, the block boundaries may occur at every 4th, 8th, 12th, etc
pixel row or column depending on whether an 8x8, 8x4 or 4x8 Inverse Transform is used. For I pictures filtering
occurs at every 8th, 16th, 24th, etc pixel row and column.

8.6.1 I Picture In-loop Deblocking

For I pictures, deblock filtering is performed at all 8x8 block boundaries. Figure 59 and Figure 60 show the pixels that
are filtered along the horizontal and vertical border regions. The figures show the upper left corner of a component
(luma, Cb or Cr) plane. The crosses represent pixels and the circled crosses represent the pixels that are filtered.

Figure 59: Filtered horizontal block boundary pixels in I picture

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 51

Figure 60: Filtered vertical block boundary pixels in I picture

As the figures show, the top horizontal line and first vertical line are not filtered. Although not depicted, the bottom
horizontal line and last vertical line are also not filtered. In more formal terms, the following lines are filtered:

N = the number of horizontal 8x8 blocks in the plane (N*8 = horizontal frame size)

M = the number of vertical 8x8 blocks in the frame (M*8 = vertical frame size)

Horizontal lines (7,8), (15,16) … ((N – 1)*8 – 1, (N –1)*8) are filtered

Vertical lines (7, 8), (15, 16) … ((M-1)*8 - 1, (M – 1)*8) are filtered

The order in which the pixels are filtered is important. All the horizontal boundary lines in the frame are filtered first
followed by the vertical boundary lines.

8.6.2 P Picture In-loop Deblocking

For P pictures, blocks may be Intra or Inter-coded. Intra-coded blocks always use an 8x8 Transform to transform the
samples and the 8x8 block boundaries are always filtered. Inter-coded blocks may use an 8x8, 8x4, 4x8 or 4x4 Inverse
Transform to construct the samples that represent the residual error. Depending on the status of the neighboring
blocks, the boundary between the current and neighboring blocks may or may not be filtered. The decision of whether
to filter a block or subblock border is as follows:

1) The boundaries between coded (at least one non-zero coefficient) subblocks (8x4, 4x8 or 4x4) within an 8x8
block are always filtered.

2) The boundary between a block or subblock and a neighboring block or subblock is not filtered if both have the
same motion vector and both have no residual error (no Transform coefficients). Otherwise it is filtered.

Figure 61 shows examples of when filtering between neighboring blocks does and does not occur. In this example it is
assumed that the motion vectors for both blocks is the same (if the motion vectors are different, then the boundary is
always filtered). The shaded blocks or subblocks represent the cases where at least one nonzero coefficient is present.

Clear blocks or subblocks represent cases where no Transform coefficients are present. Thick lines represent the
boundaries that are filtered. Thin lines represent the boundaries that are not filtered. These examples illustrate only
horizontal neighbors. The same applies for vertical neighbors.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 52

Figure 61: Example filtered block boundaries in P frames

Figure 62 and Figure 63 shows an example of the pixels that could be filtered in a P frame. The crosses represent
pixel locations and the circled crosses represent the boundary pixels that will filtered if the conditions specified above
are met.

Figure 62 shows pixels filtered along horizontal boundaries. As the figure shows, the pixels on either side of the block
or subblock boundary are candidates to be filtered. For the horizontal boundaries this could be every 4th and 5th, 8th and
9th, 12th and 13th etc pixel row in the frame as these are the 8x8 and 8x4 horizontal boundaries.

Figure 63 shows pixels filtered along vertical boundaries. For the vertical boundaries, every 4th and 5th, 8th and 9th, 12th
and 13th etc pixel column in the frame may be filtered as these are the 8x8 and 4x8 vertical boundaries.

The first and last row and the first and last column in the frame are not filtered.

The order in which pixels are filtered is important. First, all the 8x8 block horizontal boundary lines in the frame are
filtered starting from the top line. Next, all 8x4 block horizontal boundary lines in the frame are filtered starting from
the top line. Next, all 8x8 block vertical boundary lines are filtered starting from the leftmost line. Last, all 4x8 block
vertical boundary lines are filtered starting with the leftmost line. In all cases, the rules specified above are used to
determine whether the boundary pixels are filtered for each block or subblock.

Figure 62: Horizontal block boundary pixels in P picture

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 53

Figure 63: Vertical block boundary pixels in P picture

8.6.3 B Picture In-loop Deblocking

This is exactly the same as I-picture in-loop deblocking, i.e. we only filter the 8x8 block boundaries, and don’t
consider MV’s or 4x8/8x4 as with P pictures.

8.6.4 Filter Operation

This section describes the filtering operation that is performed on the boundary pixels in I and P frames.

For P frames the decision criteria listed in section 8.6.2 determines which vertical and horizontal boundaries are
filtered. For I frames, all the 8x8 vertical and horizontal boundaries are filtered. Since the minimum number of
consecutive pixels that will be filtered in a row or column is four and the total number of pixels in a row or column
will always be a multiple of four, the filtering operation is performed on segments of four pixels.

For example, if the eight pixel pairs that make up the vertical boundary between two blocks is filtered, then the eight
pixels are divided into two 4-pixel segments as shown in Figure 64. In each 4-pixel segment, the third pixel pair is
filtered first as indicated by the X’s. The result of this filter operation determines whether the other three pixels in the
segment are also filtered, as described below.

Figure 64: Four-pixel segments used in loop filtering

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 54

Figure 65 shows the pixels that are used in the filtering operation performed on the 3rd pixel pair. Pixels P4 and P5 are
the pixel pairs that may be changed in the filter operation.

Figure 65: Pixels used in filtering operation

The pseudocode of Figure 66 shows the filtering operation performed on the 3rd pixel pair in each segment. The value
filter_other_3_pixels indicates whether the remaining 3 pixel pairs in the segment are also filtered. If
filter_other_3_pixels = TRUE, then the other three pixel pairs are filtered. If filter_other_3_pixels = FALSE, then they
are not filtered, and the filtering operation proceeds to the next 4-pixel segment. The pseudocode of Figure 67 shows
the filtering operation that is performed on the 1st, 2nd and 4th pixel pair if filter_other_3_pixels = TRUE.

filter_other_3_pixels = TRUE

a0 = (2*(P3 - P6) - 5*(P4 – P5) + 4) >> 3

if (|a0| < PQUANT) {

a1 = (2*(P1 - P4) - 5*(P2 - P3) + 4) >> 3

a2 = (2*(P5 - P8) - 5*(P6 - P7) + 4) >> 3

 a3 = min(|a1|, |a2|)

if (a3 < |a0|)

{

d = 5*((sign(a0) * a3) - a0)/8

clip = (P4 – P5)/2

if (clip == 0)

 filter_other_3_pixels = FALSE

else

{

if (clip > 0)

{

 if (d < 0)

 d = 0

 if (d > clip)

 d = clip

}

else

{

 if (d > 0)

 d = 0

 if (d < clip)

 d = clip

}

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 55

 P4 = P4 - d

 P5 = P5 + d

}

}

else

 filter_other_3_pixels = FALSE

}

else

 filter_other_3_pixels = FALSE

Figure 66: Pseudo-code illustrating filtering of 3rd pixel pair in segment

a0 = (2*(P3 - P6) - 5*(P4 – P5) + 4) >> 3

if (|a0| < PQUANT)

{

a1 = (2*(P1 - P4) - 5*(P2 - P3) + 4) >> 3

a2 = (2*(P5 - P8) - 5*(P6 - P7) + 4) >> 3

 a3 = min(|a1|, |a2|)

if (a3 < |a0|)

{

d = 5*((sign(a0) * a3) - a0)/8

clip = (P4 – P5)/2

if (clip > 0)

{

 if (d < 0)

 d = 0

 if (d > clip)

 d = clip

 P4 = P4 - d

 P5 = P5 + d

}

else if (clip < 0)

{

 if (d > 0)

 d = 0

 if (d < clip)

 d = clip

 P4 = P4 - d

 P5 = P5 + d

}

}

}

Figure 67: Pseudo-code illustrating filtering of 1st, 2nd and 4th pixel pair in segment

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 56

This section used the vertical boundary for example purposes. The same operation is used for filtering the horizontal
boundary pixels.

8.7 Bitplane Coding
Certain macroblock-specific information may be encoded in one binary symbol per macroblock. For example, whether
or not any information is present for a macroblock (i.e., whether or not it is skipped) may be signaled with one binary
symbol or bit. In these cases, the status for all macroblocks in a frame may be coded as a bitplane and transmitted in
the frame header. The only exception for this rule is if the bitplane coding mode (described below) is set to Raw Mode.
In this case, the status for each macroblock is coded as one bit per symbol, and transmitted along with other
macroblock level syntax elements. Raw mode is the only allowed bit plane mode when multiple slices are used to code
the frame. VC-9 uses bitplane coding in three cases to signal information about the macroblocks in a frame. These are:
1) signaling skipped macroblocks, 2) signaling field or frame macroblock mode and 3) signaling 1-MV or 4-MV
motion vector mode for each macroblock. This section describes the bitplane coding scheme.

Frame-level bitplane coding is used to encode two-dimensional binary arrays. The size of each array is rowMB ×
colMB, where rowMB and colMB are the number of macroblock rows and columns respectively. Within the
bitstream, each array is coded as a set of consecutive bits. One of seven modes is used to encode each array.

The seven modes are enumerated below.

1. Raw mode – coded as one bit per symbol, and transmitted as part of MB level syntax.

2. Normal-2 mode – two symbols coded jointly

3. Differential-2 mode – differential coding of bitplane, followed by coding two residual symbols jointly

4. Normal-6 mode – six symbols coded jointly

5. Differential-6 mode – differential coding of bitplane, followed by coding six residual symbols jointly

6. Rowskip mode – one bit skip to signal rows with no set bits

7. Columnskip mode – one bit skip to signal columns with no set bits

Section 7.2 shows the syntax elements that make up the bitplane coding scheme. The follow sections describe how to
decode the bitstream and reconstruct the bitplane.

8.7.1 INVERT

The INVERT syntax element shown in the syntax diagram of Figure 28 is a one bit code, which if set indicates that
the bitplane has more set bits than zero bits. Depending on INVERT and the mode, the decoder shall invert the
interpreted bitplane to recreate the original. Note that the value of this bit shall be ignored when the raw mode is used.

8.7.2 IMODE

The IMODE syntax element shown in the syntax diagram of Figure 28 encodes the mode used code the bitplane. The
seven modes are described in section 8.7.3. Table 71 shows the codetable used to encode the IMODE syntax element.

Table 71: IMODE Codetable

CODING
MODE

CODEWORD

Raw 0000

Norm-2 10

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 57

Diff-2 001

Norm-6 11

Diff-6 0001

Rowskip 010

Colskip 011

8.7.3 DATABITS

The DATABITS syntax element shown in the syntax diagram of Figure 28 is an entropy coded stream of symbols that
is based on the coding mode. The seven coding modes are described in the following sections.

8.7.3.1 Raw mode

In this mode, the bitplane is encoded as one bit per symbol scanned in the raster-scan order of macroblocks, and sent
as part of the macroblock layer. DATABITS is rowMB × colMB bits in length.

8.7.3.2 Normal-2 mode

If rowMB × colMB is odd, the first symbol is encoded raw. Subsequent symbols are encoded pairwise, in natural scan
order. The binary VLC table in Table 72 is used to encode symbol pairs.

Table 72: Norm-2/Diff-2 Code Table

SYMBOL 2N SYMBOL 2N + 1 CODEWORD

0 0 0

1 0 100

0 1 101

1 1 11

8.7.3.3 Diff-2 mode

The Normal-2 method is used to produce the bitplane as described in section 8.7.3.2 and then the Diff-1 operation is
applied to the bitplane as described in section 8.7.3.8.

8.7.3.4 Normal-6 mode

In the Norm-6 and Diff-6 modes, the bitplane is encoded in groups of six pixels. These pixels are grouped into either
2x3 or 3x2 tiles. The bitplane is tiled maximally using a set of rules, and the remaining pixels are encoded using a
variant of row-skip and column-skip modes.

2x3 “vertical” tiles are used if and only if rowMB is a multiple of 3 and colMB is not. Else, 3x2 “horizontal” tiles are
used, as shown in Figure 68.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 58

Figure 68: An example of 2x3 “vertical” tiles (a) and 3x2 “horizontal” tiles (b) – the elongated dark rectangles
are 1 pixel wide and encoded using row-skip and column-skip coding.

While the picture is tiled as shown in Figure 68, (with linear tiles along the top and left edges of the picture), the
coding order of the tiles follows the following pattern. The 6-element tiles are encoded first, followed by the column-
skip and row-skip encoded linear tiles. If the array size is a multiple of 2x3 or of 3x2, the latter linear tiles do not
exist and the bitplane is perfectly tiled.

The 6-element rectangular tiles are encoded using an incomplete Huffman code, i.e. a Huffman code which does not
use all end nodes for encoding. Let N be the number of set bits in the tile, i.e. 0 ≤ N ≤ 6. For N < 3, a VLC is used to
encode the tile. For N = 3, a fixed length escape is followed by a 5 bit fixed length code, and for N > 3, a fixed length
escape is followed by the code of the complement of the tile.

The rectangular tile contains 6 bits of information. Let k be the code associated with the tile, where k = bi 2
i, bi is the

binary value of the ith bit in natural scan order within the tile. Hence 0 ≤ k ≤ 64. Table 73 is used to encode k.

Table 73: Code table for 3x2 and 2x3 tiles

 VLC / Escape symbol Followed by

k Codeword Codelength Codeword Codelength

0 1 1

1 2 4

2 3 4

3 0 8

4 4 4

5 1 8

6 2 8

7 2 5 3 5

8 5 4

9 3 8

10 4 8

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 59

11 2 5 5 5

12 5 8

13 2 5 6 5

14 2 5 7 5

15 3 5 14 8

16 6 4

17 6 8

18 7 8

19 2 5 9 5

20 8 8

21 2 5 10 5

22 2 5 11 5

23 3 5 13 8

24 9 8

25 2 5 12 5

26 2 5 13 5

27 3 5 12 8

28 2 5 14 5

29 3 5 11 8

30 3 5 10 8

31 3 5 7 4

32 7 4

33 10 8

34 11 8

35 2 5 17 5

36 12 8

37 2 5 18 5

38 2 5 19 5

39 3 5 9 8

40 13 8

41 2 5 20 5

42 2 5 21 5

43 3 5 8 8

44 2 5 22 5

45 3 5 7 8

46 3 5 6 8

47 3 5 6 4

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 60

48 14 8

49 2 5 24 5

50 2 5 25 5

51 3 5 5 8

52 2 5 26 5

53 3 5 4 8

54 3 5 3 8

55 3 5 5 4

56 2 5 28 5

57 3 5 2 8

58 3 5 1 8

59 3 5 4 4

60 3 5 0 8

61 3 5 3 4

62 3 5 2 4

63 3 5 1 1

8.7.3.5 Diff-6 mode

The Normal-6 method is used to produce the bitplane as described in section 8.7.3.4 and then the Diff-1 operation is
applied to the bitplane as described in section 8.7.3.8.

8.7.3.6 Row-skip mode

In the row-skip coding mode, all-zero rows are skipped with one bit overhead. The syntax is as shown in Figure 69.

Figure 69: Syntax diagram of row-skip coding

If the entire row is zero, a zero bit is sent as the ROWSKIP symbol, and ROWBITS is skipped. If there is a set bit in
the row, ROWSKIP is set to 1, and the entire row is sent raw (ROWBITS). Rows are scanned from the top to the
bottom of the frame.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 61

8.7.3.7 Column-skip mode

Column-skip is the transpose of row-skip. Columns are scanned from the left to the right of the frame.

8.7.3.8 Diff-1 : Inverse differential decoding

If either differential mode (Diff-2 or Diff-6) is used, a bitplane of “differential bits” is first decoded using the
corresponding normal modes (Norm-2 or Norm-6 respectively). The differential bits are used to regenerate the
original bitplane. The regeneration process is a 2-D DPCM on a binary alphabet. In order to regenerate the bit at
location (i, j), the predictor bp(i,j) is generated as follows (from bits b(i, j) at positions (i, j)):

otherwise

i

jibjiborji

jib

jb

A

jibp 0

),1()1,(,0

),1(

)1,0(),(==
−≠−==

⎪
⎩

⎪
⎨

⎧

−
−=

For the differential coding mode, the bitwise inversion process based on INVERT is not performed. However, the
INVERT flag is used in a different capacity to indicate the value of the symbol A for the derivation of the predictor
shown above. More specifically, A equal to 0 if INVERT equals to 0 and A equals to 1 if INVERT equals to 1. The
actual value of the bitplane is obtained by xor’ing the predictor with the decoded differential bit value.

8.8 Sync Markers
Sync markers are known sequences of bits that are inserted at important locations in the bitstream to clearly identify
these locations. There are several reasons that require sync markers – the important ones are for error resilience and
for parallel decoding of the bitstream. The simple and main profiles of VC-9 allow sync markers to be inserted in the
bitstream. The sequence level flag SYNCMARKER determines whether sync markers are enabled in the sequence. If
they are enabled, sync markers are sent only for I and P frames. No sync markers are allowed in B frames, including
B frames coded as Intra. When SYNCMARKER is enabled, all bitplanes are encoded as raw bitplanes and the
relevant data (e.g. 4MV/1MV, skipbit) is sent at the macroblock level. Sync markers are placed only at byte
boundaries.

The sync markers in simple/main profiles of VC-9 are not guaranteed to be unique. However, sync markers are 24
bits in length and it is expected that even if they do randomly occur in a bitstream, such occurrences will be rare.
Assuming a uniform distribution, it may be expected that one sync marker will randomly be emulated in a 224 byte
long stream. For a bitrate of 1Mbps, this is equivalent to one random sync marker emulation every two minutes, or
one occurrence every 3900 frames.

Sync markers may only occur at the start of a row of macroblocks (abbreviated as MB row). No sync marker is
permitted in the first MB row. When sequence level SYNCMARKER is enabled, a single bit is sent at the end of
every MB row, except for the last MB row in the frame, to indicate whether or not a sync marker follows. If this bit is
one, it means that no sync marker follows. If this bit is zero, the remainder of the current byte is flushed out.
Subsequently, the 24 bit byte aligned data is read from the bitstream. This is the sync marker.

Two sync markers are defined in VC-9. These are the short and long sync markers. Both the codes are 24 bits in
length, but the payload or data following the sync marker differs in length. The short sync marker, whose hex
representation is 0x0000AA, is followed by a 5 byte payload. The long sync marker (hex 0x0000AB) is followed by a
11 byte payload. Note that the first two bytes of both sync markers are zeros. This design makes the implementation of
hardware-based sync marker detection schemes easier.

Currently, there is no requirement on the decoder to do anything with the payload in order to be compliant with the
spec. The only interoperability requirement on any decoder is that the decoder correctly handle encoded content that
may have embedded sync markers, assuming that no errors are present in the bitstream. The payload may be used to
transmit parity, error detection and error recovery information.

Figure 70 represents a coded (I or P) frame. Subfigure (a) shows successive macroblocks coded when
SYNCMARKER is zero, (b) shows coded macroblocks when SYNCMARKER is one but no sync markers are actually
sent, and (c) shows the case when both long and short sync markers are sent in the frame. The frame header, sync

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 62

markers and payloads are byte aligned. The trailing 0 or 1 in all but the last slice is sent when SYNCMARKER is 1.
This is necessary to ensure byte flushing in the case that a sync marker is sent at the start of the next slice. “FB” in
the figure stands for flush bits or the process of stuffing between zero and seven bits to reach the end of the current
byte. The value of the flush bits is zero. “SC” and “PL” stand for sync marker and payload respectively. The sync
marker 0x0000AA is followed by a 5 byte payload and 0x0000AB is followed by a 11 byte payload.

There are no sync markers in B frames. For B frames, the entropy coded stream follows the order shown in Figure 70
(a) regardless of whether SYNCMARKER is 0 or 1.

Figure 70: Sync markers in VC-9 – (a) shows sequence of entropy coded data with SYNCMARKER set to zero,
(b) SYNCMARKER is 1 but no sync markers are actually sent and (c) SYNCMARKER is 1, a long and a short

sync marker are sent, some slices do not have sync markers

8.9 INVERSETRANSFORM Conformance
The decoding process requires strict conformance with the VC-9 Inverse Transform implementation defined in Annex
A.

9 Interlace syntax and semantics

9.1 Picture-level Syntax and Semantics
Each compressed video sequence is made up of data structured into three hierarchical layers. This section describes the
syntax and semantics of the picture layer, macroblock layer, and block layer, when a picture is coded in interlace mode
. Figure 71 through Figure 87 show the bitstream elements that make up each layer.

1

1

1

1

0

0

0xAB SC PL
11byte

PL
5byt

SC0
xAA

header Fram

Fram header 1

FB

MBRow 2

MBRow 3

MBRow N .

MBRow 2

MBRow 1

MBRow N .

MBRow 1

MBRow N .

MBRow 2

FB

MBRow 1 . Frame

(a)

(b)

(c)

header

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 63

FCM

TFCNTR

TFF

RFF

PTYPE

RPTFRM

RNDCTRL

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

CONDOVER

TRANSDCTAB

OVERFLAGS

TRANSACFRM

TRANSACFRM2

VOPDQUANT

MBLAYER

ACPRED

Picture Layer

(Frame Interlace I)

FIELDTX

UVSAMP

TOPLEFTX, TOPLEFTY,

BOTRIGHTX, BOTRIGHTY

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 64

Figure 71: Syntax diagram for the picture layer bitstream in Interlace Frame I picture

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 65

FCM

TFCNTR

TFF

RFF

PTYPE

RPTFRM

RNDCTRL

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

CONDOVER

TRANSDCTAB

OVERFLAGS

TRANSACFRM

TRANSACFRM2

VOPDQUANT

MBLAYER

ACPRED

Picture Layer

(Frame Interlace BI)

FIELDTX

UVSAMP

TOPLEFTX, TOPLEFTY,

BOTRIGHTX, BOTRIGHTY PICERRCODING

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 66

Figure 72: Syntax diagram for the picture layer bitstream in Interlace Frame BI picture

FCM

TFCNTR

TFF

RFF

PTYPE

RPTFRM

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

MVTAB

CBPTAB

SKIPMB

TRANSACFRM

VOPDQUANT

MBLAYER

Picture Layer

(Frame Interlace P)

TTMBF

TTFRM

TRANSDCTAB

MVRANGE

DMVRANGE

4MVSWITCH

INTCOMP

LUMSCALE

LUMSHIFT

MBMODETAB

2MVBPTAB

4MVBPTAB

RNDCTRL

UVSAMP

TOPLEFTX, TOPLEFTY,

BOTRIGHTX, BOTRIGHTY

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 67

Figure 73: Syntax diagram for the picture layer bitstream in Interlace Frame P picture

FCM

TFCNTR

TFF

RFF

PTYPE

RPTFRM

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

MVTAB

CBPTAB

DIRECTMB

VOPDQUANT

MBLAYER

Picture Layer

(Frame Interlace B)

TTMBF

TTFRM

TRANSDCTAB

MVRANGE

DMVRANGE

4MVSWITCH

MBMODETAB

2MVBPTAB

4MVBPTAB

BFRACTION

SKIPMB

RNDCTRL

UVSAMP

TOPLEFTX, TOPLEFTY,

BOTRIGHTX, BOTRIGHTY

TRANSACFRM

Figure 74: Syntax diagram for the picture layer bitstream in Interlace Frame B picture

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 68

Figure 75: Syntax diagram for the picture layer bitstream in Interlace Field pictures

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 69

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

CONDOVER

TRANSDCTAB

OVERFLAGS

TRANSACFRM

TRANSACFRM2

VOPDQUANT

MBLAYER

ACPRED

Field Picture Layer

(I Field Picture)

Figure 76: Syntax diagram for the field picture layer bitstream in Interlace I Field pictures

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 70

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

CONDOVER

TRANSDCTAB

OVERFLAGS

TRANSACFRM

TRANSACFRM2

VOPDQUANT

MBLAYER

ACPRED

Field Picture Layer

(BI Field Picture)

PICERRCODING

Figure 77: Syntax diagram for the field picture layer bitstream in Interlace BI Field pictures

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 71

PQINDEX

HALFQP

PQUANTIZER

POSTPROC

MVTAB

CBPTAB

TRANSACFRM

VOPDQUANT

MBLAYER

TTMBF

TTFRM

TRANSDCTAB

MVMODE

MVRANGE

NUMREF

REFFIELD

DMVRANGE

LUMSCALE1

LUMSHIFT1

MVMODE2

INTCOMPFIELD

LUMSCALE2

LUMSHIFT2

MBMODETAB

4MVBPTAB

Field Picture Layer

(P Field Picture)

Figure 78: Syntax diagram for the field picture layer bitstream in Interlace P Field pictures

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 72

PQINDEX

HALFQP

PQUANTIZER

POSTPROC MVTAB

CBPTAB

TRANSACFRM

VOPDQUANT

MBLAYER

TTMBF

TTFRM

TRANSDCTAB

MVMODE

MVRANGE

DMVRANGE

MBMODETAB

4MVBPTAB

Field Picture Layer

(B Field Picture)

FORWARDMB

Figure 79: Syntax diagram for the field picture layer bitstream in Interlace B Field pictures

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 73

Figure 80: Syntax diagram for macroblock layer bitstream in interlace field I picture

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 74

Figure 81: Syntax diagram for macroblock layer bitstream in P field picture

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 75

MB Layer

(Interlace Field B Picture)

MBMODE

BLOCK LAYER

MQDIFF

ABSMQ

CPBCY

ACPRED

BMVTYPE

MBMODE

FORWARDBIT

INTERPMVP

BMV1

BMV2

CPBCY

MQDIFF

ABSMQ

TTMB

BLOCK LAYER

MBMODE

FORWARDBIT

4MVBP

BLKMVDATA

CPBCY

MQDIFF

ABSMQ

TTMB

BLOCK LAYER

INTRA MB

1MV MB

4MV MB

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 76

Figure 82: Syntax diagram for macroblock layer bitstream in Field B picture

Figure 83: Syntax diagram for macroblock layer bitstream in Interlace Frame I picture

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 77

MB Layer

(Interlace Frame P Picture)

CBPCY

MBDATA

MQDIFF

ABSMQ

TTMB

BLOCK LAYER

INTRA MB

SKIPMB

MBMODE 2MVBP / 4MVBP

INTER MB

BLOCK LAYER

MQDIFF

ABSMQ

FIELDTX

ACPRED

CBPPRESENT

CPBCY

Figure 84: Syntax diagram for macroblock layer bitstream in Interlace Frame P picture

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 78

MB Layer

(Interlace Frame B Picture)

CBPCY

MBDATA

MQDIFF

ABSMQ

TTMB

BLOCK LAYER

INTRA MB

SKIPMB

MBMODE

DIRECTBBIT

BMVTYPE

MVSW

2MVBP / 4MVBP

INTER MB

BLOCK LAYER

MQDIFF

ABSMQ

FIELDTX

ACPRED

CBPPRESENT

CPBCY

Figure 85: Syntax diagram for macroblock layer bitstream in Interlace Frame B picture

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 79

DCCOEF

ACPREDBLK

DCCOEFESC

DCSIGN

ACCOEF1

ESCMODE

ACCOEF2

LVLSIGN

ESCLR

ESCLVLSZ

ESCRUNSZ

ESCRUN

LVLSIGN2

ESCLVL

Block LAYER

(INTRA)

Figure 86: Intra Block Layer in Interlace Frame.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 80

Figure 87: Inter Block Layer in Interlace Frame.

The following tables show the picture-layer syntax elements of a picture that is coded in interlace-mode.

Table 74: Interlaced Frame I picture layer bitstream for Advanced Profile

PICTURE LAYER() { Number of bits

 FCM Variable size

 PTYPE Variable size

 if (TFCNTRFLAG) { 8

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 81

 TFCNTR

 }

 if (BROADCAST == 1) {

 if (INTERLACE == 0) {

 RPTFRM 2

 }

 else {

 TFF 1

 RFF 1

 }

 }

 if (PANSCANFLAG) {

 For (i = 0; i < NUMPANSCANWIN; i++) {

 TOPLEFTX 16

 TOPLEFTY 16

 BOTRIGHTX 16

 BOTRIGHTY 16

 }

 }

 RNDCTRL 1

 UVSAMP 1

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (POSTPROCFLAG == 1) {

 POSTPROC 2

 }

 FIELDTX Bitplane

 ACPRED Bitplane

 if (OVERLAP == 1 && ‘other conditions’) {

 CONDOVER Variable size

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 82

 if (CONDOVER == 11b) {

 OVERFLAGS Bitplane

 }

 }

 TRANSACFRM Variable size

 TRANSACFRM2 Variable size

 TRANSDCTAB 1

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

 }

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Table 75: Interlaced Frame BI picture layer bitstream for Advanced Profile

PICTURE LAYER() { Number of bits

 FCM Variable size

 PTYPE Variable size

 if (TFCNTRFLAG) { 8

 TFCNTR

 }

 if (BROADCAST == 1) {

 if (INTERLACE == 0) {

 RPTFRM 2

 }

 else {

 TFF 1

 RFF 1

 }

 }

 if (PANSCANFLAG) {

 For (i = 0; i < NUMPANSCANWIN; i++) {

 TOPLEFTX 16

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 83

 TOPLEFTY 16

 BOTRIGHTX 16

 BOTRIGHTY 16

 }

 }

 RNDCTRL 1

 UVSAMP 1

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (POSTPROCFLAG == 1) {

 POSTPROC 2

 }

 FIELDTX Bitplane

 ACPRED Bitplane

 if (OVERLAP == 1 && ‘other conditions’) {

 CONDOVER Variable size

 if (CONDOVER == 11b) {

 OVERFLAGS Bitplane

 }

 }

 TRANSACFRM Variable size

 TRANSACFRM2 Variable size

 TRANSDCTAB 1

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

 }

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 84

Table 76: Interlaced Frame P picture layer bitstream for Advanced Profile

PICTURE LAYER() { Number of bits

 FCM Variable size

 PTYPE Variable size

 if (TFCNTRFLAG) { 8

 TFCNTR

 }

 if (BROADCAST == 1) {

 if (INTERLACE == 0) {

 RPTFRM 2

 }

 else {

 TFF 1

 RFF 1

 }

 }

 if (PANSCANFLAG) {

 For (i = 0; i < NUMPANSCANWIN; i++) {

 TOPLEFTX 16

 TOPLEFTY 16

 BOTRIGHTX 16

 BOTRIGHTY 16

 }

 }

 RNDCTRL 1

 UVSAMP 1

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 85

 if (POSTPROCFLAG == 1) {

 POSTPROC 2

 }

 if (EXTENDED_MV == 1) {

 MVRANGE Variable size

 }

 if (EXTENDED_DMV == 1) {

 DMVRANGE Variable size

 }

 4MVSWITCH 1

 INTCOMP 1

 if (INTCOMP) {

 LUMSCALE 6

 LUMSHIFT 6

 }

 SKIPMB Bitplane

 MBMODETAB 2

 MVTAB 2

 CBPTAB 3

 2MVBPTAB 2

 if (4MVSWITCH == 1) {

 4MVBPTAB 2

 }

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

 }

 if (VSTRANSFORM == 1) {

 TTMBF 1

 if (TTMBF == 1) {

 TTFRM 2

 }

 }

 TRANSACFRM Variable size

 TRANSDCTAB 1

 for (‘all macroblocks’) {

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 86

 MB LAYER()

 }

}

Table 77: Interlaced Frame B picture layer bitstream for Advanced Profile

PICTURE LAYER() { Number of bits

 FCM Variable size

 PTYPE Variable size

 if (TFCNTRFLAG) { 8

 TFCNTR

 }

 if (BROADCAST == 1) {

 if (INTERLACE == 0) {

 RPTFRM 2

 }

 else {

 TFF 1

 RFF 1

 }

 }

 if (PANSCANFLAG) {

 For (i = 0; i < NUMPANSCANWIN; i++) {

 TOPLEFTX 16

 TOPLEFTY 16

 BOTRIGHTX 16

 BOTRIGHTY 16

 }

 }

 RNDCTRL 1

 UVSAMP 1

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 87

 PQUANTIZER 1

 }

 if (POSTPROCFLAG == 1) {

 POSTPROC 2

 }

 BFRACTION Variable size

 if (EXTENDED_MV == 1) {

 MVRANGE Variable size

 }

 if (EXTENDED_DMV == 1) {

 DMVRANGE Variable size

 }

 4MVSWITCH 1

 DIRECTMB Bitplane

 SKIPMB Bitplane

 MBMODETAB 2

 MVTAB 2

 CBPTAB 3

 2MVBPTAB 2

 if (4MVSWITCH == 1) {

 4MVBPTAB 2

 }

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

 }

 if (VSTRANSFORM == 1) {

 TTMBF 1

 if (TTMBF == 1) {

 TTFRM 2

 }

 }

 TRANSACFRM Variable size

 TRANSDCTAB 1

 for (‘all macroblocks’) {

 MB LAYER()

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 88

 }

}

Table 78: Field Interlace Picture Layer bitstream for Advanced Profile

PICTURE LAYER() { Number of bits

 FCM Variable size

 FPTYPE 3

 if (TFCNTRFLAG) { 8

 TFCNTR

 }

 if (BROADCAST == 1) {

 if (INTERLACE == 0) {

 RPTFRM 2

 }

 else {

 TFF 1

 RFF 1

 }

 }

 if (PANSCANFLAG) {

 For (i = 0; i < NUMPANSCANWIN; i++) {

 TOPLEFTX 16

 TOPLEFTY 16

 BOTRIGHTX 16

 BOTRIGHTY 16

 }

 }

 RNDCTRL 1

 UVSAMP 1

 if (FPTYPE == I/P, P/I or P/P) {

 REFDIST Variable size

 }

 if (FPTYPE == B/B, B/BI or BI/B) {

 BFRACTION Variable size

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 89

 }

 FIELDPICLAYER()

 }

Table 79: Field Interlace I Field Picture Layer bitstream for Advanced Profile

FIELDPIC LAYER() { Number of bits

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (POSTPROCFLAG == 1) {

 POSTPROC 2

 }

 ACPRED Bitplane

 if (OVERLAP == 1 && ‘other conditions’) {

 CONDOVER Variable size

 if (CONDOVER == 11b) {

 OVERFLAGS Bitplane

 }

 }

 TRANSACFRM Variable size

 TRANSACFRM2 Variable size

 TRANSDCTAB 1

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

 }

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 90

Table 80: Field Interlace BI Field Picture Layer bitstream for Advanced Profile

FIELDPIC LAYER() { Number of bits

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (POSTPROCFLAG == 1) {

 POSTPROC 2

 }

 ACPRED Bitplane

 if (OVERLAP == 1 && ‘other conditions’) {

 CONDOVER Variable size

 if (CONDOVER == 11b) {

 OVERFLAGS Bitplane

 }

 }

 TRANSACFRM Variable size

 TRANSACFRM2 Variable size

 TRANSDCTAB 1

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

 }

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Table 81: Field Interlace P Field Picture layer bitstream for Advanced Profile

PICTURE LAYER() { Number of bits

 PQINDEX 5

 if (PQINDEX <= 8) {

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 91

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (POSTPROCFLAG == 1) {

 POSTPROC 2

 }

 NUMREF 1

 if (NUMREF == 0) {

 REFFIELD 1

 }

 if (EXTENDED_MV == 1) {

 MVRANGE Variable size

 }

 if (EXTENDED_DMV == 1) {

 DMVRANGE Variable size

 }

 MVMODE Variable size

 if (MVMODE == ’intensity compensation’) {

 MVMODE2 Variable size

 INTCOMPFIELD Variable size

 LUMSCALE1 6

 LUMSHIFT1 6

 if (INTCOMPFIELD = 1b) {

 LUMSCALE2 6

 LUMSHIFT2 6

 }

 }

 MBMODETAB 3

 MVTAB 2 or 3

 CBPTAB 3

 if (MVMODE ==’Mixed MV’) {

 4MVBPTAB 2

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 92

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

 }

 if (VSTRANSFORM == 1) {

 TTMBF 1

 if (TTMBF == 1) {

 TTFRM 2

 }

 }

 TRANSACFRM Variable size

 TRANSDCTAB 1

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Table 82: Field Interlace B Field Picture layer bitstream for Advanced Profile

PICTURE LAYER() { Number of bits

 PQINDEX 5

 if (PQINDEX <= 8) {

 HALFQP 1

 }

 if (QUANTIZER == 01b) {

 PQUANTIZER 1

 }

 if (POSTPROCFLAG == 1) {

 POSTPROC 2

 }

 if (EXTENDED_MV == 1) {

 MVRANGE Variable size

 }

 if (EXTENDED_DMV == 1) {

 DMVRANGE Variable size

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 93

 MVMODE Variable size

 FORWARDMB Bitplane

 MBMODETAB 3

 MVTAB 2

 CBPTAB 3

 if (MVMODE ==’Mixed MV’) {

 4MVBPTAB 2

 }

 if (DQUANT != 0) {

 VOPDQUANT () Variable size

 }

 if (VSTRANSFORM == 1) {

 TTMBF 1

 if (TTMBF == 1) {

 TTFRM 2

 }

 }

 TRANSACFRM Variable size

 TRANSDCTAB 1

 for (‘all macroblocks’) {

 MB LAYER()

 }

}

Table 83: Macroblock layer bitstream in Interlaced Frame I Picture

I PICTURE MB() { Number of bits

 if (“FIELDTX mode == RAW”) { <

 FIELDTX 1

 }

 CBPCY Variable size

 if (“ACPRED mode == RAW”) { <

 ACPRED 1

 }

 if (“OVERFLAGS mode == RAW” && OVERFLAGS&4) { <

 OVERFLAGMB 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 94

 }

 if (DQUANTFRM) {

 if (DQPROFILE == ‘all macroblocks‘) {

 if (DQBILEVEL){

 MQDIFF 1

 } else {

 MQDIFF 3

 if (MQDIFF == 7) {

 ABSMQ 5

 }

 }

 }

 }

 for (“all coded blocks in MB”) {

 BLOCK()

 }

}

Table 84: Macroblock layer bitstream in Interlaced Frame P Picture

P PICTURE MB() { Number of bits

 if (“SKIPMB mode = SKIP_RAW”) {

 SKIPMB 1

 }

 MBMODE Variable size

 if (‘Intra MB’) {

 FIELDTX 1

 if (CBPPRESENT) { Inferred from
MBMODE

 CBPCY Variable size

 }

 ACPRED 1

 if (DQUANTFRM) {

 if (DQPROFILE == ‘all macroblocks‘) {

 if (DQBILEVEL){

 MQDIFF 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 95

 } else {

 MQDIFF 3

 if (MQDIFF == 7) {

 ABSMQ 5

 }

 }

 }

 }

 for (“all coded blocks in MB”) {

 BLOCK()

 }

 } /* Intra MB */

 else { /* Inter MB */

 if (!SKIPMBBIT) {

 if (CBPPRESENT) {

 CBPCY Variable size

 }

 if (“MVTYPEMB mode == MB_FIELD”) { <

 2MVBP Variable size

 }

 if (“MVTYPEMB mode == MB_4MV”) { <

 4MVBP Variable size

 }

 for (“all motion vectors”) {

 MVDATA Variable size

 }

 if (DQUANTFRM && CBPCY) {

 if (DQPROFILE == ‘all macroblocks‘) {

 if (DQBILEVEL){

 MQDIFF 1

 } else {

 MQDIFF 3

 if (MQDIFF == 7) {

 ABSMQ 5

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 96

 }

 } /* if (DQPROFILE
…*/

 } /* if
(DQUANTFRM…*/

 } /* if (!SKIPMBBIT)
*/

 if (!TTMBF && CBPCY) {

 TTMB Variable size

 }

 for (“all coded blocks in MB”) {

 BLOCK()

 }

 } /* Inter MB */

}

Table 85: Macroblock layer bitstream in Interlaced Frame B Picture

B PICTURE MB() { Number of bits

 if (“SKIPMB mode = SKIP_RAW”) { <

 SKIPMB 1

 }

 MBMODE Variable size

 if (Intra MB’) { Inferred from
MBMODE

 FIELDTX 1

 if (CBPPRESENT) { // inferred from
MBMODE

 CBPCY Variable size

 }

 ACPRED 1

 if (DQUANTFRM) {

 if (DQPROFILE == ‘all macroblocks‘) {

 if (DQBILEVEL){

 MQDIFF 1

 } else {

 MQDIFF 3

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 97

 if (MQDIFF == 7) {

 ABSMQ 5

 }

 }

 }

 }

 for (“all coded blocks in MB”) {

 BLOCK()

 }

 } /* Intra MB */

 else { /* Inter MB */

 if (“DIRECTMB mode = SKIP_RAW”) { <

 DIRECTBBIT 1

 }

 if (!DIRECTBBIT) {

 BMVTYPE Variable size

 }

 if (“MVTYPEMB mode == MB_FIELD” &&
BMVTYPE != INTERPOLATE) {

 <

 MVSW 1

 }

 if (CBPPRESENT) {

 CBPCY Variable size

 }

 if (MBTYPE != DIRECT) {

 if ((“MVTYPEMB mode == MB_FIELD” &&
MBTYPE != INTERPOLATE) || (“MVTYPEMB mode ==
MB_1MV” && MBTYPE == INTERPOLATE)) {

 <

 2MVBP Variable size

 }

 } else if (!(“MVTYPEMB mode == MB_1MV” &&
MBTYPE != INTERP)) {

 <

 4MVBP Variable size

 }

 for (“all motion vectors”) {

 MVDATA Variable size

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 98

 if (DQUANTFRM && CBPCY) {

 if (DQPROFILE == ‘all macroblocks‘) {

 if (DQBILEVEL){

 MQDIFF 1

 } else {

 MQDIFF 3

 if (MQDIFF == 7) {

 ABSMQ 5

 }

 }

 }

 }

 if (!TTMBF && CBPCY) {

 TTMB Variable size

 }

 for (“all coded blocks in MB”) {

 BLOCK()

 }

 } /* Inter MB */

}

Table 86: Macroblock layer bitstream in Interlaced Field I picture

I PICTURE MB() { Number of bits

 CBPCY Variable size

 if (‘ACPRED mode == RAW’) { <

 ACPRED 1

 }

 if (CONDOVER == 11b

 && OVERFLAGS == ‘raw mode’) {

 <

 OVERFLAGMB 1

 }

 if (DQUANTFRM) {

 if (DQPROFILE == ‘all macroblocks‘) {

 if (DQBILEVEL){

 MQDIFF 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 99

 } else {

 MQDIFF 3

 if (MQDIFF == 7) {

 ABSMQ 5

 }

 }

 }

 }

 for (‘all coded blocks in MB’) {

 BLOCK()

 }

}

Table 87: Macroblock layer bitstream in Interlaced Field P Picture

P PICTURE MB() { Number of bits

 MBMODE Variable size

 if (‘Intra MB’) {

 if (DQUANTFRM) {

 if (DQPROFILE == ‘all macroblocks‘) {

 if (DQBILEVEL){

 MQDIFF 1

 } else {

 MQDIFF 3

 if (MQDIFF == 7) {

 ABSMQ 5

 }

 }

 }

 }

 ACPRED 1

 if (‘CBP is Present’) { inferred from

MBMODE

 CBPCY Variable size

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 100

 }

 for (“all coded blocks in MB”) { Inferred from
CBPCY

 BLOCK()

 }

 } /* Intra MB */

 else { /* Inter MB */

 if (‘1MV MB’) { Inferred from
MBMODE

 if (‘MV Data is Present’) { Inferred from

MBMODE

 MVDATA Variable size

 }

 if (‘Hybrid MV is Present’) {

 HYBRIDPRED 1

 }

 }

 else { // 4MV Macroblock

 if (‘4MVBP is Present’) { Inferred from

MBMODE

 4MVBP Variable Size

 }

 for (‘all Y blocks’) {

 if (‘BLKMVDATA is present’) {

 BLKMVDATA Variable Size

 }

 if (‘HYBRIDPRED is present’) {

 HYBRIDPRED

 }

 } // all Y blocks

 }

 if (‘CBP is Present’) { Inferred from

MBMODE

 CBPCY Variable size

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 101

 if (DQUANTFRM && CBPCY) {

 if (DQPROFILE == ‘all macroblocks‘) {

 if (DQBILEVEL){

 MQDIFF 1

 } else {

 MQDIFF 3

 if (MQDIFF == 7) {

 ABSMQ 5

 }

 }

 } /* if (DQPROFILE
…*/

 } /* if
(DQUANTFRM…*/

 if (!TTMBF && CBPCY) {

 TTMB Variable size

 }

 for (“all coded blocks in MB”) {

 BLOCK()

 }

 } /* Inter MB */

}

Table 88: Macroblock layer bitstream in Interlaced Field B Picture

P PICTURE MB() { Number of bits

 MBMODE Variable size

 if (‘Intra MB’) { inferred from
MBMODE

 if (DQUANTFRM) {

 if (DQPROFILE == ‘all macroblocks‘) {

 if (DQBILEVEL){

 MQDIFF 1

 } else {

 MQDIFF 3

 if (MQDIFF == 7) {

 ABSMQ 5

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 102

 }

 }

 }

 ACPRED 1

 if (‘CBP is Present’) { inferred from

MBMODE

 CBPCY Variable size

 }

 for (“all coded blocks in MB”) { Inferred from CBPCY

 BLOCK()

 }

 } /* Intra MB */

 else { /* Inter MB */

 If (‘FORWARDMB Mode’ = = ‘RAW’) {

 FORWARDBIT 1

 }

 if (‘1MV MB’) { Inferred from
MBMODE

 If (‘MB Type’ != ‘FORWARD’) { Inferred from
FORWARDBIT or
corresponding
bitplane

 BMVTYPE Variable Size 0 = backward, 10 =
Direct, 11 =
Interpolate

 if (‘BMV Type’ == ‘INTERPOLATE’) { Inferred from
FORWARDBIT and
BMVTYPE

 INTERPMVP 1

 }

 }

 if (‘BMV Type’ != ‘DIRECT’ && ‘Block MV Data
is Present’) {

 Presence of Block MV
Data is Inferred from

MBMODE

 BMV1 Variable size

 }

 If (‘BMV Type’ == ‘INTERPOLATE’ &&
INTERPMVP) {

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 103

 BMV2 Variable size

 }

 }

 else { // 4MV Macroblock

 BMVTYPE is assumed to be backward

 if (‘4MVBP is Present’) { Inferred from

MBMODE

 4MVBP Variable Size

 }

 for (‘all Y blocks’) {

 if (‘BLKMVDATA is present’) { Inferred from
MBMODE

 BLKMVDATA Variable Size

 }

 } // all Y blocks

 }

 if (‘CBP is Present’) { Inferred from

MBMODE

 CBPCY Variable size

 }

 if (DQUANTFRM && CBPCY) {

 if (DQPROFILE == ‘all macroblocks‘) {

 if (DQBILEVEL){

 MQDIFF 1

 } else {

 MQDIFF 3

 if (MQDIFF == 7) {

 ABSMQ 5

 }

 }

 } /* if (DQPROFILE
…*/

 } /* if
(DQUANTFRM…*/

 if (!TTMBF && CBPCY) {

 TTMB Variable size

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 104

 }

 for (“all coded blocks in MB”) {

 BLOCK()

 }

 } /* Inter MB */

}

9.1.1 Picture layer

Data for each picture consists of a picture header followed by data for the macroblock layer. The bitstream elements
that make up the interlace frame headers for I, P and B picture types are shown in Figure 71, Figure 73 and Figure 74
respectively. The bitstream elements that make up the frame header for field pictures is shown in Figure 75. The
bitstream elements that make up the field picture headers for I, P and B pictures are shown in Figure 76, Figure 78 and
Figure 79 respectively. The following sections describe the bitstream elements in the picture and field picture headers.

9.1.1.1 Frame Coding Mode (FCM) (Variable size)

FCM in interlace frame and field picture headers is the same as described in section 7.1.1.2.

9.1.1.2 Field Picture Type (FPTYPE) (3 bits)

FPTYPE is a 3 bit syntax element present in the picture header for interlace field pictures. FPTYPE is decoded
according to Table 89.

Table 89: Field Picture Type FLC

FPTYPE
FLC

First Field
Picture Type

Second Field
Picture Type

000 I I

001 I P

010 P I

011 P P

100 B B

101 B BI

110 BI B

111 BI BI

9.1.1.3 Picture Type (PTYPE) (Variable size)

PTYPE in interlace frame pictures is the same as described in section 7.1.1.9 for progressive pictures.

9.1.1.4 Temporal Reference Frame Counter (TFCNTR) (8 bits)

TFCNTR in interlace frame and field picture headers is the same as described in section 7.1.1.1.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 105

9.1.1.5 Top Field First (TFF) (1 bit)

TFF in interlace frame and field picture headers is the same as described in section 7.1.1.3.

9.1.1.6 Repeat First Field (RFF) (1 bit)

RFF in interlace frame and field picture headers is the same as described in section 7.1.1.4.

9.1.1.7 Repeat Frame Count (RPTFRM) (2 bits)

RPTFRM in interlace frame and field picture headers is the same as described in section 7.1.1.5.

9.1.1.8 B Picture Fraction (BFRACTION)(Variable size)

BFRACTION in interlace frame and field picture headers is the same as described in section 7.1.1.10.

9.1.1.9 Rounding Control Bit (RNDCTRL)(1 bit)

RNDCTRL is a 1 bit syntax element that is present in progressive advanced profile picture headers (I, P, B). The flag
is used to indicate the type of rounding used for the current frame. If RNDCTRL = 1, the parameter R which controls
rounding is set to 1. Otherwise, R is set to zero. See Section 8.3.7 for more details on the effect of R on rounding.

9.1.1.10 UV Sampling Format (UVSAMP)(1 bit)

UVSAMP is a 1 bit syntax element that is only present in advanced profile picture headers (I, P, B), when the
sequence level field INTERLACE is 1. The flag is used to indicate the type of chroma subsampling used for the
current frame. If UVSAMP = 1, then progressive subsampling of the chroma is used, otherwise, interlace
subsampling of the chroma is used. This syntax element does not affect decoding of the bitstream.

9.1.1.11 P Reference Distance (REFDIST) (Variable size)

REFDIST is a variable sized syntax element present in interlace field picture headers, if the picture type is not one of
the following types: B/B, B/BI, BI/B, BI/BI. This element indicates the number of frames between the current frame
and the reference frame. Table 90 shows the VLC codewords used to encode the REFDIST values.

Table 90: REFDIST VLC Table

Reference
Frame Distance

VLC Codeword
(Binary)

VLC
Size

0 00 2

1 01 2

2 10 2

N 11[(N-3) 1s]0 N

The last row in Table 90 indicates the codewords used to represent reference frame distances greater than 2. These are
coded as (binary) 11 followed by N-3 1s, where N is the reference frame distance. The last bit in the codeword is 0. For
example:

N = 3, VLC Codeword = 110, VLC Size = 3

N = 4, VLC Codeword = 1110, VLC Size = 4

N = 5, VLC Codeword = 11110, VLC Size = 5

9.1.1.12 Picture Quantizer Index (PQINDEX) (5 bits)

PQINDEX in interlace pictures is the same as described in section 7.1.1.15.

9.1.1.13 Half QP Step (HALFQP) (1 bit)

HALFQP in interlace pictures is the same as described in section 7.1.1.16.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 106

9.1.1.14 Picture Quantizer Type (PQUANTIZER) (1 bit)

PQUANTIZER in interlace pictures is the same as described in section 7.1.1.17.

9.1.1.15 Post Processing (POSTPROC)(2 bits)

POSTPROC is a 2 bits syntax element that occurs in all pictures for advanced profile when the sequence level flag
POSTPROCFLAG is set to 1. It is the same as described in section 7.1.1.36 for progressive content.

9.1.1.16 AC Prediction (ACPRED)(Variable size)

The ACPRED syntax element is only present in interlace field I and interlace frame I pictures and it is the same as
described in section 7.1.1.33.

9.1.1.17 Conditional Overlap Flag (CONDOVER) (Variable size)

CONDOVER is present only in frame / field I pictures and it is the same as described in section 7.1.1.34.

9.1.1.18 Conditional Overlap Macroblock Pattern Flags (OVERFLAGS)(Variable size)

OVERFLAGS is present only in frame / field I pictures and it is the same as described in section 7.1.1.35.

9.1.1.19 Frame-level Transform AC Coding Set Index (TRANSACFRM)(Variable size)

TRANSACFRM in interlace pictures is the same as described in section 7.1.1.37.

9.1.1.20 Frame-level Transform AC Table-2 Index (TRANSACFRM2)(Variable size)

TRANSACFRM2 in interlace pictures is the same as described in section 7.1.1.38.

9.1.1.21 Intra Transform DC Table (TRANSDCTAB)(1 bit)

TRANSDCTAB in interlace pictures is the same as described in section 7.1.1.39.

9.1.1.22 Macroblock Quantization (VOPDQUANT) (Variable size)

VOPDQUANT in interlace pictures is the same as described in section 7.1.1.29.

9.1.1.23 Number of Reference Pictures (NUMREF) (1 bit)

NUMREF is a 1 bit syntax element present only in interlace P field pictures headers.

9.1.1.24 Reference Field Picture Indicator (REFFIELD) (1 bit)

REFFIELD is a 1 bit syntax element present in interlace P field picture headers if NUMREF = 0.

9.1.1.25 Extended MV Range Flag (MVRANGE) (Variable size)

MVRANGE is a variable-sized syntax element present only in field / frame P and B picture headers. It is the same as
described in section 7.1.1.18.

9.1.1.26 Extended Differential MV Range Flag (DMVRANGE) (Variable size)

DMVRANGE is a variable sized syntax element present in field / frame P and B pictures if the sequence level syntax
element EXTENDED_DMV = 1. The following table is used to encode the DMVRANGE element. See section
10.3.4.5.1 for a description of how the DMVRANGE value is used.

Table 91: DMVRANGE VLC Table

Extended
Horizontal
Differential
MV Range

Extended
Vertical

Differential
MV Range

VLC
Codeword
(Binary)

VLC
Size

No No 0 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 107

Yes No 10 2

No Yes 110 3

Yes Yes 111 3

9.1.1.27 Skipped Macroblock Decoding (SKIPMB)(Variable size)

The SKIPMB syntax element is only present in interlace frame P and interlace frame B pictures. The interlace frame
P picture layer contains the SKIPMB syntax element which is a bitplane coded syntax element that indicates the
skipped/not-skipped status of each macroblock in the picture. The decoded bitplane represents the skipped/not-skipped
status for each macroblock as a syntax element of 1-bit values in raster scan order from upper left to lower right.
Refer to section 7.2 for a description of the bitplane coding. A value of 0 indicates that the macroblock is not skipped.
A value of 1 indicates that the macroblock is coded as skipped. A skipped status for a macroblock in interlace frame
P picture means that the decoder shall treat this macroblock as 1 MV with the motion vector differential being zero
and the coded block pattern being zero. In addition, no other information is expected to follow for this macroblock.

9.1.1.28 4 Motion Vector Switch (4MVSWITCH) (Variable size or 1 bit)

The 4MVSWITCH syntax element is a 1-bit present in interlace frame P and B picture headers. If 4MVSWITCH is set
to zero, the macroblocks in the picture have only one motion vector or two motion vectors, depending on whether the
macroblock has been frame-coded or field-coded respectively. If 4MVSWITCH is set to 1, there may be 1, 2 or 4
motion vectors per macroblock. See section 10.7.2 for more details on the use of 4MVSWITCH in decoding.

9.1.1.29 Motion Vector Mode (MVMODE) (Variable size or 1 bit)

The MVMODE syntax element is a variable size syntax element that is present in interlace field P and B picture
headers. It is the same as the corresponding MVMODE syntax element described for progressive pictures in section
7.1.1.22.

9.1.1.30 Motion Vector Mode 2(MVMODE2) (Variable size)

The MVMODE2 syntax element is present in interlace field P and interlace field B picture headers, and only if
MVMODE signals intensity compensation.

9.1.1.31 Intensity Compensation (INTCOMP)(1 bit)

INTCOMP is a 1 bit syntax element that is only present in interlace frame P headers. INTCOMP is used to indicate
whether intensity compensation mode is used in the current frame.

9.1.1.32 Intensity Compensation Field (INTCOMPFIELD)(Variable size)

INTCOMPFIELD is a variable sized syntax element present in interlace field P field picture headers.
INTCOMPFIELD is used to indicate which reference field undergoes intensity compensation.

Table 92: INTCOMPFIELD VLC Table

INTCOMPFIELD
VLC

Intensity
Compensatio
n Applied to:

1 Both fields

00 First field

01 Second field

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 108

9.1.1.33 Luminance Scale (LUMSCALE)(6 bits)

The LUMSCALE syntax element is present in P interlace frame pictures if the frame header syntax element
INTCOMP = 1. Refer to section 8.3.8 for a description of intensity compensation.

9.1.1.34 Luminance Shift (LUMSHIFT)(6 bits)

The LUMSHIFT syntax element is present in P interlace frame pictures if the frame header syntax element INTCOMP
= 1. Refer to section 8.3.8 for a description of intensity compensation.

9.1.1.35 Field Picture Luminance Scale 1 (LUMSCALE1)(6 bits)

The LUMSCALE1 syntax element is present in the P interlace field picture header if the field picture header syntax
element MVMODE signals intensity compensation. If the INTCOMPFIELD element is ‘1’ or ‘00’ then LUMSCALE1
is applied to the first field. Otherwise it is applied to the second field.

9.1.1.36 Field Picture Luminance Shift 1 (LUMSHIFT1)(6 bits)

The LUMSHIFT1 syntax element is present in the P interlace field picture header if the field picture header syntax
element MVMODE signals intensity compensation. If the INTCOMPFIELD element is ‘1’ or ‘00’ then LUMSHIFT1
is applied to the first field. Otherwise it is applied to the second field.

9.1.1.37 Field Picture Luminance Scale 2 (LUMSCALE2)(6 bits)

The LUMSCALE2 syntax element is present in the P interlace field picture header if the field picture header syntax
element MVMODE signals intensity compensation and INTCOMPFIELD = ‘01’. LUMSCALE2 is applied to the
second field.

9.1.1.38 Field Picture Luminance Shift 2 (LUMSHIFT2)(6 bits)

The LUMSHIFT2 syntax element is present in the P interlace field picture header if the field picture header syntax
element MVMODE signals intensity compensation and INTCOMPFIELD = ‘01’. LUMSHIFT2 is applied to the
second field.

9.1.1.39 B Frame Direct Mode Macroblock Bit Syntax Element (DIRECTMB)(Variable size)

The DIRECTMB syntax element is only present in interlace frame B pictures. It is the same as described in 7.1.1.21.

9.1.1.40 B Field Forward Mode Macroblock Bit Syntax Element (FORWARDMB)(Variable size)

The FORWARDMB syntax element is only present in interlace field B pictures. The FORWARDMB syntax element
uses bitplane coding to indicate the macroblocks in the B field picture that are coded in forward mode. The
FORWARDMB syntax element may also signal that the forward mode is signaled in raw mode in which case the
forward mode is signaled at the macroblock level. Refer to section 8.7 for a description of the bitplane coding method.

9.1.1.41 Macroblock Mode Table (MBMODETAB) (2 or 3 bits)

The MBMODETAB syntax element is a fixed length field that is present in interlace frame P, frame B, field P and
field B pictures.

For field P and field B pictures, MBMODETAB is a 3 bit value that indicates which one of the eight Huffman tables is
used to decode the macroblock mode syntax element (MBMODE) in the macroblock layer. There are two sets of eight
Huffman tables and the set that is being used depends on whether 4MV is used or not as indicated by the MVMODE
flag.

Table 93: MBMODETAB code-table for interlace field P, B pictures

FLC Macroblock Mode Huffman Table

000 Huffman Table 0

001 Huffman Table 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 109

010 Huffman Table 2

011 Huffman Table 3

100 Huffman Table 4

101 Huffman Table 5

110 Huffman Table 6

111 Huffman Table 7

For frame P and frame B pictures, MBMODETAB is a 2 bit value that indicates which one of the four Huffman tables
in used to decode the macroblock mode syntax element (MBMODE) in the macroblock layer. There are two sets of
four Huffman tables and the set that is being used depends on whether 4MV is used or not as indicated by the
4MVSWITCH flag.

Table 94: MBMODETAB code-table for interlace frame P, B pictures

FLC Macroblock Mode Huffman Table

00 Huffman Table 0

01 Huffman Table 1

10 Huffman Table 2

11 Huffman Table 3

9.1.1.42 Motion Vector Table (MVTAB) (2 or 3 bits)

The MVTAB syntax element is a 2 or 3 bit value present in interlace field/frame P and B pictures. For P and B
interlace frame pictures MVTAB is a 2 bit syntax element that indicates which of the four progressive (also called one-
reference) MV tables is used to code the MVDATA syntax element in the macroblock layer. For B interlace field
pictures, MVTAB is a 3 bit syntax element that indicates which of eight interlace Huffman tables are used to decode
the motion vector data. For P interlace field pictures in which NUMREF = 0, MVTAB is a 2 bit syntax element that
indicates which of four progressive Huffman tables are used to decode the motion vector data. For P interlace field
pictures in which NUMREF = 1, MVTAB is a 3 bit syntax element that indicates which of eight interlace Huffman
tables are used to decode the motion vector data.. Refer to section 10.3.4 for a description of the motion vector
decoding process.

Table 95: MVTAB code-table

FLC Motion Vector Huffman Table

00 Huffman Table 0

10 Huffman Table 1

01 Huffman Table 2

11 Huffman Table 3

100 Huffman Table 4

101 Huffman Table 5

110 Huffman Table 6

111 Huffman Table 7

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 110

The motion vector Huffman tables are listed in section 11.10.

9.1.1.43 Coded Block Pattern Table (CBPTAB) (3 bits)

The CBPTAB syntax element is a 3 bit value pesent in interlace field P, B and interlace frame P, B pictures. This
syntax element signals which of four Huffman tables is used to decode the CBPCY syntax element in intra-coded or
inter-coded macroblocks.

Table 96: CBPTAB code-table

FLC CBP Huffman Table

000 Huffman Table 0

001 Huffman Table 1

010 Huffman Table 2

011 Huffman Table 3

100 Huffman Table 4

101 Huffman Table 5

110 Huffman Table 6

111 Huffman Table 7

9.1.1.44 2MV Block Pattern Table (2MVBPTAB) (2 bits)

The 2MVBPTAB syntax element is a 2 bit value present only in interlace frame P and interlace frame B pictures. This
syntax element signals which one of four Huffman tables is used to decode the 2MV block pattern (2MVBP) syntax
element in 2 MV field macroblocks.

Table 97: 2MVBP code-table

FLC CBP Huffman Table

00 Huffman Table 0

10 Huffman Table 1

01 Huffman Table 2

11 Huffman Table 3

9.1.1.45 4MV Block Pattern Table (4MVBPTAB) (2 bits)

The 4MVBPTAB syntax element is a 2 bit value present only in interlace frame P, B and interlace field P, B pictures.
For interlace field P and B pictures, it is only present if MVMODE (or MVMODE2, if MVMODE is set to intensity
compensation) indicates that the picture is of ‘Mixed MV’ type. For interlace frame P and B pictures, it is present if
4MVSWITCH syntax element is set to 1. The 4MVBPTAB syntax element signals which of four Huffman tables is
used to decode the 4MV block pattern (4MVBP) syntax element in 4MV macroblocks.

Table 98: 4MVBP code-table

FLC CBP Huffman Table

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 111

00 Huffman Table 0

10 Huffman Table 1

01 Huffman Table 2

11 Huffman Table 3

9.1.1.46 Macroblock-level Transform Type Flag (TTMBF) (1 bit)

This syntax element is present only in interlace field P, B pictures and interlace frame P, B pictures. It is the same as
decribed in section 7.1.1.31.

9.1.1.47 Frame-level Transform Type (TTFRM) (2 bits)

This syntax element is present only in interlace field P, B pictures and interlace frame P, B pictures. It is the same as
decribed in section 7.1.1.32.

9.1.1.48 Pan scan window coordinates (TOPLEFTX, TOPLEFTY, BOTRIGHTX, BOTRIGHTY)(4 X 16
bits)

TOPLEFTX, TOPLEFTY, BOTRIGHTX, BOTRIGHTY are four coordinates that specify each pan-scan window.
Each occupies 16 bits, and is sent only in advanced profile when PANSCANFLAG = 1.

9.1.2 Slice Layer

Slice-layer may be present in interlaced coding of pictures in Advanced Profile. Refer to Section 7.1.2 for a description
of the Slice layer. For interlaced frame and field pictures, the syntax elements of the slice layer are identical to those of
progressive pictures. For interlace field pictures, two points should be emphasized. If the PIC_HEADER_FLAG = 1 in
the slice layer of an interlace field picture, the picture header information that is repeated consists of both the frame
picture header, and the field picture header of that field. While coding SLICE_ADDR syntax element, the row address
is not reset to zero at the beginning of the second field. In other words, the row address of the first macroblock row in
the second field is not zero, but as the row address of the last macroblock row in the first field incremented by one.

9.1.3 Macroblock Layer

Data for each macroblock consists of a macroblock header followed by the block layer. Figure 80 to Figure 85 show
the macroblock layer structure for interlace field I, P, B pictures and interlace frame I, P, B pictures. The elements that
make up the macroblock layer are described in the following sections. The picture types that the macroblock layer
syntax elements occur in are indicated in the square brackets.

9.1.3.1 Macroblock Mode (MBMODE)(Variable size)[P,B]

MBMODE is a variable-length syntax element present in interlace field P, B and interlace frame P, B macroblocks. It
is described in section 10.3.4.4 for interlace field P, B pictures and section 10.7.2.3 for interlace frame P, B pictures.

9.1.3.2 Conditional Overlap Macroblock Pattern Flag (OVERFLAGMB) (1 bit) [I]

This syntax element is present only in I pictures, only when CONDOVER has the binary value 11, and when the raw
mode is chosen to encode the OVERFLAGS plane. In this case, one bit is sent in the macroblock header to indicate
whether or not to perform overlap filtering to edge pixels within the block and neighboring blocks. See Section
4.1.1.7 for a description.

9.1.3.3 Skip MB Bit (SKIPMBBIT)(1 bit)[P,B]

SKIPMBBIT is a 1-bit syntax element present in P and B interlace frame macroblocks if the frame level syntax
element SKIPMB (see Section 7.1.1.20) indicates that the raw mode is used. If SKIPMBBIT = 1, then the
macroblock is skipped.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 112

9.1.3.4 Coded Block Pattern (CBPCY) (Variable size)[I, P,B]

CBPCY is a variable-length syntax element present in both I picture and P picture macroblock layers. Section 8.1.1.5
describes the CBPCY syntax element in I picture macroblocks and section 10.3.4.6 describes the CBPCY syntax
element in P picture macroblocks.

9.1.3.5 Field Transform Flag (FIELDTX)(1 bit)[I, P,B]

FIELDTX is a 1-bit syntax present in all I interlace frame macroblocks, and in those P and B interlace macroblocks
which are intra-coded. In an I-interlace frame, this syntax element may be bitplane coded at the picture level. This
syntax element indicates whether a macroblock is frame or field coded (basically, the internal organization of the
macroblock). FIELDTX = 1 indicates that the macroblock is field coded. Otherwise, the macroblock is frame coded.
See section 10.5.1 for more details on the use of FIELDTX.

9.1.3.6 AC Prediction Flag (ACPRED)(1 bit)[I, P,B]

The ACPRED syntax element is present in all I interlace frame and field picture macroblocks and Intra macroblocks
in field and frame P and B pictures. This is a 1-bit syntax element that specifies whether the blocks were coded using
AC prediction. ACPRED = 0 indicates that AC prediction is not used. ACPRED = 1 indicates that AC prediction is
used. See section 8.1.1.6 for a description of the ACPRED syntax element in I pictures and section 8.3.6.1 for a
description of the ACPRED syntax element in P pictures.

9.1.3.7 Macroblock Quantizer Differential (MQDIFF)(Variable size)[I,P,B]

MQDIFF is present in interlace field I, P, B pictures and interlace frame I, P, B pictures and it is the same as described
in section 7.1.3.6.

9.1.3.8 Absolute Macroblock Quantizer Scale (ABSMQ)(5 bits)[I,P,B]

ABSMQ is present in interlace field I, P, B pictures and interlace frame I, P, B pictures and it is the same as described
in section 7.1.3.7.

9.1.3.9 Motion Vector Data (MVDATA)(Variable size)[P,B]

MVDATA is a variable sized syntax element present in interlace field P, B and interlace frame P, B picture
macroblocks. This syntax element encodes the motion vector(s) for the macroblock. See section 10.3.4.5 for a
description of the motion vector decode process.

9.1.3.10 Block-level Motion Vector Data (BLKMVDATA)(Variable size)[inter]

BLKMVDATA is a syntax element that contains motion information for the block. It is a variable sized syntax
element and is only present in certain situations. See section 8.3.5.1 for a description of when the BLKMVDATA
syntax element is present and how it is used.

9.1.3.11 Hybrid Motion Vector Prediction (HYBRIDPRED)(1 bit)[P,B]

HYBRIDPRED is a 1-bit syntax element per motion vector, present in interlace field P picture macroblocks. Section
10.3.4.5.3.5 describes how HYBRIDPRED is used in the decoding process.

9.1.3.12 MB-level Transform Type (TTMB)(Variable size)[P,B]

TTMB is present in interlace field P, B pictures and interlace frame P, B pictures and it is the same as described in
section 7.1.3.11.

9.1.3.13 Direct B Frame Coding Mode (DIRECTBBIT)(1 bit)[B]

DIRECTBBIT is a 1-bit syntax element present only in interlace frame B picture macroblocks if the frame level syntax
element DIRECTMB (see section 7.1.1.21) indicates that the raw mode is used. If DIRECTBBIT = 1, then the
macroblock is coded using direct mode.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 113

9.1.3.14 B Macroblock Motion Vector 1 (BMV1)(Variable size)[B]

BMV1 is a variable sized syntax element present in interlace frame and field B picture macroblocks. This syntax
element encodes the first motion vector for the macroblock. See section 10.3.4.5.1 for a description of the motion
vector decode process.

9.1.3.15 B Macroblock Motion Vector 2 (BMV2)(Variable size)[B]

BMV2 is a variable sized syntax element present in interlace frame and field B picture macroblocks if the
Interpolation mode is used. This syntax element encodes the second motion vector for the macroblock. See section
10.3.4.5.1 for a description of the motion vector decode process.

9.1.3.16 B Macroblock Motion Prediction Type (BMVTYPE)(Variable size)[B]

BMVTYPE is a variable sized syntax element present in interlace frame and field B picture macroblocks that indicates
whether the macroblock uses forward, backward or interpolated prediction. As Table 46 shows, the value of
BFRACTION (in the picture header, see section 7.1.1.10) along with BMVTYPE determine whether forward or
backward prediction are indicated.

9.1.3.17 Forward B Field Coding Mode (FORWARDBIT)(1 bit)[B]

FORWARDBIT is a 1-bit syntax element present in interlace B field picture macroblocks if the field level syntax
element FORWARDMB indicates that the raw mode is used. If FORWARDBIT = 1, then the macroblock is coded
using forward mode.

9.1.3.18 Interpolated MV Present (INTERPMVP)(1 bit)[B]

INTERPMVP is a 1-bit syntax element present in B field macroblocks if the field level syntax element BMVTYPE
indicates that the macroblock type is interpolated. If INTERPMVP = 1, then the the interpolated MV, i.e. BMV2 is
present, else it is not (i.e. zero).

9.1.3.19 B Frame MV Switch (MVSW)(1 bit)[B]

MVSW is a 1-bit syntax element present in B frame macroblocks if the MB is in field mode and if the BMVTYPE is
forward or backward. If MVSW = 1, then the MV type and prediction type changes from forward to backward (or
backward to forward) in going from the top to the bottom field.

9.1.4 Block Layer Syntax Elements

The block layer syntax elements in interlace pictures are identical to the corresponding syntax elements in progressive
pictures which is described in 7.1.4.

10 Interlace Decoding Process

10.1 Interlace Field I Picture Decoding
The following sections describe the process for decoding field I pictures.

10.1.1 Macroblock Layer Decode

The macroblocks are coded in raster scan order form left to right. Figure 20 shows the elements that make up the I
picture macroblock layer. Figure 3 shows how the frame is composed of macroblocks.

10.1.1.1 Coded Block Pattern

The coded block pattern is the same as advanced profile I pictures as described in section 8.1.1.5.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 114

10.1.1.2 AC Prediction Flag

The ACPRED syntax element in the macroblock header is a one-bit syntax element that specifies whether AC
prediction is used to decode the AC coefficients for all the blocks in the macroblock. Section 8.1.1.13 describes the AC
prediction process. If ACPRED is 1, then AC prediction is used, otherwise it is not used.

10.1.2 Block Layer Decode

The 4 blocks that make up the Y component of the macroblock are coded first followed by the Cb and Cr blocks as
shown in Figure 3. This section describes the process used to reconstruct the blocks.

Figure 4 shows the forward intra-coding steps used to encode the 8x8 pixel blocks. Figure 31 shows the inverse
process used to reconstruct the 8x8 blocks.

As Figure 31 shows, the DC and AC Transform coefficients are coded using separate techniques. The DC coefficient is
coded differentially. An optional differential coding of the left or top AC coefficients may be used. The following
sections describe the process for reconstructing intra blocks in I pictures

10.1.2.1 DC Differential Bitstream Decode

The DC differential decoding process is the same as described in section 8.1.1.7.

10.1.2.2 DC Predictor

The DC Predictor is formed as described in section 8.1.1.8.

10.1.2.3 DC Inverse-quantization

The DC inverse-quantization process is described in section 8.1.1.9.

10.1.2.4 AC Coefficient Bitstream Decode

The AC Coefficient decoding process is described in section 8.1.1.10.

10.1.2.5 Zig-zag Scan of AC Coefficients

The zig-zag scanning of AC coefficient is the same as described in section 8.1.1.12.

10.1.2.6 AC Prediction

The AC predition process is the same as described in section 8.1.1.13.

10.1.2.7 Inverse AC Coefficient Quantization

The inverse AC coefficient quantization process is the same as described in section 8.1.1.14.

10.1.2.8 Coefficient Scaling

For DC and AC prediction, the coefficients in the predicted blocks are scaled if the macroblocks quantizers are
different than that of the current block as described in section 8.1.1.15.

10.1.2.9 Inverse Transform

After reconstruction of the Transform coefficients, the resulting 8 × 8 blocks are processed by a separable
two-dimensional inverse transform of size 8 by 8. The inverse transform output has a dynamic range of 10 bits. See
section 8.8 regarding transform conformance.

Subsequent to the inverse transform, the process of overlap smoothing is carried out if signaled. This is covered in
Section 10.9. Finally, the constant value of 128 is added to the reconstructed and possibly overlap smoothed intra
block. This result is clamped to the range [0 255] and forms the reconstruction prior to loop filtering.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 115

10.2 Interlace BI Field Decoding
When B frames are used (in main and advanced profiles only), we code a special type of frame that is in some ways a
hybrid of I and B frames. The syntax of BI frames is identical to that of I, but they are usually coded at higher QP’s
and can never be used as an anchor or reference frame to predict other frames.

10.3 Interlace Field P Picture Decoding
Figure 51 shows the steps required to decode and reconstruct blocks in interlace field P pictures. The following
sections describe the process for decoding interlace field P pictures.

10.3.1 Out-of-bounds Reference Pixels

The previously one or two decoded field(s) is used as the reference for motion-compensated predictive coding of the
current field P picture. The motion vectors used to locate the predicted blocks in the reference frame may include pixel
locations that are outside the boundary of the reference field. In these cases, the out-of-bounds pixel values are the
replicated values of the edge pixel. Figure 41 illustrates pixel replication for the upper-left corner of the frame. For
motion vectors that reference out-of-field pixels, part or all of the reference block of pixels is made up of padded pixel
values. The padding is conceptually considered to be infinite for the purpose of motion compensation. Note that in
advanced profile, “frame edge”, “frame corner” and “outside the boundary” refer to the true frame dimensions, not
the dimensions right or top/bottom justified to the edge of the macroblock. In other words, the right and bottom pixels
that are repeated to infinity for a 200 x 300 image begin at column 304 and row 208 for the simple and main profiles.
However, for the advanced profile, these begin respectively at column 300 and row 200.

10.3.2 Reference Pictures

A P Field Picture may reference either one or two previously decoded fields. The NUMREF syntax element in the
picture layer is a one bit syntax element that indicates whether the current field may reference one or two previous
reference field pictures. If NUMREF = 0, then the current P field picture may only reference one field. In this case,
the REFFIELD syntax element follows in the picture layer bitstream. The REFFIELD syntax element is a one bit
syntax element that indicates which previously decoded field is used as a reference. If REFFIELD = 0, then the
temporally closest (in display order) I or P field is used as a reference. If REFFIELD = 1, then the second most
temporally recent I or P field picture is used as reference.

If NUMREF = 1, then the current P field picture uses the two temporally closest (in display order) I or P field pictures
as reference.

Figure 89 and Figure 88 show examples of reference field pictures for NUMREF = 0 and NUMREF = 1.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 116

Figure 88: Example of two reference field pictures (NUMREF = 1)

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 117

Figure 89: Example of one reference field picture (NUMREF = 0) using temporally most recent reference
(REFFIELD = 0)

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 118

Figure 90: Example of one reference field picture (NUMREF = 0) using temporally second-most recent
reference (REFFIELD = 1)

10.3.3 P Picture Types

P pictures may be one of two types: 1-MV or Mixed-MV. The following sections describe each P picture type.

10.3.3.1 1-MV P Picture

In 1-MV P pictures, a single motion vector is used to indicate the displacement of the predicted blocks for all 6 blocks
in the macroblock. The 1-MV mode is signaled by the MVMODE and MVMODE2 picture layer syntax elements as
described in section 8.3.4.3.

10.3.3.2 Mixed-MV P Picture

In Mixed-MV P pictures, each macroblock may be encoded as a 1-MV or a 4-MV macroblock. In 4-MV macroblocks,
each of the 4 luminance blocks has a motion vector associated with it. The 1-MV or 4-MV mode for each macroblock
is indicated by the MBMODE syntax element at every macroblock. The Mixed-MV mode is signaled by the
MVMODE and MVMODE2 picture layer syntax elements as described in section 8.3.4.3.

10.3.4 Macroblock Layer Decode

Macroblocks in P pictures may be one of 3 possible types: 1MV, 4MV, and Intra. The macroblock type is signaled by
the MBMODE syntax element in the macroblock layer. The following sections describe each type and how they are
signaled.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 119

10.3.4.1 1MV Macroblocks

1MV macroblocks may occur in 1-MV and Mixed-MV P pictures. A 1MV macroblock is one where a single motion
vector represents the displacement between the current and reference pictures for all 6 blocks in the macroblock. For
1MV macroblocks the MBMODE syntax element in the macroblock layer indicates three things:

1) That the macroblock type is 1MV

2) Whether the CBPCY syntax element is present

3) Whether the MVDATA syntax element is present

If the MBMODE syntax element indicates that the CBPCY syntax element is present, then the CBPCY syntax element
is present in the macroblock layer in the corresponding position. The CBPCY indicates which of the 6 blocks are
coded in the block layer. If the MBMODE syntax element indicates that the CBPCY syntax element is not present,
then CBPCY is assumed to equal 0 and no block data is present for any of the 6 blocks in the macroblock.

If the MBMODE syntax element indicates that the MVDATA syntax element is present, then the MVDATA syntax
element is present in the macroblock layer in the corresponding position. The MVDATA syntax element encodes the
motion vector differential. The motion vector differential is combined with the motion vector predictor to reconstruct
the motion vector. If the MBMODE syntax element indicates that the MVDATA syntax element is not present, then
the motion vector differential is assumed to be zero and therefore the motion vector is equal to the motion vector
predictor.

10.3.4.2 4MV Macroblocks

4MV macroblocks may only occur in Mixed-MV P pictures. A 4MV macroblock is one where each of the 4 luminance
blocks in a macroblock has an associated motion vector which indicates the displacement between the current and
reference pictures for that block. The displacement for the chroma blocks is derived from the 4 luminance motion
vectors. This procedure is identical to the progressive picture case described in section 8.3.5.4.2. The difference
between the current and reference blocks is encoded in the block layer.

For 1MV macroblocks the MBMODE syntax element in the macroblock layer indicates three things:

1) That the macroblock type is 4MV

2) Whether the CBPCY syntax element is present

3) Whether the 4MVBP syntax element is present

The CBPCY syntax element indicates which of the 6 blocks are coded in the block layer. If the MBMODE syntax
element indicates that the CBPCY syntax element is not present, then CBPCY is assumed to equal 0 and no block data
is present for any of the 6 blocks in the macroblock.

The 4MVBP syntax element indicates which of the 4 luminance blocks contain non-zero motion vector differentials.
The 4MVBP syntax element decodes to a value between 0 and 15. This value when expressed as a binary value
represents a bit syntax element which indicates whether the motion vector for the corresponding luminance block is
present.

 Figure 91: Association of bits in 4MVBP to luminance blocks

For each of the 4 bit positions in the 4MVBP, a value of 0 indicates that no motion vector differential
(BLKMVDATA) is present for that block and the motion vector differential is assumed to be 0. A value of 1 indicates

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 120

that a motion vector differential (BLKMVDATA) is present for that block in the corresponding position. For example,
if 4MVBP decodes to a value of 1100 (binary), then the bitstream contains MVDATA for blocks 0 and 1 and no
MVDATA is present for blocks 2 and 3.

If the MBMODE syntax element indicates that the 4MVBP syntax element is not present, then it is assumed that
motion vector differential data (BLKMVDATA) is present for all 4 luminance blocks.

10.3.4.3 Intra Macroblocks

Intra macroblocks may occur in 1-MV or Mixed-MV P pictures. An Intra macroblock is one where all six blocks are
coded without referencing any previous picture data. The difference between the current block pixel and a constant
value of 128 is encoded in the block.

For Intra macroblocks, the MBMODE syntax element in the macroblock layer indicates two things:

1) That the macroblock type is Intra

2) Whether the CBPCY syntax element is present

If the MBMODE syntax element indicates that the CBPCY syntax element is present, then the CBPCY syntax element
is present in the macroblock layer in the corresponding position. The CBPCY syntax element indicates which of the 6
blocks has AC coefficient data coded in the block layer. If the MBMODE syntax element indicates that the CBPCY
syntax element is not present, then CBPCY is assumed to equal 0 and no AC coefficient data is present for any of the 6
blocks in the macroblock.

10.3.4.4 Macroblock Mode

The MBMODE syntax element indicates the macroblock type (1MV, 4MV or Intra) and also the presence of the CBP
flag and MV data, as described above. Depending on whether the MVMODE/MVMODE2 syntax element indicates
mixed-MV or all-1MV the MBMODE signals the information as follows:

10.3.4.4.1 Macroblock Mode in All-1MV Pictures

 Table 99 shows how the MBMODE signals information about the macroblock in all-1MV pictures.

Table 99: Macroblock Mode in All-1MV Pictures

Index Macroblock
Type

CBP
Present

MV
Present

0 Intra No NA

1 Intra Yes NA

2 1MV No No

3 1MV No Yes

4 1MV Yes No

5 1MV Yes Yes

10.3.4.4.2 Macroblock Mode in Mixed-1MV Pictures

 Table 100 shows how the MBMODE signals information about the macroblock in mixed-MV pictures.

Table 100: Macroblock Mode in Mixed-1MV Pictures

Index Macroblock
Type

CBP
Present

MV
Present

0 Intra No NA

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 121

1 Intra Yes NA

2 1MV No No

3 1MV No Yes

4 1MV Yes No

5 1MV Yes Yes

6 4MV No NA

7 4MV Yes NA

One of 8 tables is used to signal the MBMODE. The table is signaled at the picture layer via the MBMODETAB
syntax element. The Huffman Mixed-MV mode tables are shown in Table 134 through Table 141. The 1-MV mode
tables are shown in Table 142 through Table 149.

10.3.4.5 Motion Vector Decoding Process

The following sections describe the motion vector decoding process for P field picture macroblocks.

10.3.4.5.1 Field Picture Coordinate System

In the following sections which describe the motion vector decoding process the motion vector units are expressed in
field picture units. For example, if the vertical component a motion vector indicates that the displacement is +6 (in
quarter pel units) then this indicates a displacement of 1 ½ field picture lines.

Figure 92 shows the relationship between the vertical component of the motion vector and the spatial location for all
combinations of current and reference field polarities. The figure shows one vertical column of pixels in the current
and reference fields. Each circles represents integer pixel positions and the x’s represent quarter pixel positions. The
figure shows that if the current field is a top field and the reference field is a bottom field, a vertical motion vector
component value of 0 represents a position in the reference field that is a half pixel offset below the location in the
current field. Similarly, if the current field is a bottom field and the reference field is a top field then a vertical motion
vector component of 0 represents a position in the reference field that is a half pixel offset above the location in the
current field.

Figure 92: Vertical relationship between motion vectors and current and reference fields

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 122

10.3.4.5.2 Decoding Motion Vector Differential

The MVDATA or BLKMVDATA syntax elements encode motion information for the blocks in the macroblock. 1MV
macroblocks have a single MVDATA syntax element, and 4MV macroblocks may have between zero and four
BLKMVDATA. The following sections describe how to compute the motion vector differential for the one-reference
(picture layer syntax element NUMREF = 0) and two-reference (picture layer syntax element NUMREF = 1) cases.

10.3.4.5.2.1 Motion Vector Differentials in One-Reference Field Pictures

In field pictures that have only one reference field, each MVDATA or BLKMVDATA syntax element in the
macroblock layer jointly encodes two things: 1) the horizontal motion vector differential component and 2) the vertical
motion vector differential component.

The MVDATA or BLKMVDATA syntax element is a variable length Huffman codeword followed by a fixed length
codeword. The value of the Huffman codeword determines the size of the fixed length codeword. The MVTAB syntax
element in the picture layer specifies the Huffman table used to decode the variable sized codeword.

The following pseudocode illustrates how the motion vector differential is decoded.

The values dmv_x and dmv_y are computed in the following pseudocode. The values are defined as follows:

dmv_x: differential horizontal motion vector component

dmv_y: differential vertical motion vector component

k_x, k_y: fixed length for long motion vectors

k_x and k_y depend on the motion vector range as defined by the MVRANGE symbol (section 7.1.1.16) according to
Table 66.

Table 101: k_x and k_y specified by MVRANGE

MVRANGE k_x k_y range_
x

range_
y

0 (default) 9 8 256 128

10 10 9 512 256

110 12 10 2048 512

111 13 11 4096 1024

extend_x: extened range for horizontal motion vector differential

extend_y: extended range for vertical motion vector differential

extend_x and extend_y are derived from the DMVRANGE picture field syntax element. If DMVRANGE indicates
that extended range for the horizontal component is used, then extend_x = 1. Otherwise extend_x = 0. Similarly, if
DMVRANGE indicates that extended range for the vertical component is used, then extend_y = 1 otherwise extend_y
= 0.

The value halfpel_flag used in the following pseudocode is a binary value indicating whether half-pel or quarter-pel
precision is used for the picture. The value of halfpel_flag is determined by the picture layer syntax element
MVMODE (see section 8.3.4.3). If MVMODE (or MVMODE2, when MVMODE indicates intensity compensation)
specifies the mode as 1MV or Mixed MV, then halfpel_flag = 0 and quarter-pel precision is used. If MVMODE (or
MVMODE2, when MVMODE indicates intensity compensation) specifies the mode as 1MV Half-pel or 1MV Half-pel
Bilinear, then halfpel_flag = 1 and half-pel precision is used.

The offset_table is an array used in the following pseudocode and is defined as follows:
offset_table1[9] = {0, 1, 2, 4, 8, 16, 32, 64, 128,}
offset_table2[9] = {0, 1, 3, 7, 15, 31, 63, 127, 255}

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 123

if (extend_x == 1 || extend_y == 1)
 offset_table = offset_table2
else
 offset_table = offset_table1
index = vlc_decode() // Use the Huffman table indicated by MVTAB in the picture layer

if (index == 0) {

val = get_bits (1 + extend_x)

 sign = 0 - (val & 1)

 dmv_x = sign ^ ((val >> 1) + 1)

 dmv_x = dmv_x – sign

 dmv_y = 0

}

if (index == 71)

{

 dmv_x = get_bits(k_x – halfpel_flag)

 dmv_y = get_bits(k_y – halfpel_flag)

}

else

{

 index1 = (index + 1) % 9

 val = get_bits (index1 + extend_x)

 sign = 0 - (val & 1)

 dmv_x = sign ^ ((val >> 1) + offset_table[index1])

 dmv_x = dmv_x - sign

 index1 = (index + 1) / 9

 val = get_bits (index1 + extend_y)

 sign = 0 - (val & 1)

 dmv_y = sign ^ ((val >> 1) + offset_table[index1])

 dmv_y = dmv_y – sign

}

10.3.4.5.2.2 Motion Vector Differentials in Two-Reference Field Pictures

Two-reference Field Pictures occur in the coding of interlace frames using field pictures. Each frame of the sequence
is separated into two fields, and each field is coded using what is essentially the progressive code path. Field pictures
often have two reference fields and the coding of field picture motion vectors in this case is described below.

In field pictures that have two reference fields, each MVDATA or BLKMVDATA syntax element in the macroblock
layer jointly encodes three things: 1) the horizontal motion vector differential component, 2) the vertical motion vector
differential component and 3) whether the dominant or non-dominant predictor is used, i.e. which of the two fields is
referenced by the motion vector.

The MVDATA or BLKMVDATA syntax element is a variable length Huffman codeword followed by a fixed length
codeword. The value of the Huffman codeword determines the size of the fixed length codeword. The MVTAB syntax
element in the picture layer specifies the Huffman table used to decode the variable sized codeword.

The following pseudocode illustrates how the motion vector differential, and dominant/non-dominant predictor
information are decoded.

The values predictor_flag, dmv_x and dmv_y are computed in the following pseudocode. The values are defined as
follows:

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 124

predictor_flag: binary flag indicating whether the dominant or non-dominant motion vector predictor is used (0 =
dominant predictor used, 1 = non-dominant predictor used)

dmv_x: differential horizontal motion vector component

dmv_y: differential vertical motion vector component

k_x, k_y: fixed length for long motion vectors

extend_x: extened range for horizontal motion vector differential

extend_y: extended range for vertical motion vector differential

k_x and k_y depend on the motion vector range as defined by the MVRANGE symbol (section 7.1.1.18) according to
Table 66.

extend_x and extend_y are derived from the DMVRANGE picture field syntax element. If DMVRANGE indicates
that extended range for the horizontal component is used, then extend_x = 1. Otherwise extend_x = 0. Similarly, if
DMVRANGE indicates that extended range for the vertical component is used, then extend_y = 1 otherwise extend_y
= 0.

The value halfpel_flag used in the following pseudocode is a binary value indicating whether half-pel or quarter-pel
precision is used for the picture. The value of halfpel_flag is determined by the picture layer syntax element
MVMODE (see section 8.3.4.3). If MVMODE (or MVMODE2, if MVMODE indicates intensity compensation)
specifies the mode as 1MV or Mixed MV, then halfpel_flag = 0 and quarter-pel precision is used. If MVMODE (or
MVMODE2, if MVMODE indicates intensity compensation) specifies the mode as 1MV Half-pel or 1MV Half-pel
Bilinear, then halfpel_flag = 1 and half-pel precision is used.

The tables size_table and offset_table are arrays used in the following pseudocode and are defined as follows:
size_table[16] = {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7}

offset_table1[9] = {0, 1, 2, 4, 8, 16, 32, 64, 128}
offset_table2[9] = {0, 1, 3, 7, 15, 31, 63, 127, 255}

if (extend_x == 1 || extend_y == 1)
 offset_table = offset_table2
else
 offset_table = offset_table1
index = vlc_decode() // Use the Huffman table indicated by MVTAB in the picture layer

if (index == 0) {

val = get_bits (1 + extend_x)

 sign = 0 - (val & 1)

 dmv_x = sign ^ ((val >> 1) + 1)

 dmv_x = dmv_x – sign

 dmv_y = 0

 predictor_flag = 0

}

else if (index == 125)

{

 dmv_x = get_bits(k_x – halfpel_flag)

 dmv_y = get_bits(k_y – halfpel_flag)

 predictor_flag = dmv_y & 1

 dmv_y = dmv_y >> 1

}

else

{

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 125

 index1 = (index + 1) % 9

 val = get_bits (index1 + extend_x)

 sign = 0 - (val & 1)

 dmv_x = sign ^ ((val >> 1) + offset_table[index1])

 dmv_x = dmv_x - sign

 index1 = (index + 1) / 9

 val = get_bits (size_table[index1 + 2 * extend_y])

 sign = 0 - (val & 1)

 dmv_y = sign ^ ((val >> 1) + offset_table[index1 >> 1])

 dmv_y = dmv_y – sign

 predictor_flag = index1 & 1

}

10.3.4.5.3 Motion Vector Predictors

Motion vectors are computed by adding the motion vector differential computed in the previous section to a motion
vector predictor. The predictor is computed from three neighboring motion vectors. The following sections describe
how the predictors are calculated for macroblocks in 1MV P pictures and Mixed-MV P pictures.

10.3.4.5.3.1 Motion Vector Predictors In 1MV P Pictures

Figure 43 shows the three motion vectors used to compute the predictor for the current macroblock. As the figure
shows, the predictor is taken from the left, top and top-right macroblocks, except in the case where the macroblock is
the last macroblock in the row. In this case, Predictor B is taken from the top-left macroblock instead of the top-right.

For the special case where the frame is one macroblock wide, the predictor is always Predictor A (the top predictor).

10.3.4.5.3.2 Motion Vector Predictors In Mixed-MV P Pictures

Figure 44 and Figure 45 show the 3 candidate motion vectors for 1MV and 4MV macroblocks in Mixed-MV P
pictures. In the following figures, the larger rectangles are macroblock boundaries and the smaller rectangles are block
boundaries.

For the special case where the frame is one macroblock wide, the predictor is always Predictor A (the top predictor).

Figure 44 shows the candidate motion vectors for 1MV macroblocks. The neighboring macroblocks may be 1MV or 4
MV macroblocks. The figure shows the candidate motion vectors assuming the neighbors are 4MV (i.e., predictor A is
the motion vector for block 2 in the macroblock above the current and predictor C is the motion vector for block 1 in
the macroblock immediately to the left of the current). If any of the neighbors are 1MV macroblocks, then the motion
vector predictors shown in Figure 44 are taken to be the vectors for the entire macroblock. As the figure shows, if the
macroblock is the last macroblock in the row, then Predictor B is from block 3 of the top-left macroblock instead of
from block 2 in the top-right macroblock as is the case otherwise.

Figure 45 shows the predictors for each of the 4 luminance blocks in a 4MV macroblock. For the case where the
macroblock is the first macroblock in the row, Predictor B for block 0 is handled differently than the remaining blocks
in the row. In this case, Predictor B is taken from block 3 in the macroblock immediately above the current
macroblock instead of from block 3 in the macroblock above and to the left of current macroblock, as is the case
otherwise. Similarly, for the case where the macroblock is the last macroblock in the row, Predictor B for block 1 is
handled differently. In this case, the predictor is taken from block 2 in the macroblock immediately above the current
macroblock instead of from block 2 in the macroblock above and to the left of the current macroblock, as is the case
otherwise. If the macroblock is in the first macroblock column, then Predictor C for blocks 0 and 2 are set equal to 0.

10.3.4.5.3.3 Dominant and Non-Dominant MV Predictors

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 126

In two-reference field P pictures, for each inter-coded macroblock, two motion vector predictors are derived. One is
from the dominant field and the other is from the non-dominant field. The dominant field is considered to be the field
containing the majority of the motion vector predictor candidates. In the case of a tie, the motion vector derived from
the opposite field is considered to be the dominant predictor. Intra-coded macroblocks are not considered in the
calculation of the dominant/non-dominant predictor. If all candidate predictor macroblocks are Intra-coded, then the
dominant and non-dominant motion vector predictors are set to zero and the dominant predictor is taken to be from
the opposite field.

10.3.4.5.3.4 Calculating the Motion Vector Predictor

If the NUMREF syntax element in the picture header = 0, then the current field picture may refer to only one
previously coded picture. If NUMREF = 1, then the current field picture may refer to the two most recent field
pictures. In the former case, a single predictor is calculated for each motion vector. In the latter case, two motion
vector predictors are calculated. The following pseudocode describes how the motion vector predictors are calculated
for each case. The variables fieldpred_x and fieldpred_y in the pseudocode represent the horizontal and vertical
components of the motion vector predictor.

10.3.4.5.3.4.1 Motion Vector Predictors in One-Reference Field Pictures

if (predictorA is not out of bounds) {

 if (predictorC is not out of bounds) {

 if (predictorA is intra) {

 predictorA_x = 0

 predictorA_y = 0

 }

 if (predictorB is intra) {

 predictorB_x = 0

 predictorB_y = 0

 }

 if (predictorC is intra) {

 predictorC_x = 0

 predictorC_y = 0

 }

 fieldpred_x =

 median (predictorA_x, predictorB_x, predictorC_x)

 fieldpred_y =

 median (predictorA_y, predictorB_y, predictorC_y)

 }

 else {

 // predictorC is out of bounds

 if (only 1 macroblock per row) {

 if (predictorA is intra) {

 fieldpred_x = 0

 fieldpred_y = 0

 }

 else {

 // Use predictorA

 fieldpred_x = predictorA_x

 fieldpred_y = predictorA_y

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 127

 }

 else {

 // Predictor C is out of bounds, use Predictor and PredictorB

 predictorC_x = 0

 predictorC_y = 0

 if (predictorA is intra) {

 predictorA_x = 0

 predictorA_y = 0

 }

 if (predictorB is intra) {

 predictorB_x = 0

 predictorB_y = 0

 }

 if (predictorC is intra) {

 predictorC_x = 0

 predictorC_y = 0

 }

 fieldpred_x =

 median (predictorA_x, predictorB_x, predictorC_x)

 fieldpred_y =

 median (predictorA_y, predictorB_y, predictorC_y)

 }

 }

}

else {

 // Predictor A is out of bounds

 if (predictorC is out of bounds) {

 fieldpred_x = 0

 fieldpred_y = 0

 }

 else {

 // Use predictorC

 fieldpred_x = predictorC_x

 fieldpred_y = predictorC_y

 }

}

10.3.4.5.3.4.2 Motion Vector Predictors in Two-Reference Field Pictures

In 2-reference pictures (NUMREF = 1) the current field may reference the two most recent fields. In this case two
motion vector predictors are computed for each macroblock. One predictor is from the reference field of the same
polarity and the other is from the reference field with the opposite polarity.

Given the 3 motion vector predictor candidates, the following pseudocode illustrates the process for calculating the
motion vector predictors. The variables samefieldpred_x and samefieldpred_y in the pseudocode represent the
horizontal and vertical components of the motion vector predictor from the same field and oppositefieldpred_x and
oppositefieldpred_y represent the horizontal and vertical components of the motion vector predictor from the opposite
field. The variable dominantpredictor indicates which field contains the dominant predictor. The value predictor_flag
decoded from the motion vector differential indicates whether the dominant or non-dominant predictor is used.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 128

samecount = 0;

oppositecount = 0;

if (predictorA is not out of bounds) {

 if (predictorC is not out of bounds) {

 if (predictorA is intra) {

 predictorA_x = 0

 predictorA_y = 0

 }

 if (predictorB is intra) {

 predictorB_x = 0

 predictorB_y = 0

 }

 if (predictorC is intra) {

 predictorC_x = 0

 predictorC_y = 0

 }

 if (predictorA is from same field) {

 samecount = samecount + 1

 samefieldpredA_x = predictorA_x

 samefieldpredA_y = predictorA_y

 oppositefieldpredA_x = scaleforopposite_x(predictorA_x)

 oppositefieldpredA_y = scaleforopposite_y(predictorA_y)

 }

 else {

 oppositecount = oppositecount + 1

 oppositefieldpredA_x = predictorA_x

 oppositefieldpredA_y = predictorA_y

 samefieldpredA_x = scaleforsame_x(predictorA_x)

 samefieldpredA_y = scaleforsame_y(predictorA_y)

 }

 if (predictorB is from same field) {

 samecount = samecount + 1

 samefieldpredB_x = predictorB_x

 samefieldpredB_y = predictorB_y

 oppositefieldpredB_x = scaleforopposite_x(predictorB_x)

 oppositefieldpredB_y = scaleforopposite_y(predictorB_y)

 }

 else {

 oppositecount = oppositecount + 1

 oppositefieldpredB_x = predictorB_x

 oppositefieldpredB _y = predictorB_y

 samefieldpredB_x = scaleforsame_x(predictorB_x)

 samefieldpredB_y = scaleforsame_y(predictorB_y)

 }

 if (predictorC is from same field) {

 samecount = samecount + 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 129

 samefieldpredC_x = predictorC_x

 samefieldpredC_y = predictorC_y

 oppositefieldpredC_x = scaleforopposite_x(predictorC_x)

 oppositefieldpredC_y = scaleforopposite_y(predictorC_y)

 }

 else {

 oppositecount = oppositecount + 1

 oppositefieldpredC_x = predictorC_x

 oppositefieldpredC _y = predictorC_y

 samefieldpredC _x = scaleforsame_x(predictorC_x)

 samefieldpredC _y = scaleforsame_y(predictorC_y)

 }

 samefieldpred_x =

 median (samefieldpredA_x, samefieldpredB_x, samefieldpredC_x)

 samefieldpred_y =

 median (samefieldpredA_y, samefieldpredA_y, samefieldpredC_y)

 oppositefieldpred_x =

 median (oppositefieldpredA_x, oppositefieldpredB_x, oppositefieldpredC_x)

 oppositefieldpred_y =

 median (oppositefieldpredA_y, oppositefieldpredB_y, oppositefieldpredC_y)

 if (samecount > oppositecount)

 dominantpredictor = samefield

 else

 dominantpredictor = oppsositefield

 }

 else {

 // predictorC is out of bounds

 if (only 1 macroblock per row) {

 if (predictorA is intra) {

 samefieldpred_x = oppositefieldpred_x = 0

 samefieldpred_y = oppositefieldpred_y = 0

 dominantpredictor = oppositefield

 }

 else {

 // Use predictorA

 if (predictorA is from same field) {

 samefieldpred_x = predictorA_x

 samefieldpred_y = predictorA_y

 oppositefieldpred_x = scaleforopposite_x(predictorA_x)

 oppositefieldpred_y = scaleforopposite_y(predictorA_y)

 dominantpredictor = samefield

 }

 else {

 oppositefieldpred_x = predictorA_x

 oppositefieldpred_y = predictorA_y

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 130

 samefieldpred_x = scaleforsame_x(predictorA_x)

 samefieldpred_y = scaleforsame_y(predictorA_y)

 dominantpredictor = oppositefield

 }

 }

 }

 else {

 // Predictor C is out of bounds, use Predictor and PredictorB

 predictorC_x = 0

 predictorC_y = 0

 if (predictorA is intra) {

 predictorA_x = 0

 predictorA_y = 0

 }

 if (predictorB is intra) {

 predictorB_x = 0

 predictorB_y = 0

 }

 if (predictorC is intra) {

 predictorC_x = 0

 predictorC_y = 0

 }

 if (predictorA is from same field) {

 samecount = samecount + 1

 samefieldpredA_x = predictorA_x

 samefieldpredA_y = predictorA_y

 oppositefieldpredA_x = scaleforopposite_x(predictorA_x)

 oppositefieldpredA_y = scaleforopposite_y(predictorA_y)

 }

 else {

 oppositecount = oppositecount + 1

 oppositefieldpredA_x = predictorA_x

 oppositefieldpredA _y = predictorA_y

 samefieldpredA_x = scaleforsame_x(predictorA_x)

 samefieldpredA_y = scaleforsame_y(predictorA_y)

 }

 if (predictorB is from same field) {

 samecount = samecount + 1

 samefieldpredB_x = predictorB_x

 samefieldpredB_y = predictorB_y

 oppositefieldpredB_x = scaleforopposite_x(predictorB_x)

 oppositefieldpredB_y = scaleforopposite_y(predictorB_y)

 }

 else {

 oppositecount = oppositecount + 1

 oppositefieldpredB_x = predictorB_x

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 131

 oppositefieldpredB_y = predictorB_y

 samefieldpredB_x = scaleforsame_x(predictorB_x)

 samefieldpredB_y = scaleforsame_y(predictorB_y)

 }

 samefieldpred_x =

 median (samefieldpredA_x, samefieldpredB_x, samefieldpredC_x)

 samefieldpred_y =

 median (samefieldpredA_y, samefieldpredA_y, samefieldpredC_y)

 oppositefieldpred_x =

 median (oppositefieldpredA_x, oppositefieldpredB_x, oppositefieldpredC_x)

 oppositefieldpred_y =

 median (oppositefieldpredA_y, oppositefieldpredB_y, oppositefieldpredC_y)

 if (samecount > oppositecount)

 dominantpredictor = samefield

 else

 dominantpredictor = oppsositefield

 }

 }

}

else {

 // Predictor A is out of bounds

 if (predictorC is out of bounds) {

 samefieldpred_x = oppositefieldpred_x = 0

 samefieldpred_y = oppositefieldpred_y = 0

 dominantpredictor = oppositefield

 }

 else {

 // Use predictorC

 if (predictorC is from same field) {

 samefieldpred_x = predictorC_x

 samefieldpred_y = predictorC_y

 oppositefieldpred_x = scaleforopposite_x(predictorC_x)

 oppositefieldpred_y = scaleforopposite_y(predictorC_y)

 dominantpredictor = samefield

 }

 else {

 oppositefieldpred_x = predictorC_x

 oppositefieldpred_y = predictorC_y

 samefieldpred_x = scaleforsame_x(predictorC_x)

 samefieldpred_y = scaleforsame_y(predictorC_y)

 dominantpredictor = oppositefield

 }

 }

}

The scaling operation used to derive the other field’s predictor is defined as follows:

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 132

scaleforopposite_x (n) {

 int scaledvalue

 scaledvalue = (n * SCALEOPP) >> 8

 return scaledvalue

}

scaleforopposite_y (n) {

 int scaledvalue

 if (current field is top)

 scaledvalue = ((n * SCALEOPP) >> 8) – 2

 else //current field is bottom

 scaledvalue = ((n * SCALEOPP) >> 8) + 2

 return scaledvalue

}

scaleforsame_x (n) {

 if (abs (n) < SCALEZONE1_X)

 scaledvalue = (n * SCALESAME1) >> 8

 else {

 if (n < 0)

 scaledvalue = ((n * SCALESAME2) >> 8) – ZONE1OFFSET_X

 else

 scaledvalue = ((n * SCALESAME2) >> 8) + ZONE1OFFSET_X

 }

 return scaledvalue

}

scaleforsame_y (n) {

 if (current field is top) {

 if (abs (n) < SCALEZONE1_Y)

 scaledvalue = ((n + 2) * SCALESAME1) >> 8

 else {

 if (n < 0)

 scaledvalue = (((n + 2) * SCALESAME2) >> 8) – ZONE1OFFSET_Y

 else

 scaledvalue = (((n + 2) * SCALESAME2) >> 8) + ZONE1OFFSET_Y

 }

}

 else { //current field is bottom

 if (abs (n) < SCALEZONE1_Y)

 scaledvalue = ((n - 2) * SCALESAME1) >> 8

 else {

 if (n < 0)

 scaledvalue = (((n - 2) * SCALESAME2) >> 8) – ZONE1OFFSET_Y

 else

 scaledvalue = (((n - 2) * SCALESAME2) >> 8) + ZONE1OFFSET_Y

 }

}

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 133

 return scaledvalue

}

The values of SCALEOPP, SCALESAME1, SCALESAME2, SCALEZONE1_X, SCALEZONE1_Y,
ZONE1OFFSET_X and ZONE1OFFSET_Y are shown in Table 102 for the case where the current field is the first
field and Table 103 for the case where the current field is the second field. The reference frame distance is encoded in
the REFDIST field in the picture header. The reference frame distance is REFDIST + 1.

The value of N is dependant on the motion vector range. Extended motion vector range is signaled at the sequence
level by the sequence header syntax element EXTENDED_MV= 1. If EXTENDED_MV = 1 then the MVRANGE
syntax element is present in the picture header and signals the motion vector range. If EXTENDED_MV = 0 then the
default motion vector range is used. Table 104 shows the relationship between N and the MVRANGE.

Table 102: P Field Picture MV Predictor Scaling Values when Current Field is First

Reference Frame Distance

1 2 3 4 or greater

SCALEOPP 128 192 213 224

SCALESAME1 512 341 307 293

SCALESAME2 219 236 242 245

SCALEZONE1_X 32 * N 48 * N 53 * N 56 * N

SCALEZONE1_Y 8 * N 12 * N 13 * N 14 * N

ZONE1OFFSET_X 37 * N 20 * N 14 * N 11 * N

ZONE1OFFSET_Y 10 * N 5 * N 4 * N 3 * N

Table 103: P Field Picture MV Predictor Scaling Values when Current Field is Second

Reference Frame Distance

1 2 3 4 or greater

SCALEOPP 128 64 43 32

SCALESAME1 512 1024 1536 2048

SCALESAME2 219 204 200 198

SCALEZONE1_X 32 * N 16 * N 11 * N 8 * N

SCALEZONE1_Y 8 * N 4 * N 3 * N 2 * N

ZONE1OFFSET_X 37 * N 52 * N 56 * N 11 * N

ZONE1OFFSET_Y 10 * N 5 * N 4 * N 3 * N

Table 104: Derivation of N

MVRANGE N

0 or default 1

10 2

110 8

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 134

111 16

10.3.4.5.3.5 Hybrid Motion Vector Prediction

If the P picture is 1MV or Mixed-MV, then the motion predictor calculated in the previous section is tested relative to
the A (top) and C (left) predictors to see if the predictor is explicitly coded in the bitstream. If so, then a bit is present
that indicates whether to use predictor A or predictor C as the motion vector predictor. The following pseudocode
illustrates hybrid motion vector prediction decoding.

The variables are defined as follows in the pseudocode:

predictor_pre_x: The horizontal motion vector predictor as calculated in the above section

predictor_pre_y: The vertical motion vector predictor as calculated in the above section

predictor_post_x: The horizontal motion vector predictor after checking for hybdrid motion vector prediction

predictor_post_y: The vertical motion vector predictor after checking for hybdrid motion vector prediction

if ((predictorA is out of bounds) || (predictorC is out of bounds)) {

 predictor_post_x = predictor_pre_x

 predictor_post_y = predictor_pre_y

}

else {

 if (predictorA is intra)

 sum = abs(predictor_pre_x) + abs(predictor_pre_y)

 else

 sum = abs(predictor_pre_x – predictorA_x) + abs(predictor_pre_y – predictorA_y)

 if (sum > 32) {

 // read next bit to see which predictor candidate to use

 if (get_bits(1) == 0) { // HYBRIDPRED field

 // use top predictor (predictorA)

 predictor_post_x = predictorA_x

 predictor_post_y = predictorA_y

 }

 else {

 // use left predictor (predictorC)

 predictor_post_x = predictorC_x

 predictor_post_y = predictorC_y

 }

 }

 else {

 if (predictorC is intra)

 sum = abs(predictor_pre_x) + abs(predictor_pre_y)

 else

 sum = abs(predictor_pre_x – predictorC_x) + abs(predictor_pre_y – predictorC_y)

 if (sum > 32) {

 // read next bit to see which predictor candidate to use

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 135

 if (get_bits(1) == 0) {

 // use top predictor (predictorA)

 predictor_post_x = predictorA_x

 predictor_post_y = predictorA_y

 }

 else {

 // use left predictor (predictorC)

 predictor_post_x = predictorC_x

 predictor_post_y = predictorC_y

 }

 }

 }

}

Note that in the above pseudocode predictor_pre, predictor_post, predictorA, predictorB and predictorC all represent
fields of the polarity indicated by the value of predictor_flag as described in section 10.3.4.5.2.2. For example, if the
predictor_flag indicates that the opposite field predictor is used then:

predictor_pre_x = oppositefieldpred_x

predictor_pre_x = oppositefieldpred_y

predictorA_x = oppositefieldpredA_x

predictorA_y = oppositefieldpredA_y

predictorB_x = oppositefieldpredB_x

predictorB_y = oppositefieldpredB_y

predictorC_x = oppositefieldpredC_x

predictorC_y = oppositefieldpredC_y

Likewise if predictor_flag indicates that the same field predictor is used then:

predictor_pre_x = samefieldpred_x

predictor_pre_x = samefieldpred_y

predictorA_x = samefieldpredA_x

predictorA_y = samefieldpredA_y

predictorB_x = samefieldpredB_x

predictorB_y = samefieldpredB_y

predictorC_x = samefieldpredC_x

predictorC_y = samefieldpredC_y

where the values of oppositefieldpred and samefieldpred are calculated as described in section 10.3.4.5.3.4.2.

10.3.4.5.4 Reconstructing Motion Vectors

The following sections describe how to reconstruct the luminance and chroma motion vectors for 1MV and 4MV
macroblocks.

10.3.4.5.4.1 Luminance Motion Vector Reconstruction

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 136

In all cases (1MV and 4MV macroblocks) the luminance motion vector is reconstructed by adding the differential to
the predictor as follows:

mv_x = (dmv_x + predictor_x) smod range_x

mv_y = (dmv_y + predictor_y) smod range_y

The modulus operation “smod” is a signed modulus, defined as follows:

A smod b = ((A + b) % (2*b)) - b

ensures that the reconstructed vectors are valid. (A smod b) lies within –b and b – 1. range_x and range_y depend
on MVRANGE and are specified in Table 66.

If the picture uses two reference pictures (NUMREF = 1), then the predictor_flag derived after decoding the motion
vector differential is combined with the value of dominantpredictor derived from motion vector prediction to
determine which field is used as reference. The following pseudocode describes how the reference field is determined:

if (predictor_flag == 0) {

 if (dominantpredictor == samefield)

 reference is from same field as current field

 else

 reference is from opposite field as current field

}

else {

 // predictor_flag == 1

 if (dominantpredictor == samefield)

 reference is from opposite field as current field

 else

 reference is from same field as current field

}

1MV Macroblock Notes

In 1MV macroblocks there will be a single motion vector for the 4 blocks that make up the luminance component of
the macroblock.

If the MBMODE syntax element indicates that no MV data is present in the macroblock layer, then dmv_x = 0 and
dmv_y = 0 (mv_x = predictor_x and mv_y = predictor_y).

4MV Macroblock Notes

Each of the Inter-coded luminance blocks in a macroblock will have its own motion vector. Therefore there will be
between 0 and 4 luminance motion vectors in each 4MV macroblock.

If the 4MVBP syntax element indicates that no motion vector information is present for a block, then dmv_x = 0 and
dmv_y for that block (mv_x = predictor_x and mv_y = predictor_y).

10.3.4.5.4.2 Chroma Motion Vector Reconstruction

The chroma motion vectors are derived from the luminance motion vectors. Also, for 4MV macroblocks, the decision
on whether to code the chroma blocks as Inter or Intra is made based on the status of the luminance blocks or fields.
The following sections describe how to reconstruct the chroma motion vectors for 1MV and 4MV macroblocks. The
chroma vectors are reconstructed in two steps.

As a first step, the nominal chroma motion vector is obtained by combining and scaling the luminance motion vectors
appropriately. The scaling is performed in such a way that half-pixel offsets are preferred over quarter pixel locations.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 137

In the second stage, a sequence level 1-bit FASTUVMC syntax element is used to determine if further rounding of
chroma motion vectors is necessary. The purpose of this mode is speed optimization of the decoder. If FASTUVMC =
0, no rounding is performed in the second stage. If FASTUVMC = 1, the chroma motion vectors that are at quarter pel
offsets will be rounded to the nearest half and full pel positions as described in Section 8.3.5.4.5.

Only bilinear filtering will be used for all chroma interpolation

The motivation for this rounding is the significant difference between the complexities of interpolating pixel offsets
that are at a) integer pel; b) half pel; c) at least one coordinate (of x and y) at a quarter pel; and d) both coordinates at
quarter pel positions. The ratio of a:b:c:d is roughly 1:4:4.7:6.6. By applying this mode we may favor a) and b), thus
cutting down on decoding time. Since this is being done only for chroma interpolation, the coding and quality loss
(especially visible quality) are both negligible.

In the sections below cmv_x and cmv_y denote the chroma motion vector components and lmv_x and lmv_y denote
the luminance motion vector components.

10.3.4.5.4.2.1 First-stage Chroma Motion Vector Reconstruction - 1MV Chroma Motion Vector Case:

In a 1MV macroblock, the chroma motion vectors are derived from the luminance motion vectors as follows:

cmv_x = (lmv_x + round[1mv_x & 3]) >> 1

cmv_y = (lmv_y + round[1mv_y & 3]) >> 1

Where round[0] = 0, round[1] = 0, round[2] = 0, round[3] = 1

10.3.4.5.4.2.2 First-stage Chroma Motion Vector Reconstruction - 4MV Chroma Motion Vector Case:

The following pseudocode illustrates how the chroma motion vectors are derived from the motion information in the 4
luminance blocks in 4MV macroblocks. In this section, ix and iy are temporary variables.

Chroma Motion Vector Derivation in 1-Reference P Pictures
// lmv0_x, lmv0_y is the motion vector for block 0

// lmv1_x, lmv1_y is the motion vector for block 1

// lmv2_x, lmv2_y is the motion vector for block 2

// lmv3_x, lmv3_y is the motion vector for block 3

ix = median4(lmv0_x, lmv1_x, lmv2_x, lmv3_x)

iy = median4(lmv0_y, lmv1_y, lmv2_y, lmv3_y)

cmv_x = (ix + round[ix & 3]) >> 1

cmv_y = (iy + round[iy & 3]) >> 1

Where round[0] = 0, round[1] = 0, round[2] = 0 and round[3] = 1

Chroma Motion Vector Derivation in 2-Reference P Pictures
if (all 4 luminance block motion vectors are from same field)

{

 // lmv0_x, lmv0_y is the motion vector for block 0

 // lmv1_x, lmv1_y is the motion vector for block 1

 // lmv2_x, lmv2_y is the motion vector for block 2

 // lmv3_x, lmv3_y is the motion vector for block 3

 ix = median4(lmv0_x, lmv1_x, lmv2_x, lmv3_x)

 iy = median4(lmv0_y, lmv1_y, lmv2_y, lmv3_y)

}

else if (3 of the luminance block motion vectors are from same field)

{

 // lmv0_x, lmv0_y,

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 138

 // lmv1_x, lmv1_y,

 // lmv2_x, lmv2_y are the 3 motion vectors from the same field

 ix = median3(lmv0_x, lmv1_x, lmv2_x)

 iy = median3(lmv0_y, lmv1_y, lmv2_y)

}

else if (2 of the luminance block motion vectors are from same field)

{

 // Use the 2 motion vectors from the field which has the same polarity as the current field.

 // lmv0_x, lmv0_y,

 // lmv1_x, lmv1_y are the motion vectors that have the same polarity as the current field

 ix = (lmv0_x + lmv1_x) / 2

 iy = (lmv0_y + lmv1_y) / 2

}

cmv_x = (ix + round[ix & 3]) >> 1

cmv_y = (iy + round[iy & 3]) >> 1

Where round[0] = 0, round[1] = 0, round[2] = 0 and round[3] = 1

See section 4.9 for the definition of median3 and median4.

10.3.4.5.4.2.3 Second Stage Chroma Rounding

This follows the operations described in Section 8.3.5.4.5.

10.3.4.6 Coded Block Pattern

The CBPCY syntax element in the intra and inter-coded macroblock layer indicates the transform coefficient status for
each block in the macroblock. The CBPCY element decodes to a 6-bit field which indicates whether coefficients are
present for the corresponding block. Table 59 shows the correspondence between the bit positions in CBPCY and the
block number. For intra-coded macroblocks, a value of 0 in a particular bit position indicates that the corresponding
block does not contain any non-zero AC coefficients. A value of 1 indicates that at least one non-zero AC coefficient is
present. The DC coefficient is still present for each block in all cases. For inter-coded macroblocks, a value of 0 in a
particular bit position indicates that the corresponding block does not contain any non-zero coefficients. A value of 1
indicates that at least one non-zero coefficient is present. For cases where the bit is 0, no data is encoded for that block.

10.3.5 Block Layer Decode

10.3.5.1 Intra Coded Block Decode

The decoding process for Intra coded blocks is the same as described in section 8.3.6.1. The only exception is that
unlike progressive P frames, field picture P frames do not contain Intra blocks within 4MV-coded macroblocks, so the
section describing the decoding process for those blocks may be ignored.

10.3.5.2 Inter Coded Block Decode

Figure 51 shows the steps for reconstructing Inter blocks. For illustration the figure shows the reconstruction of a
block whose 8x8 error signal is coded with two 8x4 Transforms. The 8x8 error block may also be transformed with
two 4x8 Transforms, four 4x4 Transforms, or one 8x8 Transform. The steps required to reconstruct an inter-coded
block include: 1) transform type selection, 2) sub-block pattern decode, 3) coefficient decode, 4) inverse Transform, 5)
obtain predicted block and 6) motion compensation (add predicted and error blocks). The following sections describe
these steps.

10.3.5.2.1 Transform Type Selection

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 139

If variable-sized transform coding is enabled (signaled by the sequence-level syntax element VSTRANSFORM = 1 as
described in section 6.1.14), then the 8x8 error block may be transformed using one 8x8 Transform, or as shown in
Figure 52, divided vertically and transformed with two 8x4 Transforms or divided horizontally and transformed with
two 4x8 Transforms or divided into 4 quadrants and transformed with 4 4x4 Transforms. The transform type is
signaled at the picture, macroblock or block level. As shown in Tables Table 43,

TTMB VLC Transform
Type

Signal Level Subblock
Pattern

11 8x8 Block NA

101110 8x4 Block Bottom

1011111 8x4 Block Top

00 8x4 Block Both

10110 4x8 Block Right

10101 4x8 Block Left

01 4x8 Block Both

100 4x4 Block NA

10100 8x8 Macroblock NA

1011110001 8x4 Macroblock Bottom

101111001 8x4 Macroblock Top

101111011 8x4 Macroblock Both

101111000000 4x8 Macroblock Right

101111000001 4x8 Macroblock Left

10111100001 4x8 Macroblock Both

101111010 4x4 Macroblock NA

Table 44: Medium Rate (5 <= PQUANT < 13) TTMB VLC Table

 and

TTMB VLC Transform
Type

Signal Level Subblock
Pattern

110 8x8 Block NA

0110 8x4 Block Bottom

0011 8x4 Block Top

0111 8x4 Block Both

1111 4x8 Block Right

1110 4x8 Block Left

000 4x8 Block Both

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 140

010 4x4 Block NA

10 8x8 Macroblock NA

0010100 8x4 Macroblock Bottom

0010001 8x4 Macroblock Top

001011 8x4 Macroblock Both

001001 4x8 Macroblock Right

00100001 4x8 Macroblock Left

0010101 4x8 Macroblock Both

00100000 4x4 Macroblock NA

Table 45. If TTMB indicates that the signal level is Block, then the transform type is signaled at the block level. If the
transform type is specified at the block level, then the TTBLK syntax element is present within the bitstream as shown
in Figure 25. This syntax element indicates the transform type used for the block. Table 47, Table 48, and Table 49
show the code tables used to encode the transform types if block mode signaling is used.

If variable-sized transform coding is not enabled, then the 8x8 Transform is used for all blocks.

10.3.5.2.2 Subblock Pattern Decode

If the transform type is 8x4, 4x8 or 4x4, then information about which of the subblocks have non-zero coefficients
shall be signaled to the decoder. For 8x4 and 4x8 transform types, the subblock pattern is decoded as part of the
TTMB or TTBLK syntax element. If the transform type is 4x4, then the SUBBLKPAT syntax element is present in the
bitstream as shown in Figure 25. Section 7.1.4.2 describes the SUBBLKPAT syntax element.

If the subblock pattern indicates that no non-zero coefficients are present for the subblock, then no other information
for that subblock is present in the bitstream. For the 8x4 transform type, the data for the top subblock (if present) is
coded first followed by the bottom subblock. For the 4x8 transform type, the data for the left subblock (if present) is
coded first followed by the right subblock. For the 4x4 transform type, the data for the upper left subblock is coded first
followed, in order, by the upper right, lower left and lower right subblocks.

10.3.5.2.3 Coefficient Bitstream Decode

The process of transform coefficient decoding is described in Section 8.3.6.2.3.

10.3.5.2.4 Inverse Quantization

The non-zero quantized coefficients reconstructed as described in the sections above are inverse quantized in one of
two ways depending on the value of PQUANT.

If the uniform quantizer is used, the following formula describes the inverse quantization process:

dequant_coeff = quant_coeff * (2 * quant_scale + halfstep)

If the nonuniform quantizer is used, the following formula describes the inverse quantization process:

dequant_coeff = quant_coeff * (2 * quant_scale + halfstep) + sign(quant_coeff) * quant_scale

where:

quant_coeff is the quantized coefficient

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 141

dequant_coeff is the inverse quantized coefficient

quant_scale = The quantizer scale for the block (either PQUANT or MQUANT)

halfstep = The half step encoded in the picture layer as described in section 7.1.1.16.

PQUANT is encoded in the picture layer as described in section 7.1.1.15.

MQUANT is encoded as described in section 8.3.5.2.

10.3.5.2.5 Inverse Transform

After reconstruction of the TRANSFORM coefficients, the resulting 8x8, 8x4, 4x8 or 4x4 blocks are processed by the
appropriate two-dimensional inverse transforms (INVERSETRANSFORM). The 8x8 blocks are transformed using the
8x8 INVERSETRANSFORM, the 8x4 blocks are transformed using the 8x4 INVERSETRANSFORM, the 4x8 blocks
are transformed using the 4x8 INVERSETRANSFORM and the 4x4 blocks are transformed using the 4x4
INVERSETRANSFORM. The inverse transforms output has a dynamic range of 10 bits. For P blocks, the inverse
transform may be clamped to the range [-255 255] without loss of bit-exactness.

See section 8.8 regarding INVERSETRANSFORM implementation and conformance.

10.3.5.2.6 Motion Compensation

The motion compensation process is the same as described in section 8.3.6.2.

10.3.6 Rounding Control

The rounding control process is the same as described in section 8.3.7.

10.3.7 Intensity Compensation

The intensity compensation process is the same as described in section 8.3.8.

10.4 Interlace Field B Picture Decoding
Figure 75 shows the steps required to decode B field pictures. The following sections describe this process. B field
syntax is very similar to P field syntax, so we will not repeat all the common syntax elements here. We will instead
focus only on the differences between P and B syntax. When using B frames, both forward and backward frames are
needed for motion compensation. In field mode coding, the first (B-) field shall be used as reference for the second B
field being coded. For B fields we always treat the number of reference fields (see NUMREF) as 2. B fields always use
4 reference fields (top and bottom forward, top and bottom backward) to predict the current MB.

The following are the salient features of B-field coding.

1) The first B field references the first and second fields from the previous and next anchor frames (Figure 93).

2) The second B field references the first B field from the current frame (i.e. the top B field in Figure 93) as the
“opposite polarity” and the second field of the previous anchor frame (“same polarity”), plus the first and second
fields of the next anchor frame.. If TFF = 1 then the first field is the top field and the second field is the bottom
field. This is the case illustrated in Figure 93. If TFF = 0 then the bottom field is the first field and the top field is
the second field.

3) We send the “forward/not forward” (0/1) decision (per MB) as a frame level bit (this is different from
progressive B frames, where the frame level bit plane codes “direct/not direct”).

4) MV prediction follows similar logic as field P pictures, but we retain forward and backward contexts separately.
We also fill in the “holes” e.g. when backward, we fill in the forward buffer’s MV with what would be the
predicted MV.

5) We use 4MV for forward and backward modes (not direct and interpolated).

6) We also follow the MB mode (comprising 1/4MV/Intra, skipped MB, CBP present, 4MV block pattern) joint
coding, new MV tables and MV architecture as defined for P field pictures.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 142

Figure 93: B field references

10.4.1 B Macroblock Layer Decode

At the MB level, the B field syntax is also similar to P field MB (e.g see Figure 81 and Figure 82). We will once again
focus on describing the differences and avoid repeating the elements that remain the same.

10.4.1.1 Forward Bit

If the picture-level syntax element FORWARDMB is coded in raw mode, then the forward bit shall be used to signal
forward/non-forward at the MB level.

10.4.1.2 MB Mode

In case the MB mode is not forward, we send additional bits in BMVTYPE to signal if the B-MB is backward, direct
or interpolated. This is a simple VLC, where backward = 0, direct = 10, interpolated = 11.

10.4.1.3 Non-zero interpolated MV

If the MB is interpolated, then we send an extra bit to signal non-zero interpolated MV (INTERPMVP).

10.4.1.4 1 MV mode Motion Vectors (BMV1, BMV2)

In 1 MV mode, the first motion vector, BMV1 is signaled exactly the same way as MVDATA in P-fields 1 MV mode.
If we are in interpolated mode and INTERPMVP = 1, then BMV1 is followed by BMV2, which corresponds to the
backward reference motion vector.

10.4.1.5 4 MV mode Motion Vectors

Note that only forward and backward modes use 4MV, direct and interpolated always work with 1MV.

10.4.1.6 B Frame Modes

Macro blocks in B fields are identified as belonging to one of four modes, viz. backward, forward, direct and
interpolated. The forward mode is akin to conventional P picture prediction. In the forward mode, the macro block
is interpolated from its temporally previous anchor fields. Likewise, backward mode macro blocks are entirely
interpolated from their temporally subsequent anchor frame.

Direct mode and interpolated mode macro blocks use both the anchors for prediction. Since there are two reference
images for these modes, there are two motion vectors for each macro block. The direct mode implicitly derives these

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 143

motion vectors by appropriately scaling and bounding the motion vectors of the collocated macro block in the
temporally subsequent anchor frame.

The direct and interpolated modes use two motion vectors to predict from the two reference (anchor) frames. Both the
direct and interpolated motion modes use round-up averaging for combining the pixel values of the two interpolated
references into one set of macro block pixels:

 Average pixel value = (Forward interpolated value + Backward interpolated value + 1) >> 1

The interpolation processes (e.g. bicubic, bilinear, quarter or half pel) are signaled and implemented exactly the same
way as with P fields.

10.4.2 B Block Layer Decode

Block layer decoding is identical to P field pictures.

10.4.3 MV Prediction in B fields

Motion compensation is performed in both the forward and backward directions for B fields. The following describe
how to perform motion vector prediction in B fields in the forward and backward directions.

10.4.3.1 Forward MV Prediction in B fields

Forward MV prediction for both B fields is identical to P field MV prediction as described in section 10.3.4.5.3. The
only difference is in the method of deriving the reference frame distance. The forward reference frame distance is
computed from the BFRACTION syntax element in the B field picture header and from the REFDIST syntax element
in the backward reference frame header. The forward reference frame distance is computed as:

Forward Reference Frame Distance (FRFD) =

 NINT ((BFRACTION numerator / BFRACTION denominator) * Reference Frame Distance) – 1

 if (FRFD < 0) then FRFD = 0

NINT is the nearest integer operator as described in section 4.2.

The BFRACTION numerator and BFRACTION denominator are decoded from the BFRACTION syntax element as
described in section 7.1.1.10.

The Reference Frame Distance is computed from the value decoded from the REFDIST syntax element in the
backward reference frame. Reference Frame Distance = REFDIST + 1. Section 9.1.1.11 describes how to decode the
REFDIST syntax element.

10.4.3.2 Backward MV Prediction in B fields

Backward MV prediction for the second B field in the frame is identical to P field MV prediction as described in
section 10.3.4.5.3.

Backward MV prediction for the first B field in the frame is identical to P field MV prediction with exception that the
MV scaling is different. For this case, scaleforopposite_x, scaleforopposite_y, scaleforsame_x and scaleforsame_y are
defined as follows:

scaleforopposite_x (n) {

 if (abs (n) < SCALEZONE1_X)

 scaledvalue = (n * SCALEOPP1) >> 8

 else {

 if (n < 0)

 scaledvalue = ((n * SCALEOPP2) >> 8) – ZONE1OFFSET_X

 else

 scaledvalue = ((n * SCALEOPP2) >> 8) + ZONE1OFFSET_X

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 144

 return scaledvalue

}

scaleforopposite_y (n) {

 if (current field is top) {

 if (abs (n) < SCALEZONE1_Y)

 scaledvalue = ((n + 2) * SCALEOPP1) >> 8

 else {

 if (n < 0)

 scaledvalue = (((n + 2) * SCALEOPP2) >> 8) – ZONE1OFFSET_Y

 else

 scaledvalue = (((n + 2) * SCALEOPP2) >> 8) + ZONE1OFFSET_Y

 }

}

 else { //current field is bottom

 if (abs (n) < SCALEZONE1_Y)

 scaledvalue = ((n - 2) * SCALEOPP1) >> 8

 else {

 if (n < 0)

 scaledvalue = (((n - 2) * SCALEOPP2) >> 8) – ZONE1OFFSET_Y

 else

 scaledvalue = (((n - 2) * SCALEOPP2) >> 8) + ZONE1OFFSET_Y

 }

}

 return scaledvalue

}

scaleforsame_x (n) {

 int scaledvalue

 scaledvalue = (n * SCALESAME) >> 8

 return scaledvalue

}

scaleforsame_y (n) {

 int scaledvalue

 if (current field is top)

 scaledvalue = ((n * SCALESAME) >> 8) – 2

 else //current field is bottom

 scaledvalue = ((n * SCALESAME) >> 8) + 2

 return scaledvalue

}

The values of SCALESAME, SCALEOPP1, SCALEOPP2, SCALEZONE1_X, SCALEZONE1_Y,
ZONE1OFFSET_X and ZONE1OFFSET_Y are shown in.

The backward reference frame distance is computed from the BFRACTION syntax element in the B field picture
header and from the REFDIST syntax element in the backward reference frame header. The backward reference frame
distance is computed as:

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 145

Backward Reference Frame Distance (BRFD) = Reference Frame Distance – FRFD – 1

The Reference Frame Distance is computed from the value decoded from the REFDIST syntax element in the
backward reference frame. Reference Frame Distance = REFDIST + 1. Section 9.1.1.11 describes how to decode the
REFDIST syntax element.

The forward reference frame distance (FRFD) is computed as described in section 10.4.3.1.

The value of N is dependant on the motion vector range. Extended motion vector range is signaled at the sequence
level by the sequence header syntax element EXTENDED_MV= 1. If EXTENDED_MV = 1 then the MVRANGE
syntax element is present in the picture header and signals the motion vector range. If EXTENDED_MV = 0 then the
default motion vector range is used. Table 104 shows the relationship between N and the MVRANGE

Table 105: B Field Picture Backward MV Predictor Scaling Values for when Current Field is First

Reference Frame Distance

1 2 3 4 or greater

SCALESAME 171 205 219 228

SCALEOPP1 384 320 299 288

SCALEOPP2 230 239 244 246

SCALEZONE1_X 32 * N 48 * N 53 * N 56 * N

SCALEZONE1_Y 8 * N 12 * N 13 * N 14 * N

ZONE1OFFSET_X 37 * N 20 * N 14 * N 11 * N

ZONE1OFFSET_Y 10 * N 5 * N 4 * N 3 * N

10.4.3.3 Motion Vector Prediction Process in B Fields

Only forward MVs are used as predictors for other forward MVs, and only backward MVs are used as predictors for
backward MVs. For macroblocks that use either direct or interpolated prediction modes, we store both the forward and
backward MV components. These components are computed implicitly in the case of direct and explicitly from
received motion vector information in the case of interpolated mode.

If the forward or backward prediction mode is used then a motion vector for the other (missing) direction shall be
derived for use as a predictor. To derive the motion vector, the motion vector prediction process as described above is
peformed for the macroblock in the missing direction. The dominant polarity motion vector predictor is then used as
the missing motion vector. In this way, both a complete set of forward and backward motion vectors is present for use
in MV prediction.

The scheme for B field MV prediction is as follows –
1) If the MB is forward predicted, then median predict its MV from the neighborhood of the “forward MV

buffer”. Store the forward MV (computed by Compute_MV__Predictors) in the forward buffer, and the
dominant predictor in the backward buffer.

2) If the MB is backward predicted, then median predict its MV from the neighborhood of the “backward MV
buffer”. Store the backward MV (computed by Compute_MV__Predictors) in the backward buffer, and the
dominant predictor in the forward buffer.

3) If the MB is interpolated, then use the forward MV buffer to predict the forward component, the backward
buffer to predict the backward component, and store the forward and backward MVs (both computed by
Compute_MV__Predictors), once these have been calculated, in the forward and backward MV buffers,
respectively.

4) If the MB is direct predicted, we compute the direct mode MVs as described in 8.4.3.2

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 146

All direct mode MV’s (motion vectors) are treated as (0, 0) when the co-located macroblock (of the next anchor frame)
is INTRA. This is also true when the previously decoded frame (i.e. the temporally "next" anchor frame) is an I-frame.

There shall be no computation of direct mode MV’s for macroblocks (MB’s) that are not using the direct mode
prediction (e.g. forward or backward), unlike for progressive B frame. We predict them based on the forward or
backward MV buffer from the current (B) field/frame, plus the rules of predicting motion vectors as defined with P
fields/frames. Here's a simple example to make this clearer. Say we are decoding MB:(12,13) and it is forward
predicted. Then its forward MV residual is explicitly sent in the bitstream. We decode this and insert it in the buffer of
forward MV's (after adding to the predicted MV). We then take the backward MV buffer and use MV prediction logic
to fill in the MV at position (12, 13) - e.g. if the prediction rule is a simple median of 3 neighbors, then we may take
the median of backward MV's from (11, 13), (12, 12) and (13, 12) to fill in the backward MV for (12, 13).

In field interlaced B field coding, we use the collocated MB’s MV from the (temporally next) P field with the same
parity. If the P frame's collocated MV was 1 MV then that MV is simply buffered for the next B to be coded, else if 4
MV then we first consider the polarities of the 4 MV’s to favor the dominant polarity. Thus, if the number of MV’s
(out of 4) from the same field outnumber those from the opposite field, we use median4, median3, arithmetic mean of
2 or the values of the same field MV’s if we have 4, 3, 2, or 1 same field MV’s respectively. Otherwise if the MV’s
from the opposite field outnumber those from the same field, we use similar operations to get a representative MV to
use from the opposite field MV’s. If more than two of the original set of 4 MV’s, (irrespective of polarity) are intra,
then we simply treat the collocated representative MV as intra, i.e. 0,0.

This selection process is elucidated by the following pseudo-code –

MotionVector SelectDirectModeMVFromColocatedMB ()

{

 MotionVector SelectedMV;

 if the corresponding MB used 1 MV

 then use that MV

 else // 4 MV’s to pick from

 {

 Count the number of Intra MV’s // from among the 4 MVs of the

 // collocated macroblock

 if (Intra MV’s > 2)

 then SelectedMV = INTRA

 else { // Use the motion vectors from the most dominant field

 Count the number of same field and opposite field MV’s

 if (OppFieldCount > SameFieldCount)

 then use only the opposite field MV’s in next step

// i.e. opposite is the chosen polarity

 else use only the same field MV’s in the next step

 // i.e. same is the chosen polarity

 Count the number of MV’s of the chosen polarity

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 147

 if (Chosen MVs = 3) {

 SelectedMV = Median of 3 of the chosen MV’s

 }

 else if (Chosen MVs = 2) {

 SelectedMV = Average of the chosen MV’s

 }

 else if (Chosen MVs = 1) {

 SelectedMV = The chosen MV

 }

 else { // all 4 are of the chosen polarity

 SelectedMV = Median of 4 of the chosen MV’s

 }

 }

 }

 return (SelectedMV);

}

NB: The selection process outlined above is a pre-cursor to the actual scaling to produce the forward and backward
pointing direct mode MV’s, for which the steps are identical to those described above (in 8.4.3.2).

10.5 Interlace Frame I Picture Decoding
The following sections describe interlace frame I picture type.

10.5.1 Macroblock Layer Decode

The macroblocks are coded in raster scan order from left to right. Figure 83 shows the elements that make up the
intra MB layer. Each macroblock may be either frame or field coded as indicated by FIELDTX which indicates the
internal organization of a macroblock. FIELDTX = 1 indicates that the macroblock is field coded. For frame coded
macroblocks, the luminance blocks is interlaced with each field occurring alternatively. For field coded macroblocks,
the top two luminance blocks contain only the lines from top field while the bottom two luminance blocks contain only
lines from the bottom field. The Cb/Cr blocks remain interlaced for both field coded and frame coded macroblocks.

10.5.2 Block Decode

This section describes the process used to reconstruct the blocks which is very similar to advanced profile progressive I
picture’s block decoding. Figure 94 shows the process used to reconstruct the 8x8 blocks.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 148

Figure 94: Intra Block Decode

The DC coefficients are coded differentially using neighboring block’s DC coefficients. The quantized DC value for
the current block is obtained by adding the DC predictor to the DC differential. The process of DC inverse
quantization and DC differential decoding is the same as advanced profile I picture.

The ACPRED flag for each macroblock indicates whether some of AC coefficients are coded differentially. If the AC
coefficients are differentially coded, then the AC coefficients for the current block is obtained by adding the AC
predictor (either the quantized AC coefficients of the first row of the top block or the first column of the left block) to
the AC differential. The process of decoding AC (possibly differential) coefficient coding is the same as advanced
profile I picture.

After the inverse transform, we add 128 to each pixel in the block and clip it to be between 0 and 255 to form the
decoded blocks. In addition, we permutate the decoded luminance blocks if the current macroblock is field coded.

10.5.2.1 DC Predictor

The DC predictor is obtained from one of the previously decoded adjacent blocks. Figure 33 shows the current block
and the candidate predictors from the adjacent blocks. The values A, B and C represent the quantized DC values
prior to the addition of 128 for the top-left, top and left adjacent blocks respectively. The FIELDTX flag does not
have an effect of the DC/AC prediction process. For example, the adjacent blocks for block 0 of the the current
macroblock are always the block 3, block 2, block 1 of the top-left, top, and left macroblocks, respectively.

The adjacent blocks A, B, C are considered missing if they are outside the picture boundary or if the blocks are not
intra coded (the last provision is for intra blocks in Interlace frame p or b pictures).

If all three blocks A, B, and C are present, then a prediction direction is formed based on the values of A, B and C and
either the B or C predictor is chosen. The prediction direction is calculated the same way as the for I frame as shown
in Figure 34.

If an adjacent block is missing, then the following rules apply:

• If block C is missing and block B is not, then use block B as the predictor.

• If block B is missing and block C is not, then use block C as the predictor.

• If both block B and block C are missing, then no predictor is used.

• If block A is missing and B, C are present, then we choose block B if the DC predictor for block C is smaller
than the DC predictor for block B, otherwise, we choose block C.

In addition, the DC predictor is scaled in the same way as advanced profile I picture if MQUANT mode is on.

10.5.2.2 AC Prediction

If AC prediction is turned on for the current block, then the AC coefficients on either the top row or the left column
might be differentially encoded. The decision for the direction is based on the DC predictor. There are three cases,
DC is predicted from the left block, the top block, or not predicted.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 149

• If DC is predicted from the top, then the top row of the current block is differentially coded.

• If DC is predicted from the left, then the left column of the current block is differentially coded.

• If DC is not predicted, then the AC coefficients are not differentially coded.

The AC coefficients in the predicted row or column are added to the corresponding decoded AC coefficients in the
current block to produce the fully reconstructed quantized Transform coefficient block. In addition, the AC predictor
is scaled in the same way as advanced profile I picture if MQUANT mode is on.

10.6 Interlace BI Frame Decoding
When B frames are used (in main and advanced profiles only), we code a special type of frame that is in some ways a
hybrid of I and B frames. The syntax of BI frames is identical to that of I, but they are usually coded at higher QP’s
and can never be used as an anchor or reference frame to predict other frames.

10.7 Interlace Frame P Picture Decoding
The following sections describe interlace frame P picture type.

10.7.1 Out-of-bounds Reference Pixels

The previously interlaced frame is used as the reference for motion-compensated predictive coding of the current
frame P picture. The motion vectors used to locate the predicted blocks in the reference frame may include pixel
locations that are outside the boundary of the reference frame In these cases, the out-of-bounds pixel values are the
replicated values of the edge pixel for the left and right boundary while the top and bottom boundaries are formed by
repeating the top two and bottom two field lines thus preserving the interlace structure into the repeatpad region. The
padding is conceptually considered to be infinite for the purpose of motion compensation. Note that in advanced
profile, “frame edge”, “frame corner” and “outside the boundary” refer to the true frame dimensions, not the
dimensions right or top/bottom justified to the edge of the macroblock. In other words, the right and bottom pixels that
are repeated to infinity for a 200 x 300 image begin at column 304 and row 208 for the simple and main profiles.
However, for the advanced profile, these begin respectively at column 300 and row 200.

10.7.2 Macroblock Layer Decode

In interlace frame P picture, each macroblock may be motion compensated in frame mode using 1 or 4 motion
vector(s) or in field mode using 2 or 4 motion vectors. Frame motion compensation treats a macroblock as a whole
entity while field motion compensation treats a macroblock as composed of two separate fields. A macroblock that is
inter-coded does not contain any intra blocks. In additon, the residual after motion compensation may be coded in
frame transform mode or field transform mode same as the interlace frame I picture. More specifically, the luminance
component of the residual are re-arranged according to fields if it is coded in field transform mode and it remains
unchanged in frame transform mode while the chroma component remains the same. A macroblock may also be
coded as intra, in this case, the decoding process is the same as I macroblocks decoding in interlace frame I picture.

The motion compensation may be restricted to not include 4 (both field/frame) motion vectors and this is signaled
through 4MVSWITCH. The type of motion compensation / residual coding is jointly indicated for each macroblock
through MBMODE and SKIPMB. MBMODE employs different set of tables according to 4MVSWITCH.

Macroblocks in interlace frame P pictures are classified into 5 types: 1 MV, 2 Field MV, 4 Frame MV, 4 Field MV,
and Intra. The first four types of macroblock are inter-coded while the last type indicates that the macroblock is intra-
coded. The macroblock type is signaled by MBMODE syntax element in the macroblock layer along with the skip bit.
MBMODE jointly encode macroblock types along with various pieces of information regarding the macroblock for
different types of macroblock.

10.7.2.1 Inter Macroblock Types

The following sections describe four types of motion compensation:

10.7.2.1.1 1 MV Macroblock

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 150

In 1 MV macroblock, the displacement of the four luminance blocks is represented by a single motion vector. A
corresponding chroma motion vector is derived to represent the displacements of each of the two 8x8 chroma blocks.

10.7.2.1.2 2 Field MV Macroblock

In 2 Field MV macroblock, the displacement of each field of the luminance blocks described by a different motion
vector (see Figure 95). The top field motion vector describes the displacement of the even lines of the luminance
blocks while the bottom field motion vector describes the displacement of the odd lines of the luminance blocks.
Using the top field motion vector, we derive a corresponding top field chroma motion vector that describes the
displacement of the even lines of the chroma blocks. Similarly, a bottom field chroma motion vector is derived from
the bottom field motion vector that describes the displacements of the odd lines of the chroma blocks.

Figure 95: Two Field MV Macroblock

10.7.2.1.3 4 Frame MV Macroblock

In 4 Frame MV macroblock, each one of the four luminance block’s displacement is described by a different motion
vector (see Figure 96). Similarly, each chroma block is motion compensated using four derived chroma motion vector
that describes the displacement of the four 4x4 subblocks. Each 4x4 subblock’s chroma motion vector is derived (as
described in section 10.7.2.6) from the spatially corresponding luminance block’s motion vector. See details.

MV1' MV2'

MV3' MV4'

MV1 MV2

MV3 MV4

Luminance Blocks

Chrominance Block

Figure 96: 4 Frame MV Macroblock

10.7.2.1.4 4 Field MV Macroblock

In 4 Field MV macroblock, the displacement of each field in the luminance blocks is described by two different motion
vectors (see Figure 97). The even lines of the luminance blocks are subdivided vertically to form two eight by eight

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 151

regions. The displacement of the left region is described by the top left field block motion vector and the
displacement of the right region is described by the top right field block motion vector. Similarly, the odd lines in the
luminance blocks are subdivided vertically to form two eight by eight regions. The displacement of the left region is
described by the bottom left field block motion vector and the displacement of the right region is described by the
bottom right field block motion vector. Similarly, each chroma block is partitioned into four regions in the same way
as the luminance blocks and each region is motion compensated using a derived field chroma motion vector.

Luminance Blocks

Top Left

Field Block MV

Bottom Left

Field Block MV
Top Right

Field Block MV

Bottom Right

 Field Block MV

Figure 97: 4 Field MV Macroblock – Luminance Block

Derived Top

Left Field MV

Chrominance Block

Derived Bottom

Left Field MV

Derived Top

Right Field MV

Derived Bottom

Right Field MV

Figure 98: 4 Field MV Macroblock – Chrominance Block

10.7.2.2 Skipped Macroblock Signaling

The SKIPMB field indicates the skip condition for a macroblock. If the SKIPMB field is 1, then the current
macroblock is said to be skipped and there are no other information sent after the SKIPMB field. The skip condition
implies that the current macroblock is 1 MV with zero differential motion vector (i.e. the macroblock is motion
compensated using its 1 MV motion predictor) and there are no coded blocks (CBP = 0).

On the other hand, if the SKIPMB field is not 1, then the MBMODE field will have be decoded to indicate the type of
macroblock and various other key pieces of information regarding the current macroblock.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 152

10.7.2.3 Macroblock Mode Signaling

There are fifteen possible events that are indicated by MBMODE which jointly specifies the type of macroblock (inter-
1mv, 4mv, 2 field mv, 4 field mv, or intra), types of transform for inter-coded macroblock (i.e. field or frame or no
coded blocks), and in addition, whether there is differential motion vector for the 1MV macroblock.

Let <MVP> denote a binary event that signals whether there is nonzero 1 MV differential motion vector or not.

Let <Field/Frame transform> denote a ternary event that signals whether the residual of the macroblock is frame
transform coded, field transform coded, or zero coded blocks (i.e. CBP = 0).

Then the MBMODE signals the following set of events jointly:

MBMODE = { <1MV, MVP, Field/Frame transform>, <2 Field MV, Field/Frame transform>, <4 Frame MV,
Field/Frame transform>, <4 Field MV, Field/Frame transform>, <INTRA>}; excluding the event where <1MV,
MVP=0, CBP=0> which is signaled by the skip condition.

For inter-coded macroblocks, the CBPCY syntax element shall not be be decoded when the Field/Frame Transform
event in MBMODE indicates no coded blocks. On the other hand, if the Field/Frame transform event in MBMODE
indicates field or frame transform, then CBPCY shall be decoded.

For non-1MV inter-coded macroblocks, an additional field is sent to indicate the zero differential motion vectors
event. In the case of 2 Field MV macroblocks, the 2MVBP field is sent to indicate which of the two motion vectors
contain nonzero differential motion vectors. Similarly, the 4MVBP field is sent to indicate which of the four motion
vectors contain nonzero differential motion vectors.

For intra-coded macroblocks, the Field/Frame transform and zero coded blocks are coded in separate fields.

10.7.2.4 Motion Vector Predictors

The process of computing the motion vector predictor(s) for the current macroblock consists of two steps.

First, three candidate motion vectors for the current macroblock are gathered from its neighboring macroblocks.
Figure 99 shows the neighboring macroblock from which we gather the candidate motion vectors from. The order of
the collection of candidate motion vectors is important and it always start from A, to B, and ends at C.

Second, the motion vector predictor(s) for the current macroblock is computed from the set of candidate motion
vectors.

Figure 99: Candidate Neighboring Macroblocks for Interlace Frame Picture

The following sections describe how the candidate motion vectors are collected for different types of macroblock and
how the motion vector predictor(s) is computed.

10.7.2.4.1 1 MV Candidate Motion Vectors Derivation

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 153

The following pseudocode is used to collect the (possibly) three candidate motion vectors for 1 MV:

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the top right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Average the two field motion vectors of A and add the

 resulting MV to the set of candidate motion vector.

 } else if (A is 4 Field MV) {

 Average the top right block field MV and bottom right

 block field MV of A and add the resulting MV to the set

 of candidate motion vector.

 }

}

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom left block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Average the two field motion vectors of B and add the

 resulting MV to the set of candidate motion vector.

 } else if (B is 4 Field MV) {

 Average the top left block field MV and bottom left

 block field MV of B and add the resulting MV to the set

 of candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 154

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Average the two field motion vectors of C and add the

 resulting MV to the set of candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Average the top left block field MV and bottom left

 block field MV of C and add the resulting MV to the

 set of candidate motion vector.

 } else { // C is top left MB

 Average the top right block field MV and bottom right

 block field MV of C and add the resulting MV to the

 set of candidate motion vector.

 }

 }

}

10.7.2.4.2 4 Frame MV Candidate Motion Vectors Derivation

In this case, the candidate motion vectors from the neighboring blocks, for each of the four frame block motion vectors
in the current macroblock, shall be collected.

The following pseudocode is used to collect the (possibly) three candidate motion vectors for the top left frame block
MV:

// Top Left Block MV

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the top right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Average the two field motion vectors of A and add the

 resulting MV to the set of candidate motion vector.

 } else if (A is 4 Field MV) {

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 155

 Average the top right block field MV and bottom right

 block field MV of A and add the resulting MV to the set

 of candidate motion vector.

 }

}

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom left block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Average the two field motion vectors of B and add the

 resulting MV to the set of candidate motion vector.

 } else if (B is 4 Field MV) {

 Average the top left block field MV and bottom left

 block field MV of B and add the resulting MV to the set

 of candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Average the two field motion vectors of C and add the

 resulting MV to the set of candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Average the top left block field MV and bottom left

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 156

 block field MV of C and add the resulting MV to the

 set of candidate motion vector.

 } else { // C is top left MB

 Average the top right block field MV and bottom right

 block field MV of C and add the resulting MV to the

 set of candidate motion vector.

 }

 }

}

The following pseudocode is used to collect the (possibly) three candidate motion vectors for the top right frame block
MV:

// Top Right Block MV

Add the top left block MV of the current MB to the set of

candidate motion vector.

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom right block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Average the two field motion vectors of B and add the

 resulting MV to the set of candidate motion vector.

 } else if (B is 4 Field MV) {

 Average the top right block field MV and bottom right

 block field MV of B and add the resulting MV to the set

 of candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 157

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Average the two field motion vectors of C and add the

 resulting MV to the set of candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Average the top left block field MV and bottom left

 block field MV of C and add the resulting MV to the

 set of candidate motion vector.

 } else { // C is top left MB

 Average the top right block field MV and bottom right

 block field MV of C and add the resulting MV to the

 set of candidate motion vector.

 }

 }

}

The following pseudocode is used to collect the (possibly) three candidate motion vectors for the bottom left frame
block MV:

// Bottom Left Block MV

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the bottom right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Average the two field motion vectors of A and add the

 resulting MV to the set of candidate motion vector.

 } else if (A is 4 Field MV) {

 Average the top right block field MV and bottom right

 block field MV of A and add the resulting MV to the set

 of candidate motion vector.

 }

}

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 158

Add the top left block MV of the current MB to the set of

candidate motion vector.

Add the top right block MV of the current MB to the set of candidate
motion vector.

The following pseudocode is used to collect the three candidate motion vectors for the bottom right frame block MV:

// Bottom Right Block MV

Add the bottom left block MV of the current MB to the set of candidate
motion vector.

Add the top left block MV of the current MB to the set of candidate motion
vector.

Add the top right block MV of the current MB to the set of candidate
motion vector.

10.7.2.4.3 2 Field MV Candidate Motion Vectors Derivation

In this case, the candidate motion vectors from the neighboring blocks, for each of the two field motion vectors in the
current macroblock, shall be collected.

The following pseudocode is used to collect the (possibly) three candidate motion vectors for the top field MV:

// Top Field MV

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the top right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Add the top field MV of A to the set of candidate motion

 vector.

 } else if (A is 4 Field MV) {

 Add the top right field block MV of A to the set of

 candidate motion vector.

 }

}

if (B exists and B is not intra coded) {

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 159

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom left block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Add the top field MV of B to the set of candidate motion

 vector.

 } else if (B is 4 Field MV) {

 Add the top left field block MV of B to the set of

 candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Add the top field MV of C to the set of candidate motion

 vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Add the top left field block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the top right field block MV of C to the set of

 candidate motion vector.

 }

 }

}

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 160

The following pseudocode is used to collect the (possibly) three candidate motion vectors for the bottom field MV:

// Bottom Field MV

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the bottom right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Add the bottom field MV of A to the set of candidate

 motion vector.

 } else if (A is 4 Field MV) {

 Add the bottom right field block MV of A to the set of

 candidate motion vector.

 }

}

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom left block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Add the bottom field MV of B to the set of candidate

 motion vector.

 } else if (B is 4 Field MV) {

 Add the bottom left field block MV of B to the set of

 candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 161

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Add the bottom field MV of C to the set of candidate
 motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Add the bottom left field block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right field block MV of C to the set

 of candidate motion vector.

 }

 }

}

10.7.2.4.4 4 Field MV Candidate Motion Vectors Derivation

In this case, the candidate motion vectors from the neighboring blocks, for each of the four field blocks in the current
macroblock, shall be collected.

The following pseudocode is used to collect the (possibly) three candidate motion vectors for the top left field block
MV:

// Top Left Field Block MV

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the top right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Add the top field MV of A to the set of

 candidate motion vector.

 } else if (A is 4 Field MV) {

 Add the top right field block MV of A to the set of

 candidate motion vector.

 }

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 162

}

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom left block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Add the top field MV of B to the set of

 candidate motion vector.

 } else if (B is 4 Field MV) {

 Add the top left field block MV of B to the set of

 candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Add the top field MV of C to the set of

 candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Add the top left field block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the top right field block MV of C to the set of

 candidate motion vector.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 163

 }

 }

}

The following pseudocode is used to collect the (possibly) three candidate motion vectors for the top right field block
MV:

// Top Right Field Block MV

Add the top left field block MV of the current MB to the set of

candidate motion vector.

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom right block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Add the top field MV of B to the set of

 candidate motion vector.

 } else if (B is 4 Field MV) {

 Add the top right field block MV of B to the set of

 candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Add the top field MV of C to the set of

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 164

 candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Add the top left field block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the top right field block MV of C to the set of

 candidate motion vector.

 }

 }

}

The following pseudocode is used to collect the (possibly) three candidate motion vectors for the bottom left field block
MV:

// Bottom Left Field Block MV

if (A exists and A is not intra coded) {

 if (A is 1 MV) {

 Add MV of A to the set of candidate motion vector.

 } else if (A is 4 Frame MV) {

 Add the bottom right block MV of A to the set of

 candidate motion vector.

 } else if (A is 2 Field MV) {

 Add the bottom field MV of A to the set of

 candidate motion vector.

 } else if (A is 4 Field MV) {

 Add the bottom right field block MV of A to the set of

 candidate motion vector.

 }

}

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom left block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Add the bottom field MV of B to the set of

 candidate motion vector.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 165

 } else if (B is 4 Field MV) {

 Add the bottom left field block MV of B to the set of

 candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Add the bottom field MV of C to the set of

 candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Add the bottom left field block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right field block MV of C to the set

of candidate motion vector.

 }

 }

}

The following pseudocode is used to collect the (possibly) three candidate motion vectors for the bottom right field
block MV:

// Bottom Right Field Block MV

Add the bottom left field block MV of the current MB to the set of
candidate motion vector.

if (B exists and B is not intra coded) {

 if (B is 1 MV) {

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 166

 Add MV of B to the set of candidate motion vector.

 } else if (B is 4 Frame MV) {

 Add the bottom right block MV of B to the set of

 candidate motion vector.

 } else if (B is 2 Field MV) {

 Add the bottom field MV of B to the set of

 candidate motion vector.

 } else if (B is 4 Field MV) {

 Add the bottom right field block MV of B to the set of

 candidate motion vector.

 }

}

if (C exists and C is not intra coded) {

 if (C is 1 MV) {

 Add MV of C to the set of candidate motion vector.

 } else if (C is 4 Frame MV) {

 if (C is top right MB) {

 Add the bottom left block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right block MV of C to the set of

 candidate motion vector.

 }

 } else if (C is 2 Field MV) {

 Add the top field MV of C to the set of

 candidate motion vector.

 } else if (C is 4 Field MV) {

 if (C is top right MB) {

 Add the bottom left field block MV of C to the set of

 candidate motion vector.

 } else { // C is top left MB

 Add the bottom right field block MV of C to the set

of candidate motion vector.

 }

 }

}

10.7.2.4.5 Average Field Motion Vectors

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 167

Given two field motion vectors (MVX1, MVY1) and (MVX2, MVY2), the average operation used to form a candidate
motion vector (MVXA, MVYA) is:

MVXA = (MVX1 + MVX2 + 1) >> 1;

MVYA = (MVY1 + MVY2 + 1) >> 1;

10.7.2.4.6 Computing Frame MV predictor(s) from Candidate Motion Vectors

This section describes how we compute the MV predictor for frame MVs given the set of candidate motion vectors.
The operation is the same for computing the predictor for 1 MV or for each one of the four frame block MVs (4 MV
Frame).

Let TotalValidMV denote the total number of motion vector(s) in the set of candidate motion vectors (TotalValidMV
= 0, 1, 2, or 3).

Let ValidMV array denote the motion vector in the set of candidate motion vectors.

The following pseudocode describes how the MV predictor (PMVx, PMVy) is computed:

if (TotalValidMV >= 2) {

 // Note that if there are only two valid MVs, then the

 // third ValidMV is set to be (0, 0)

 PMVx = median3 (ValidMVx [0], ValidMVx [1], ValidMVx [2]);

 PMVy = median3 (ValidMVy [0], ValidMVy [1], ValidMVy [2]);

} else if (TotalValidMV is 1) {

 PMVx = ValidMVx [0];

 PMVy = ValidMVy [0];

} else {

 PMVx = 0;

 PMVy = 0;

}

10.7.2.4.7 Computing Field MV predictor(s) from Candidate Motion Vectors

This section describes how we compute the MV predictor(s) for field MVs given the set of candidate motion vectors.
The operation is the same for computing the predictor for each of the two field MVs or for each one of the four field
block MVs (4 MV Frame).

First, the candidate motion vectors are separated into two sets, where one set contains only motion vectors that point to
the same field as the current field and the other set contains motion vectors that point to the opposite field. Assuming
that the motion vectors are represented in quarter pixel units, then we may check whether a candidate motion vector
points to the same field by the following check on its y component:

if (ValidMVy & 4) {

 ValidMV points to the opposite field.

} else {

 ValidMV points to the same field.

}

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 168

Let SameFieldMV, OppFieldMV denote the two sets and let NumSameFieldMV and NumOppFieldMV denote the
number of motion vectors that belongs to each set. The following pseudocode describes how the MV predictor
(PMVx, PMVy) is computed:

if (TotalValidMV == 3) {

 if (NumSameFieldMV == 3 || NumOppFieldMV == 3) {

 PMVx = median3 (ValidMVx [0], ValidMVx [1],

 ValidMVx [2]);

 PMVy = median3 (ValidMVy [0], ValidMVy [1],

 ValidMVy [2]);

 } else if (NumSameFieldMV >= NumOppFieldMV) {

 PMVx = SameFieldMVx [0];

 PMVy = SameFieldMVy [0];

 } else {

 PMVx = OppFieldMVx [0];

 PMVy = OppFieldMVy [0];

 }

} else if (TotalValidMV == 2) {

 if (NumSameFieldMV >= NumOppFieldMV) {

 PMVx = SameFieldMVx [0];

 PMVy = SameFieldMVy [0];

 } else {

 PMVx = OppFieldMVx [0];

 PMVy = OppFieldMVy [0];

 }

} else if (TotalValidMV == 1) {

 PMVx = ValidMVx [0];

 PMVy = ValidMVy [0];

} else {

 PMVx = 0;

 PMVy = 0;

}

10.7.2.5 Decoding Motion Vector Differential

The MVDATA syntax elements contain motion vector differential information for the macroblock. Depending on the
type of motion compensation and motion vector block pattern signaled at each macroblock, there may be 0 up to 4
MVDATA syntax elements per macroblock. More specifically,

• For 1 MV macroblocks, there may be either 0 or 1 MVDATA syntax element present depending on the
MVP field in MBMODE.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 169

• For 2 Field MV macroblocks, there may be either 0, 1, or 2 MVDATA syntax element(s) present depending
on 2MVBP.

• For 4 Frame / Field MV macroblocks, there may be either 0, 1, 2, 3, or 4 MVDATA syntax element(s)
present depending on 4MVBP.

The motion vector differential is decoded the same way as one reference field motion vector differential for field P
picture described in section 10.3.4.5.2.1 with no halfpel mode.

10.7.2.6 Reconstructing Motion Vectors

Given the motion vecotor differential dmv, the luminance motion vector is reconstructed by adding the differential to
the predictor as follows:

mv_x = (dmv_x + predictor_x) smod range_x

mv_y = (dmv_y + predictor_y) smod range_y

The modulus operation “smod” is a signed modulus, defined as follows:

A smod b = ((A + b) & (2 b – 1)) - b

ensures that the reconstructed vectors are valid. (A smod b) lies within –b and b – 1. range_x and range_y depend
on MVRANGE and are specified in Table 66.

Given a luma frame or field motion vector, a corresponding chroma frame or field motion vector is derived to
compensate a portion (could be the entire portion) of the Cb/Cr block. The FASTUVMC syntax element is ignored in
interlace frame P, B pictures. The following pseudocode describes how a chroma motion vector CMV is derived from
a luma motion vector LMV:

Int s_RndTbl [] = {0, 0, 0, 1};

Int s_RndTblField [] = {0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12};

CMVX = (LMVX + s_RndTbl[LMVX & 3]) >> 1;

if (LMV is a field motion vector) {

CMVY = (LMVY >> 4)*8 + s_RndTblField [LMVY & 0xF];

 } else {

 CMVY = (LMVY + s_RndTbl[LMVY & 3]) >> 1;

 }

10.7.3 Block Layer Decode

If the current macroblock is intra-coded, then the block layer is equivalent to decoding of an macroblock in interlace
frame I pictures as described in section 10.5.2.

If the current macroblock is inter-coded, then the block layer consists of decoding the residual after motion
compensation and the process is the same as described in section 10.3.5.2.

10.8 Interlace Frame B Picture Decoding
Interlace frame B picture decoding is very similar to interlace P picture decoding in terms of bitstream syntax. We will
focus here on the differences in bitstream and decoding steps, and omit the elements that are identical, for the sake of
brevity. The additional elements are: a) the BFRACTION at the picture level that tells us how to scale the direct mode
MVs; b) the DIRECTMB bit plane coding that is sent at the picture layer for direct/non-direct MB’s; c) the
DIRECTBIT bit at the MB level in the case where the direct mode bit plane is coded raw; d) the BMVTYPE VLC at
the MB level that indicates if the MB is forward, backward or interpolated; and e) one bit (MVSW) at the MB level if

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 170

we are in field mode and BMVTYPE is forward or backward, to indicate if we are going to switch mode from forward
to backward (or backward to forward) in going from the top to the bottom field’s MV.

As with B frame MV decoding in progressive and field coding, we maintain 2 buffers, one each for forward and
backward motion, and use the rule “forward predicts forward, backward predicts backward”. MV prediction follows
similar logic as frame P pictures, but we retain forward and backward contexts separately. We also fill in the “holes”
e.g. when backward, we fill in the forward buffer’s MV with what would be the predicted MV.

10.8.1 B Macroblock Layer Decode

At the MB level, the B frame syntax is also similar to P frame MB (e.g see Figure 84 and Figure 85). We will once
again focus on describing the deltas and avoid repeating the elements that remain the same.

10.8.1.1 Direct Bit

If the picture-level syntax element DIRECTMB is coded in raw mode, then the direct bit shall be used to signal
direct/non-direct at the MB level.

10.8.1.2 BMV Type

In case the MB mode is not direct, we send additional bits in BMVTYPE to signal if the B-MB is forward, backward
or interpolated. BMVTYPE is a variable sized syntax element present in B frame macroblocks that indicates whether
the macroblock uses forward, backward or interpolated prediction. As Table 46 shows, the value of BFRACTION in
the picture header along with BMVTYPE determine whether forward or backward prediction are indicated.

10.8.1.3 Field level MV Switch (MVSW)

If the MB is forward or backward AND the MB is “field” type, then we send an additional bit to signal if we are going
to switch from forward to backward (or backward to forward) in going from the top to the bottom field’s MV.

10.8.1.4 B Frame Modes

Macro blocks in B frames are identified as belonging to one of four modes, viz. backward, forward, direct and
interpolated. Additionally, in frame mode B pictures we have the ability to switch from backward to forward or
forward to backward at the field level – this applies to field mode MB’s. The forward mode is akin to conventional P
picture prediction. In the forward mode, the B macro block is interpolated from its temporally previous anchor frame.
Likewise, backward mode macro blocks are entirely interpolated from their temporally subsequent anchor frame.

Direct mode and interpolated modes are implemented according to the description in 8.4.3.2.

The interpolation processes (e.g. bicubic, bilinear, quarter or half pel) are signaled and implemented exactly the same
way as with frame P pictures.

10.8.1.5 Skipped MB’s

Skipped MB’s in interlace frame coded B frames are constrained to always use 1 MV mode (i.e. not field coded). So
there may only be 1 MV for forward and backward, and 2 for direct and interpolated.

10.8.1.6 Motion Vector Prediction in Frame B Pictures

MV prediction for frame B pictures follows exactly the same rules as with frame P, and will not be repeated here. The
only additional point to note is that two separate MV buffers are kept for forward and backward MV’s, and the MV
prediction rules are applied on each of these while decoding an MV of the like type, i.e. forward MV’s are used to
predict an incoming forward MV, and backward MV’s are used to predict an incoming backward MV. In the
interpolated mode we use both forward and backward prediction to predict the two incoming MV’s, and in the direct
mode we scale the next field P’s collocated MV. If an MB is "skipped", the MB mode shall be signaled to identify
whether the "skipped" MB uses direct, forward, backward or interpolated prediction. Skipping in the context of B
frames shall imply that the MV prediction error is zero, i.e. decoding is performed as usual (treating each mode with
the appropriate decoding rules), and the predicted MV's will be exactly the ones we use.

The scheme for frame B MV prediction is as follows –

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 171

1) If the MB is forward predicted, then median predict its MV from the neighborhood of the “forward
MV buffer”. Store the forward MV (after adding the prediction error) in the forward buffer, and the
backward predicted MV in the backward buffer. If we are in field mode and MVSW = 1, i.e. we
switch from forward to backward mode in going from the top to the bottom field, then we fill in the
forward MV into both the top and bottom MV “slots” of the forward MV buffer, and the backward
MV into both the top and bottom MV slots of the backward buffer, i.e. although the forward MV is
being sent only for the top field, we fill in the same MV into both top and bottom field MV slots for
the forward MV buffer, and although the backward MV is being sent only for the bottom field, we
insert it into both top and bottom field slots of the backward MV buffer.

2) If the MB is backward predicted, then median predict its MV from the neighborhood of the
“backward MV buffer”. Store the backward MV (after adding the prediction error) in the backward
buffer, and the forward predicted MV in the forward buffer. If we are in field mode and MVSW = 1,
i.e. we switch from backward to forward mode in going from the top to the bottom field, then we fill
in the forward MV into both the top and bottom MV “slots” of the forward MV buffer, and the
backward MV into both the top and bottom MV slots of the backward buffer, i.e. although the
backward MV is being sent only for the top field, we fill in the same MV into both top and bottom
field MV slots for the backward MV buffer, and although the forward MV is being sent only for the
top field, we insert it into both top and bottom field slots of the backward MV buffer.

3) If the MB is interpolated, then use the forward MV buffer to predict the forward component, the
backward buffer to predict the backward component, and store the forward and backward MVs (after
adding the two sets of prediction errors), once these have been calculated, in the forward and
backward MV buffers respectively.

4) If the MB is direct predicted, we compute the direct mode MVs as follows -

For a basic description and for pseudo-code of how the direct mode scales MVs, please refer to section 8.4.3.2. Here
are some differences for interlaced B frame’s direct mode decoding –

In frame interlaced coding (advanced profile), we buffer ALL the decoded luma MV's from the future P frame, i.e. all
4 * NumberOfMB's MV's. Each interlaced P-frame MB has four possible MV slots, where a slot is a buffer which may
hold the X and Y components of the motion vector. If the MB is 1 MV then all 4 will have the same MV. If 2 MV
then the two "top field" slots will have the same MV, and the "bottom field" slots will have another MV. If 4MV
frame/field, then all 4 slots will have different MV's. Now when we get a B frame, we will generate different numbers
of (forward/backward) MV pairs depending NOT on how the co-located MB was coded, but on how the current B's
MB is being coded, i.e. if the direct mode MB is 1 MV coded then we will simply take MV from the top-left slot (and
generate 1 pair of direct MV's), if it is field coded then we take the top-left and bottom-left and generate 2 pairs, one
for each field and so on.In frame interlaced B frames, the direct mode computes 2 MV's in each direction, one for each
field if the MB is field coded. Otherwise we have 1 MV in each direction (if the MB is frame-coded). Important note -
when we say "if the MB is field coded" we are talking about the B frame's MB, and not the co-located MB from the
future P picture. As with progressive and field mode, all direct mode MV’s (motion vectors) are treated as (0, 0) when
the co-located macroblock (of the next anchor frame) is INTRA. This is also true when the previously decoded frame
(i.e. the temporally "next" anchor frame) is an I-frame.

Also, in interlaced B frames, there shall be no calculation of direct mode MV’s for macroblocks (MB’s) that are not
using the direct mode prediction (e.g. forward or backward). They are predicted based on the forward or backward MV
buffer from the current (B) field/frame, plus the rules of predicting motion vectors as defined with P frames. Here's a
simple example to make this clearer. Say we are decoding MB:(12,13) and it is forward predicted. Then its forward
MV residual is explicitly sent in the bitstream. We decode this and insert it in the buffer of forward MV's (after adding
to the predicted MV). We then take the backward MV buffer and use MV prediction logic to fill in the MV at position
(12, 13) - e.g. if the prediction rule is a simple median of 3 neighbors, then we may take the median of backward MV's
from (11, 13), (12, 12) and (13, 12) to fill in the backward MV for (12, 13).

10.8.2 B Block Layer Decode

Block decoding syntax and operations are the same as for P pictures and will not be repeated. I-MB’s in B frames are
also the same as those in P frames.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 172

10.9 Overlapped Transform
If the sequence layer syntax element OVERLAP is set to 1, then a filtering operation is conditionally performed across
edges of two neighboring Intra blocks, for both the luminance and chrominance channels. This filtering operation
(referred to as overlap smoothing) is performed subsequent to decoding the frame, and prior to in-loop deblocking.
However, overlap smoothing may be done after the relevant macroblock slices are decoded as this is functionally
equivalent to smoothing after decoding the entire frame.

Overlapped transforms are modified block based transforms that exchange information across the block boundary.
With a well designed overlapped transform, blocking artifacts may be minimized. For intra blocks, VC-9 simulates
an overlapped transform by coupling an 8x8 DCT-like block transform with overlap smoothing. Edges of an 8x8
block that separate two intra blocks are smoothed – in effect an overlapped transform is implemented at this interface.

Figure 100 shows a portion of a P frame with I blocks. This could be either the Y or U/V channel. I blocks are gray
(or crosshatched) and P blocks are white. The edge interface over which overlap smoothing is applied is marked with
a crosshatch pattern. Overlap smoothing is applied to two pixels on either side of the separating boundary. The
right bottom area of frame is shown here as an example. Pixels occupy individual cells and blocks are separated by
heavy lines. The dark circle marks the 2x2 pixel corner subblock that is filtered in both directions.

The lower inset in Figure 100 shows four labeled pixels, a0 and a1 are to the left and b1, b0 to the right of the
vertical block edge. The upper inset shows pixels marked p0, p1, q1 and q0 straddling a horizontal edge. The next
section describes the filter applied to these four pixel locations.

a0 a1 b1 b0

p0

p1

q1

q0

Figure 100: Example showing overlap smoothing

10.9.1 Overlap Smoothing

The overlap smoothing in interlace field pictures is identical to the overlap smoothing for progressive I-frames in
advanced profile, and is described in Section 8.5.2.

10.9.2 Overlap Smoothing for Interlace Frame Pictures

The overlap smoothing process in interlace frame pictures is the same as the above description with the exception that
only the vertical edges between I blocks are filtered and no horizontal block boundaries are filtered. The conditional
overlap smoothing applies only to interlace frame I picture. The vertical edges between two horizontally adjacent
macroblocks is smoothed if and only if both macroblocks have their respective OVERFLAG bits set to 1, or the entire
frame is enabled for overlap filtering implicitly (based on PQUANT) or explicitly (based on CONDOVER).

10.10 In-loop Deblock Filtering
If the sequence layer syntax element LOOPFILTER = 1, then a filtering operation is performed on each reconstructed
frame. This filtering operation is performed prior to using the reconstructed frame as a reference for motion predictive
coding. Therefore, it is necessary that the decoder perform the filtering operation strictly as defined.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 173

Since the intent of loop filtering is to smooth out the discontinuities at block boundaries, the filtering process operates
on the pixels that border neighboring blocks. For P pictures, the block boundaries may occur at every 4th, 8th, 12th, etc
pixel row or column, depending on whether an 8x8, 8x4, 4x8 or 4x4 Inverse Transform is used. For I pictures filtering
occurs at every 8th, 16th, 24th, etc pixel row and column.

10.10.1 I Field Picture In-loop Deblocking

For I pictures, deblock filtering is performed at all 8x8 block boundaries. Figure 59 and Figure 60 show the pixels that
are filtered along the horizontal and vertical border regions. The figures show the upper left corner of a component
(luma, Cb or Cr) plane. The crosses represent pixels and the circled crosses represent the pixels that are filtered.

Figure 101: Filtered horizontal block boundary pixels in I picture

Figure 102: Filtered vertical block boundary pixels in I picture

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 174

As the figures show, the top horizontal line and first vertical line are not filtered. Although not depicted, the bottom
horizontal line and last vertical line are also not filtered. In more formal terms, the following lines are filtered:

N = the number of horizontal 8x8 blocks in the plane (N*8 = horizontal frame size)

M = the number of vertical 8x8 blocks in the frame (M*8 = vertical frame size)

Horizontal lines (7,8), (15,16) … ((N – 1)*8 – 1, (N –1)*8) are filtered

Vertical lines (7, 8), (15, 16) … ((M-1)*8 - 1, (M – 1)*8) are filtered

The order in which the pixels are filtered is important. All the horizontal boundary lines in the frame are filtered first
followed by the vertical boundary lines.

10.10.2 P Field Picture In-loop Deblocking

Section 8.6.2 describes in-loop deblocking of P pictures and section 8.6.4 describes the filtering process. Note that the
boundary between a block or subblock and a neighbouring block or subblock is not filtered if both have the same
motion vector (same X and Y component as well as the same reference field), and both have no residual error.
Otherwise, it is filtered.

10.10.3 B Field Picture In-loop Deblocking

This is exactly the same as P field pictures (and therefore progressive deblocking for P frames), with one important
difference, which is that we do not use the motion vectors (and the presence of transform coefficients) in any
loopfiltering decisions, i.e. the following criterion is not applied to B field pictures -

“The boundary between a block or subblock and a neighboring block or subblock is not filtered if both have the same
motion vector and both have no residual error (no Transform coefficients). Otherwise it is filtered.”

10.10.4 Interlace Frame Pictures In-loop Deblocking

In interlace frame pictures, each macroblock may be frame transform coded or field transform coded according to its
FIELDTX flag. The state of the FIELDTX flag along with the size of the transform (4x4, 4x8, 8x4, 8x8) used has an
effect on where the in-loop deblocking takes place in the macroblock.

10.10.4.1 Field-based Filtering

The filtering process is the same as described in section 8.6.4 with one important difference, the filtering is always
done using the same field lines, never mixing different field. Figure 103 illustrates the field-based filtering for
horizontal and vertical block boundaries.

For a horizontal block boundary, we filter the two top field lines across the block boundary using top field lines only
and the two bottom field lines across the block boundary using bottom field lines only. For a vertical block boundary,
we filter the top field block boundary and the bottom field block boundary separately.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 175

Figure 103: Field based horizontal / vertical block boundaries filtering

10.10.4.2 Filtering order

For both inter (P, B) and intra (I) frame picture, the in-loop deblocking process starts by processing all the horizontals
edges first followed by all the vertical edges. The horizontal edges are processed a macroblock at a time following the
raster scan order. Similarly, the vertical edges are processed a macroblock at a time following the raster scan order.
The following pseudocode decribes this filtering process one macroblock at a time for the sake of simplicity, but
alternate valid implementations of the filtering process may not follow this macroblock processing order. The only
requirement is that multiple filtering operations on the same pixels shall follow the same filtering order as that given
in the following pseudo-code:

// Processing horizontal edges

for (Y = 0; Y < number of MBs in a MB row; Y++) {

 for (X = 0; X < number of MBs in a MB col; X++) {

 Filter horizontal edges of MB located at Yth row, Xth col

 }

}

// Processing vertical edges

for (Y = 0; Y < number of MBs in a MB row; Y++) {

 for (X = 0; X < number of MBs in a MB col; X++) {

 Filter vertical edges of MB located at Yth row, Xth col

 }

}

10.10.4.3 Interlace Frame I Picture

In interlace frame I picture, each macroblock is 8x8 transform coded.

For each macroblock, the horizontal block boundary filtering starts by filtering the intra-macroblock horizontal
boundary only if the current macroblock is frame transform coded. Next, the horizontal block boundary between the
current macroblock and the macroblock directly below it (if available) is filtered. The following pseudocode describes
the process of horizontal filtering a macroblock:

// Horizontal filtering of MB

// Luminance

if (FIELDTX of current MB is FALSE) {

 - Filter all 16 pixels in row 6 and 8 of Y.

 - Filter all 16 pixels in row 7 and 9 of Y.

}

- Filter all 16 pixels in row 14 and 16 of Y.

- Filter all 16 pixels in row 15 and 17 of Y.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 176

// Chrominance

- Filter all 8 pixels in row 6 and 8 of Cb and Cr.

- Filter all 8 pixels in row 7 and 9 of Cb and Cr.

For each macroblock, the vertical block boundary filtering starts by filtering the intra-macroblock vertical boundary
and then followed by the filtering of the inter-macroblock boundary between the current macroblock and the
macroblock to its immediate right (if available). The following pseudocode describes the process of the vertical
filtering a macroblock:

// Vertical filtering of MB

// Luminance

- Filter the 8 even numbered pixels in column 7 and 8 of Y.

- Filter the 8 odd numbered pixels in column 7 and 8 of Y.

- Filter the 8 even numbered pixels in column 15 and 16 of Y.

- Filter the 8 odd numbered pixels in column 16 and 16 of Y.

// Chrominance

- Filter the 4 even numbered pixels in column 7 and 8 of U.

- Filter the 4 odd numbered pixels in column 7 and 8 of U.

- Filter the 4 even numbered pixels in column 7 and 8 of V.

- Filter the 4 odd numbered pixels in column 7 and 8 of V.

10.10.4.4 Interlace Frame P, B Picture

In interlace frame P, B picture, each macroblock may be 4x4, 4x8, 8x4, or 8x8 transform coded.

For each macroblock, the horizontal block boundary filtering occurs in the order of block Y0, Y1, Y2, Y3, U, and then
V. The luminance blocks are processed differently according to FIELDTX. The following pseudocode describes the
process of horizontal filtering a macroblock:

// Horizontal filtering of MB

// Luminance

if (FIELDTX of current MB is FALSE) {

 // Block Y0

 if (current MB is not in the first MB row and the

 transform of Block Y0 is 8x4 or 4x4) {

 - Filter first 8 pixels in row 2 and 4 of Y.

 - Filter first 8 pixels in row 3 and 5 of Y.

 }

 - Filter first 8 pixels in row 6 and 8 of Y.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 177

 - Filter first 8 pixels in row 7 and 9 of Y.

 // Block Y1

 if (current MB is not in the first MB row and the

 transform of Block Y1 is 8x4 or 4x4) {

 - Filter last 8 pixels in row 2 and 4 of Y.

 - Filter last 8 pixels in row 3 and 5 of Y.

 }

 - Filter last 8 pixels in row 6 and 8 of Y.

 - Filter last 8 pixels in row 7 and 9 of Y.

 // Block Y2

 if (current MB is not in the last MB row and the

 transform of Block Y2 is 8x4 or 4x4) {

 - Filter first 8 pixels in row 10 and 12 of Y.

 - Filter first 8 pixels in row 11 and 13 of Y.

 }

 if (current MB is not in the last MB row) {

 - Filter first 8 pixels in row 14 and 16 of Y.

 - Filter first 8 pixels in row 15 and 17 of Y.

 }

 // Block Y3

 if (current MB is not in the last MB row and the

 transform of Block Y3 is 8x4 or 4x4) {

 - Filter last 8 pixels in row 10 and 12 of Y.

 - Filter last 8 pixels in row 11 and 13 of Y.

 }

 if (current MB is not in the last MB row) {

 - Filter last 8 pixels in row 14 and 16 of Y.

 - Filter last 8 pixels in row 15 and 17 of Y.

 }

} else {

 // Block Y0

 if (the transform of Block Y0 is 8x4 or 4x4) {

 - Filter first 8 pixels in row 6 and 8 of Y.

 }

 if (current MB is not in the last MB row) {

 - Filter first 8 pixels in row 14 and 16 of Y.

 }

 // Block Y1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 178

 if (the transform of Block Y1 is 8x4 or 4x4) {

 - Filter last 8 pixels in row 6 and 8 of Y.

 }

 if (current MB is not in the last MB row) {

 - Filter last 8 pixels in row 14 and 16 of Y.

 }

 // Block Y2

 if (the transform of Block Y2 is 8x4 or 4x4) {

 - Filter first 8 pixels in row 7 and 9 of Y.

 }

 if (current MB is not in the last MB row) {

 - Filter first 8 pixels in row 15 and 17 of Y.

 }

 // Block Y3

 if (the transform of Block Y3 is 8x4 or 4x4) {

 - Filter last 8 pixels in row 7 and 9 of Y.

 }

 if (current MB is not in the last MB row) {

 - Filter last 8 pixels in row 15 and 17 of Y.

 }

}

// Chrominance

if (current MB is not in the first or last MB row and the

 transform used for the U block is 8x4 or 4x4) {

 - Filter all 8 pixels in row 2 and 4 of U.

 - Filter all 8 pixels in row 3 and 5 of U.

}

If (current MB is not in the last MB column) {

 - Filter all 8 pixels in row 6 and 8 of U.

 - Filter all 8 pixels in row 7 and 9 of U.

}

if (current MB is not in the first or last MB row and the

 transform used for the V block is 8x4 or 4x4) {

 - Filter all 8 pixels in row 2 and 4 of V.

 - Filter all 8 pixels in row 3 and 5 of V.

}

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 179

If (current MB is not in the last MB column) {

 - Filter all 8 pixels in row 6 and 8 of V.

 - Filter all 8 pixels in row 7 and 9 of V.

}

Similarly, for each macroblock, the vertical block boundary filtering occurs in the order of block Y0, Y1, Y2, Y3, U,
and then V. The luminance blocks are processed differently according to FIELDTX. The following pseudocode
describes the process of vertical filtering a macroblock:

// Vertical filtering of MB

// Luminance

if (FIELDTX of current MB is FALSE) {

 // Block Y0

 if (the transform of Block Y0 is 4x8 or 4x4) {

 - Filter the 4 even numbered pixels of the

 first 8 pixels in column 3 and 4 of Y.

 - Filter the 4 odd numbered pixels of the

 first 8 pixels in column 3 and 4 of Y.

 }

 - Filter the 4 even numbered pixels of the

 first 8 pixels in column 7 and 8 of Y.

 - Filter the 4 odd numbered pixels of the

 first 8 pixels in column 7 and 8 of Y.

 // Block Y1

 if (the transform of Block Y1 is 4x8 or 4x4) {

 - Filter the 4 even numbered pixels of the

 first 8 pixels in column 11 and 12 of Y.

 - Filter the 4 odd numbered pixels of the

 first 8 pixels in column 11 and 12 of Y.

 }

 if (current MB is not in the last MB column) {

 - Filter the 4 even numbered pixels of the

 first 8 pixels in column 15 and 16 of Y.

 - Filter the 4 odd numbered pixels of the

 first 8 pixels in column 15 and 16 of Y.

 }

 // Block Y2

 if (the transform of Block Y2 is 4x8 or 4x4) {

 - Filter the 4 even numbered pixels of the

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 180

 last 8 pixels in column 3 and 4 of Y.

 - Filter the 4 odd numbered pixels of the

 last 8 pixels in column 3 and 4 of Y.

 }

 - Filter the 4 even numbered pixels of the

 last 8 pixels in column 7 and 8 of Y.

 - Filter the 4 odd numbered pixels of the

 last 8 pixels in column 7 and 8 of Y.

 // Block Y3

 if (the transform of Block Y3 is 4x8 or 4x4) {

 - Filter the 4 even numbered pixels of the

 last 8 pixels in column 11 and 12 of Y.

 - Filter the 4 odd numbered pixels of the

 last 8 pixels in column 11 and 12 of Y.

 }

 if (current MB is not in the last MB column) {

 - Filter the 4 even numbered pixels of the

 last 8 pixels in column 15 and 16 of Y.

 - Filter the 4 odd numbered pixels of the

 last 8 pixels in column 15 and 16 of Y.

 }

} else {

 // Block Y0

 if (the transform of Block Y0 is 4x8 or 4x4) {

 - Filter the 8 even numbered pixels

 in column 3 and 4 of Y.

 }

 - Filter the 8 even numbered pixels in column 7 and 8 of Y.

 // Block Y1

 if (the transform of Block Y1 is 4x8 or 4x4) {

 - Filter the 8 even numbered pixels

 in column 11 and 12 of Y.

 }

 if (current MB is not in the last MB column) {

 - Filter the 8 even numbered pixels

 in column 15 and 16 of Y.

 }

 // Block Y2

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 181

 if (the transform of Block Y2 is 4x8 or 4x4) {

 - Filter the 8 odd numbered pixels

 in column 3 and 4 of Y.

 }

 - Filter the 8 odd numbered pixels in column 7 and 8 of Y.

 // Block Y3

 if (the transform of Block Y3 is 4x8 or 4x4) {

 - Filter the 8 odd numbered pixels

 in column 11 and 12 of Y.

 }

 if (current MB is not in the last MB column) {

 - Filter the 8 odd numbered pixels

 in column 15 and 16 of Y.

 }

}

 // Chrominance

 if (the transform of U Block is 4x8 or 4x4) {

 - Filter the 4 even numbered pixels

 in column 3 and 4 of U.

 - Filter the 4 odd numbered pixels

 in column 3 and 4 of U.

 }

 if (current MB is not in the last MB column) {

 - Filter the 4 even numbered pixels

 in column 7 and 8 of U.

 - Filter the 4 odd numbered pixels

 in column 7 and 8 of U.

 }

 if (the transform of V Block is 4x8 or 4x4) {

 - Filter the 4 even numbered pixels

 in column 3 and 4 of V.

 - Filter the 4 odd numbered pixels

 in column 3 and 4 of V.

 }

 if (current MB is not in the last MB column) {

 - Filter the 4 even numbered pixels

 in column 7 and 8 of V.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 182

 - Filter the 4 odd numbered pixels

 in column 7 and 8 of V.

 }

11 Tables

11.1 Interlace Pictures MV Block Pattern VLC Tables

11.1.1 4MV Block Pattern Tables

Table 106: 4MV Block Pattern Table 0

4MV
Coded
Pattern

VLC
Codeword

VLC
Codeword

Size

0 14 5
1 58 6
2 59 6
3 25 5
4 12 5
5 26 5
6 15 5
7 15 4
8 13 5
9 24 5

10 27 5
11 0 3
12 28 5
13 1 3
14 2 3
15 2 2

Table 107: 4MV Block Pattern Table 1

4MV
Coded
Pattern

VLC
Codeword

VLC
Codeword

Size

0 8 4
1 18 5
2 19 5
3 4 4
4 20 5
5 5 4
6 30 5
7 11 4
8 21 5
9 31 5

10 6 4
11 12 4

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 183

12 7 4
13 13 4
14 14 4
15 0 2

Table 108: 4MV Block Pattern Table 2

4MV
Coded
Pattern

VLC
Codeword

VLC
Codeword

Size

0 15 4
1 6 4
2 7 4
3 2 4
4 8 4
5 3 4
6 28 5
7 9 4
8 10 4
9 29 5

10 4 4
11 11 4
12 5 4
13 12 4
14 13 4
15 0 3

Table 109: 4MV Block Pattern Table 3

4MV
Coded
Pattern

VLC
Codeword

VLC
Codeword

Size

0 0 2
1 11 4
2 12 4
3 4 4
4 13 4
5 5 4
6 30 5
7 16 5
8 14 4
9 31 5

10 6 4
11 17 5
12 7 4
13 18 5
14 19 5
15 10 4

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 184

11.1.2 2MV Block Pattern Tables

Table 110: Interlace Frame 2 MVP Block Pattern Table 0

Top Bottom VLC
Codeword

VLC
Size

0 0 2 2

0 1 1 2

1 0 0 2

1 1 3 2

Table 111: Interlace Frame 2 MVP Block Pattern Table 1

Top Bottom VLC
Codeword

VLC
Size

0 0 1 1

0 1 0 2

1 0 2 3

1 1 3 3

Table 112: Interlace Frame 2 MVP Block Pattern Table 2

Top Bottom VLC
Codeword

VLC
Size

0 0 2 3

0 1 0 2

1 0 3 3

1 1 1 1

Table 113: Interlace Frame 2 MVP Block Pattern Table 3

Top Bottom VLC
Codeword

VLC
Size

0 0 1 1

0 1 3 3

1 0 2 3

1 1 0 2

11.2 Interlace CBPCY VLC Tables

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 185

Table 114: Interlaced CBPCY Table 0

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

1 12058 15 33 686 11
2 12059 15 34 687 11
3 6028 14 35 1506 12
4 144 9 36 310 10
5 680 11 37 622 11
6 681 11 38 623 11
7 3015 13 39 765 11
8 145 9 40 158 9
9 682 11 41 318 10
10 683 11 42 319 10
11 1504 12 43 383 10
12 74 8 44 80 8
13 150 9 45 66 8
14 151 9 46 67 8
15 189 9 47 44 7
16 146 9 48 81 8
17 684 11 49 164 9
18 685 11 50 165 9
19 1505 12 51 190 9
20 152 9 52 83 8
21 306 10 53 68 8
22 307 10 54 69 8
23 377 10 55 45 7
24 308 10 56 84 8
25 618 11 57 70 8
26 619 11 58 71 8
27 764 11 59 46 7
28 78 8 60 3 3
29 64 8 61 0 3
30 65 8 62 1 3
31 43 7 63 1 1
32 147 9

Table 115: Interlaced CBPCY Table 1

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

1 65 7 33 20 7
2 66 7 34 21 7
3 256 9 35 44 8
4 67 7 36 92 8
5 136 8 37 93 9
6 137 8 38 94 9
7 257 9 39 95 9

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 186

8 69 7 40 38 7
9 140 8 41 93 8
10 141 8 42 94 8
11 258 9 43 95 8
12 16 6 44 13 6
13 34 7 45 52 7
14 35 7 46 53 7
15 36 7 47 27 6
16 71 7 48 20 6
17 16 7 49 39 7
18 17 7 50 42 7
19 259 9 51 43 7
20 37 7 52 14 6
21 88 8 53 56 7
22 89 8 54 57 7
23 90 8 55 29 6
24 91 8 56 15 6
25 90 9 57 60 7
26 91 9 58 61 7
27 92 9 59 31 6
28 12 6 60 5 3
29 48 7 61 9 4
30 49 7 62 0 3
31 25 6 63 3 2
32 9 6

Table 116: Interlaced CBPCY Table 2

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

1 50 6 33 234 8
2 51 6 34 235 8
3 26 5 35 489 9
4 38 6 36 74 7
5 228 8 37 442 9
6 229 8 38 443 9
7 486 9 39 475 9
8 39 6 40 32 6
9 230 8 41 222 8
10 231 8 42 223 8
11 487 9 43 242 8
12 14 5 44 34 6
13 99 7 45 85 7
14 108 7 46 88 7
15 119 7 47 45 6
16 40 6 48 15 5
17 232 8 49 112 7
18 233 8 50 113 7

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 187

19 488 9 51 120 7
20 123 7 52 35 6
21 218 8 53 89 7
22 219 8 54 92 7
23 236 8 55 47 6
24 245 8 56 36 6
25 440 9 57 93 7
26 441 9 58 98 7
27 474 9 59 48 6
28 33 6 60 2 3
29 75 7 61 31 5
30 84 7 62 6 4
31 43 6 63 0 2
32 41 6

Table 117: Interlaced CBPCY Table 3

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

1 40 6 33 499 9
2 41 6 34 500 9
3 157 8 35 501 9
4 0 4 36 17 6
5 490 9 37 978 10
6 491 9 38 979 10
7 492 9 39 305 9
8 1 4 40 9 5
9 493 9 41 350 9
10 494 9 42 351 9
11 495 9 43 156 8
12 5 4 44 16 5
13 240 8 45 168 8
14 241 8 46 169 8
15 59 7 47 56 7
16 2 4 48 6 4
17 496 9 49 242 8
18 497 9 50 243 8
19 498 9 51 77 7
20 63 6 52 17 5
21 348 9 53 170 8
22 349 9 54 171 8
23 153 8 55 57 7
24 16 6 56 18 5
25 976 10 57 172 8
26 977 10 58 173 8
27 304 9 59 58 7
28 15 5 60 6 3
29 158 8 61 22 5
30 159 8 62 23 5

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 188

31 251 8 63 14 4
32 3 4

Table 118: Interlaced CBPCY Table 4

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

1 60 6 33 105 7
2 61 6 34 108 7
3 31 5 35 5 7
4 10 5 36 96 7
5 97 7 37 26 8
6 98 7 38 27 8
7 2 7 39 53 8
8 11 5 40 19 6
9 99 7 41 14 7
10 100 7 42 15 7
11 3 7 43 21 7
12 7 5 44 45 6
13 3 6 45 109 7
14 4 6 46 110 7
15 11 6 47 56 6
16 12 5 48 8 5
17 101 7 49 8 6
18 102 7 50 9 6
19 4 7 51 12 6
20 18 6 52 46 6
21 10 7 53 111 7
22 11 7 54 114 7
23 20 7 55 58 6
24 27 7 56 47 6
25 24 8 57 115 7
26 25 8 58 0 6
27 52 8 59 59 6
28 44 6 60 7 4
29 103 7 61 20 5
30 104 7 62 21 5
31 53 6 63 4 3
32 13 5

Table 119: Interlaced CBPCY Table 5

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

1 56 6 33 154 8
2 57 6 34 155 8
3 157 8 35 156 8

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 189

4 10 4 36 25 6
5 145 8 37 974 10
6 146 8 38 975 10
7 147 8 39 215 9
8 11 4 40 9 5
9 148 8 41 488 9
10 149 8 42 489 9
11 150 8 43 144 8
12 3 4 44 15 5
13 238 8 45 232 8
14 239 8 46 233 8
15 54 7 47 246 8
16 12 4 48 5 4
17 151 8 49 240 8
18 152 8 50 241 8
19 153 8 51 55 7
20 8 5 52 16 5
21 484 9 53 234 8
22 485 9 54 235 8
23 106 8 55 247 8
24 24 6 56 17 5
25 972 10 57 236 8
26 973 10 58 237 8
27 214 9 59 52 7
28 14 5 60 0 3
29 158 8 61 62 6
30 159 8 62 63 6
31 245 8 63 2 4
32 13 4

Table 120: Interlaced CBPCY Table 6

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

1 60 6 33 229 8
2 61 6 34 230 8
3 463 9 35 128 8
4 0 3 36 46 6
5 191 8 37 2021 11
6 224 8 38 2022 11
7 508 9 39 2023 11
8 1 3 40 22 5
9 225 8 41 1012 10
10 226 8 42 1013 10
11 509 9 43 1014 10
12 9 4 44 25 5
13 497 9 45 258 9
14 498 9 46 259 9
15 499 9 47 260 9

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 190

16 2 3 48 10 4
17 227 8 49 500 9
18 228 8 50 501 9
19 510 9 51 502 9
20 17 5 52 26 5
21 1006 10 53 261 9
22 1007 10 54 262 9
23 1008 10 55 263 9
24 33 6 56 27 5
25 2018 11 57 376 9
26 2019 11 58 377 9
27 2020 11 59 462 9
28 24 5 60 29 5
29 1015 10 61 189 8
30 1022 10 62 190 8
31 1023 10 63 496 9
32 3 3

Table 121: Interlaced CBPCY Table 7

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

Coded
Block
Patter

n

VLC
Codeword

VLC
Codeword

Size

1 3 6 33 52 7
2 4 6 34 53 7
3 438 10 35 17 7
4 4 3 36 22 6
5 46 7 37 105 10
6 47 7 38 106 10
7 14 7 39 107 10
8 5 3 40 10 5
9 48 7 41 54 9
10 49 7 42 55 9
11 15 7 43 216 9
12 3 4 44 30 6
13 10 8 45 442 10
14 11 8 46 443 10
15 20 8 47 444 10
16 6 3 48 4 4
17 50 7 49 21 8
18 51 7 50 22 8
19 16 7 51 23 8
20 5 5 52 31 6
21 48 9 53 445 10
22 49 9 54 446 10
23 50 9 55 447 10
24 9 6 56 0 5
25 102 10 57 16 9
26 103 10 58 17 9
27 104 10 59 18 9

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 191

28 29 6 60 28 6
29 439 10 61 217 9
30 440 10 62 218 9
31 441 10 63 19 9
32 7 3

11.3 Interlace MV Tables
Table 122: 2-Field Reference Interlace MV Table 0

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

0
12 4

42
207 10

84
977 11

1
28 5

43
1395 12

85
408 11

2
11 5

44
9 5

86
489 11

3
0 5

45
35 7

87
1309 12

4
14 6

46
237 8

88
180 12

5
42 7

47
24 7

89
63 8

6
80 8

48
6 7

90
1109 12

7
872 10

49
68 8

91
555 11

8
2 2

50
245 9

92
553 11

9
26 5

51
121 9

93
1105 12

10
4 5

52
1746 11

94
1400 12

11
58 6

53
110 7

95
1970 12

12
29 6

54
43 9

96
1392 12

13
108 7

55
349 10

97
341 13

14
239 8

56
23 9

98
50 8

15
444 9

57
895 10

99
976 12

16
351 10

58
324 10

100
84 11

17
15 4

59
206 10

101
1747 11

18
3 5

60
40 10

102
1393 12

19
28 6

61
171 12

103
1108 12

20
13 6

62
16 6

104
820 12

21
11 7

63
437 9

105
7153 13

22
62 8

64
247 9

106
183 12

23
167 9

65
166 9

107
41 9

24
326 10

66
123 9

108
7812 14

25
409 11

67
40 9

109
364 13

26
6 4

68
493 10

110
411 11

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 192

27
31 6

69
489 10

111
7152 13

28
4 6

70
1789 11

112
1401 12

29
60 7

71
4 7

113
3907 13

30
7 7

72
245 10

114
181 12

31
446 9

73
41 10

115
2209 13

32
139 9

74
650 11

116
42 9

33
44 10

75
651 11

117
365 13

34
1971 12

76
655 11

118
2208 13

35
5 5

77
3577 12

119
1952 12

36
219 8

78
821 12

120
977 12

37
86 8

79
7813 14

121
2789 13

38
236 8

80
238 8

122
340 13

39
82 8

81
701 11

123
2788 13

40
445 9

82
43 10

124
2617 13

41
120 9

83
984 11

125
2616 13

Table 123: 2-Field Reference Interlace MV Table 1

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

0
3 3

42
7408 13

84
827 10

1
9 4

43
2881 13

85
697 10

2
22 5

44
50 6

86
1771 11

3
16 6

45
230 8

87
1392 11

4
215 8

46
224 8

88
3620 12

5
821 10

47
207 8

89
925 10

6
1396 11

48
171 8

90
1442 12

7
1365 11

49
412 9

91
1443 12

8
0 2

50
683 10

92
3709 12

9
29 5

51
3627 12

93
1518 11

10
9 5

52
5593 13

94
1849 11

11
23 6

53
111 7

95
1364 11

12
44 7

54
451 9

96
2725 12

13
173 8

55
175 8

97
2724 12

14
884 10

56
191 8

98
887 10

15
1715 11

57
172 8

99
7413 13

16
1399 11

58
381 9

100
3022 12

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 193

17
15 4

59
1763 11

101
3705 12

18
24 5

60
3625 12

102
1632 11

19
10 5

61
6532 13

103
1652 11

20
46 6

62
84 7

104
1770 11

21
34 7

63
181 9

105
3708 12

22
380 9

64
378 9

106
3429 12

23
3707 12

65
429 9

107
758 10

24
7049 13

66
409 9

108
5594 13

25
5592 13

67
376 9

109
7048 13

26
8 4

68
856 10

110
1441 12

27
52 6

69
722 11

111
7412 13

28
109 7

70
7243 13

112
1510 11

29
35 7

71
91 8

113
3624 12

30
450 9

72
680 10

114
1397 11

31
886 10

73
817 10

115
3428 12

32
723 11

74
904 10

116
820 10

33
7242 13

75
907 10

117
13067 14

34
13066 14

76
880 10

118
5595 13

35
20 5

77
1811 11

119
2880 13

36
106 7

78
3267 12

120
3023 12

37
114 7

79
7409 13

121
3525 12

38
108 7

80
441 9

122
3626 12

39
227 8

81
1519 11

123
1653 11

40
411 9

82
1848 11

124
1393 11

41
1855 11

83
754 10

125
1363 11

Table 124: 2-Field Reference Interlace MV Table 2

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

0
4 4

42
244 10

84
4 10

1
2 4

43
1764 12

85
440 10

2
16 5

44
1 5

86
192 9

3
3 5

45
60 8

87
634 10

4
23 6

46
125 8

88
785 11

5
69 7

47
141 8

89
156 8

6
62 8

48
157 8

90
1569 12

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 194

7
126 9

49
49 8

91
409 11

8
3 2

50
110 9

92
796 11

9
2 5

51
662 10

93
247 10

10
40 6

52
205 10

94
995 11

11
30 6

53
37 6

95
854 11

12
21 6

54
329 9

96
393 10

13
71 7

55
50 8

97
5 10

14
2 7

56
137 8

98
107 8

15
333 9

57
54 8

99
2242 12

16
96 9

58
136 8

100
816 12

17
11 4

59
111 9

101
1279 11

18
38 6

60
3 9

102
1264 11

19
36 6

61
797 11

103
849 11

20
20 6

62
14 6

104
1266 11

21
50 7

63
426 10

105
498 10

22
111 8

64
638 10

106
883 11

23
195 9

65
97 9

107
0 8

24
1329 11

66
334 9

108
3137 13

25
1765 12

67
335 9

109
2243 12

26
21 5

68
103 9

110
2540 12

27
63 7

69
255 10

111
994 11

28
45 7

70
387 10

112
772 11

29
1 7

71
54 7

113
1271 11

30
318 9

72
855 11

114
1265 11

31
221 9

73
245 10

115
496 10

32
246 10

74
198 9

116
328 9

33
773 11

75
194 9

117
3136 13

34
817 12

76
665 10

118
2541 12

35
14 5

77
281 9

119
2240 12

36
3 7

78
561 10

120
2241 12

37
52 7

79
848 11

121
1267 11

38
51 7

80
44 7

122
1278 11

39
26 7

81
399 10

123
254 10

40
330 9

82
1328 11

124
499 10

41
197 9

83
663 10

125
425 10

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 195

Table 125: 2-Field Reference Interlace MV Table 3

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

0
0 3

42
16462 15

84
2580 12

1
4 4

43
5175 13

85
699 11

2
47 6

44
43 6

86
401 11

3
82 7

45
133 8

87
2127 12

4
16 7

46
167 8

88
5176 13

5
173 9

47
160 8

89
175 9

6
1291 11

48
332 9

90
2967 12

7
400 11

49
666 10

91
1155 13

8
3 2

50
812 12

92
5179 13

9
22 5

51
8499 14

93
811 12

10
7 5

52
5162 13

94
579 12

11
13 6

53
81 7

95
5163 13

12
187 8

54
644 10

96
2392 14

13
371 9

55
172 9

97
10687 14

14
201 10

56
258 9

98
73 9

15
1295 11

57
69 9

99
2668 12

16
5932 13

58
68 9

100
5339 13

17
3 3

59
2075 12

101
1197 13

18
17 5

60
1630 13

102
5342 13

19
5 5

61
3255 14

103
2126 12

20
67 7

62
24 7

104
5172 13

21
35 8

63
1292 11

105
599 12

22
75 9

64
530 10

106
11866 14

23
814 12

65
740 10

107
519 10

24
11867 14

66
515 10

108
5173 13

25
1154 13

67
148 10

109
5177 13

26
9 4

68
290 11

110
3254 14

27
42 6

69
2074 12

111
5178 13

28
20 6

70
1621 13

112
404 11

29
42 7

71
51 8

113
1620 13

30
264 9

72
698 11

114
8501 14

31
1482 11

73
582 12

115
21372 15

32
1626 13

74
578 12

116
348 10

33
8502 14

75
2670 12

117
576 12

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 196

34
8498 14

76
1036 11

118
4114 13

35
11 5

77
2056 12

119
21373 15

36
19 7

78
8500 14

120
2393 14

37
65 7

79
16463 15

121
4248 13

38
184 8

80
373 9

122
5174 13

39
372 9

81
1029 11

123
1631 13

40
256 9

82
583 12

124
8230 14

41
5338 13

83
298 11

125
8503 14

Table 126: 2-Field Reference Interlace MV Table 4

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

0
5 4

42
966 10

84
295 9

1
25 5

43
1935 11

85
141 9

2
22 5

44
63 6

86
539 10

3
17 5

45
166 8

87
1970 11

4
62 6

46
240 8

88
479 10

5
94 7

47
58 7

89
984 10

6
239 8

48
82 7

90
1892 12

7
226 8

49
78 7

91
3812 12

8
0 2

50
227 8

92
947 11

9
57 6

51
473 9

93
1869 11

10
43 6

52
783 10

94
472 10

11
38 6

53
16 6

95
1500 11

12
40 6

54
477 9

96
2122 12

13
18 6

55
167 8

97
1177 11

14
194 8

56
247 8

98
965 10

15
237 9

57
34 7

99
7566 13

16
285 10

58
146 8

100
1893 12

17
13 4

59
964 10

101
1077 11

18
49 6

60
751 10

102
1905 11

19
42 6

61
1890 11

103
450 10

20
37 6

62
121 7

104
280 10

21
32 6

63
143 9

105
956 11

22
92 7

64
474 9

106
897 11

23
493 9

65
135 8

107
903 11

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 197

24
589 10

66
232 8

108
31539 15

25
1904 11

67
186 8

109
4247 13

26
6 4

68
374 9

110
4246 13

27
122 7

69
238 9

111
7885 13

28
96 7

70
944 10

112
3737 12

29
79 7

71
133 8

113
3868 12

30
72 7

72
281 10

114
3869 12

31
57 7

73
782 10

115
3813 12

32
390 9

74
264 9

116
284 10

33
531 10

75
466 9

117
31538 15

34
3782 12

76
268 9

118
15768 14

35
15 5

77
1907 11

119
7567 13

36
38 7

78
1060 11

120
3736 12

37
95 7

79
1076 11

121
3943 12

38
117 7

80
113 8

122
957 11

39
112 7

81
1501 11

123
896 11

40
39 7

82
449 10

124
1176 11

41
475 9

83
935 10

125
902 11

Table 127: 2-Field Reference Interlace MV Table 5

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

0
13 4

42
1887 11

84
363 9

1
16 5

43
3153 12

85
957 10

2
46 6

44
21 5

86
705 10

3
57 6

45
71 7

87
1580 11

4
13 6

46
238 8

88
7678 13

5
116 7

47
226 8

89
14 7

6
237 8

48
234 8

90
1438 11

7
182 8

49
9 8

91
1471 11

8
1 2

50
362 9

92
218 11

9
2 4

51
707 10

93
1577 11

10
0 5

52
1437 11

94
1412 11

11
48 6

53
61 6

95
3767 12

12
41 6

54
8 8

96
2826 12

13
112 7

55
473 9

97
1645 13

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 198

14
243 8

56
50 8

98
12 7

15
140 8

57
14 8

99
1918 11

16
358 9

58
366 9

100
1436 11

17
9 4

59
812 10

101
1912 11

18
51 6

60
1627 11

102
1886 11

19
120 7

61
6507 13

103
1882 11

20
6 7

62
2 5

104
1581 11

21
196 8

63
15 8

105
823 12

22
11 8

64
472 9

106
820 12

23
355 9

65
141 8

107
407 9

24
204 10

66
180 8

108
7767 13

25
1470 11

67
484 9

109
7652 13

26
31 5

68
103 9

110
6506 13

27
47 6

69
791 10

111
7766 13

28
100 7

70
1940 11

112
3152 12

29
24 7

71
34 6

113
2879 12

30
198 8

72
958 10

114
7764 13

31
10 8

73
789 10

115
2827 12

32
354 9

74
52 9

116
398 9

33
704 10

75
55 9

117
438 12

34
3827 12

76
734 10

118
7765 13

35
7 5

77
108 10

119
3252 12

36
15 7

78
3838 12

120
2878 12

37
227 8

79
1644 13

121
3766 12

38
202 8

80
40 6

122
7653 13

39
178 8

81
971 10

123
7679 13

40
399 9

82
940 10

124
821 12

41
942 10

83
53 9

125
439 12

Table 128: 2-Field Reference Interlace MV Table 6

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

0
1 3

42
717 13

84
346 12

1
11 5

43
1037585 21

85
359 12

2
25 6

44
20 6

86
3531 13

3
111 8

45
173 9

87
1413 14

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 199

4
42 9

46
170 9

88
1037591 21

5
117 10

47
20 8

89
1015 11

6
2027 12

48
168 9

90
16213 15

7
355 12

49
339 10

91
1037592 21

8
1 1

50
232 11

92
3548 13

9
14 5

51
510 12

93
1414 14

10
26 6

52
3535 13

94
16214 15

11
62 7

53
120 8

95
1037593 21

12
28 8

54
440 10

96
16215 15

13
45 9

55
338 10

97
1037594 21

14
356 12

56
254 11

98
442 10

15
2028 12

57
689 11

99
1415 14

16
357 12

58
349 12

100
1416 14

17
4 4

59
352 12

101
3551 13

18
6 6

60
1037586 21

102
690 13

19
54 7

61
1037587 21

103
1037595 21

20
127 8

62
122 8

104
3534 13

21
174 9

63
688 11

105
1014 13

22
344 12

64
485 10

106
1037596 21

23
348 12

65
233 11

107
4052 13

24
1389 14

66
252 11

108
1037597 21

25
1037584 21

67
1766 12

109
1037598 21

26
0 4

68
3528 13

110
1037599 21

27
4 6

69
1412 14

111
518784 20

28
123 8

70
1037588 21

112
518785 20

29
243 9

71
171 9

113
1388 14

30
59 9

72
3550 13

114
518786 20

31
2029 12

73
345 10

115
518787 20

32
691 13

74
1012 11

116
886 11

33
716 13

75
3529 13

117
1417 14

34
1390 14

76
3530 13

118
1418 14

35
24 6

77
506 12

119
518788 20

36
62 9

78
1037589 21

120
518789 20

37
23 8

79
1037590 21

121
3549 13

38
30 8

80
252 9

122
518790 20

39
175 9

81
511 12

123
518791 20

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 200

40
1015 13

82
484 10

124
1419 14

41
1391 14

83
175 11

125
32425 16

Table 129: 2-Field Reference Interlace MV Table 7

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

0
3 2

42
25902 16

84
1608 12

1
14 5

43
214727 20

85
1602 12

2
15 6

44
62 7

86
3206 13

3
126 8

45
57 8

87
3212 13

4
98 9

46
53 8

88
214732 20

5
198 10

47
51 8

89
58 10

6
3289 13

48
415 10

90
6583 14

7
1598 13

49
448 11

91
67 11

8
2 2

50
3290 13

92
807 11

9
2 4

51
214728 20

93
140 12

10
0 5

52
214729 20

94
141 12

11
24 6

53
11 8

95
3213 13

12
12 8

54
208 10

96
214733 20

13
105 9

55
414 10

97
214734 20

14
57 10

56
34 10

98
823 11

15
1799 13

57
56 10

99
3301 13

16
3198 14

58
398 11

100
133 12

17
2 3

59
798 12

101
806 11

18
13 5

60
12948 15

102
839 12

19
27 7

61
572 14

103
3236 13

20
15 8

62
50 8

104
3199 14

21
410 10

63
18 9

105
3354 14

22
1607 12

64
19 9

106
214735 20

23
6711 15

65
113 9

107
808 11

24
214724 20

66
413 10

108
107360 19

25
13421 16

67
32 10

109
107361 19

26
1 4

68
3207 13

110
3288 13

27
30 6

69
3264 13

111
1676 13

28
127 8

70
214730 20

112
12949 15

29
10 8

71
824 11

113
12950 15

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 201

30
225 10

72
1619 12

114
25903 16

31
1633 12

73
418 11

115
26328 16

32
3300 13

74
810 11

116
817 11

33
214725 20

75
802 11

117
1798 13

34
214726 20

76
3303 13

118
573 14

35
29 7

77
132 12

119
118 11

36
48 8

78
287 13

120
3265 13

37
13 8

79
214731 20

121
898 12

38
203 9

80
805 11

122
3302 13

39
409 10

81
1609 12

123
26329 16

40
800 11

82
811 11

124
26330 16

41
142 12

83
119 11

125
26331 16

Table 130: 1-Field Reference Interlace MV Table 0

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

0
5 3

24
502 9

48
105 8

1
12 4

25
500 9

49
506 9

2
30 5

26
57 6

50
479 9

3
18 5

27
127 8

51
503 9

4
12 5

28
39 7

52
112 8

5
52 6

29
106 7

53
477 9

6
117 7

30
113 7

54
3661 13

7
112 7

31
53 7

55
1831 12

8
0 2

32
113 8

56
914 11

9
8 4

33
104 8

57
456 10

10
27 5

34
476 9

58
459 10

11
8 5

35
39 6

59
1016 10

12
29 6

36
115 8

60
430 9

13
124 7

37
255 8

61
504 9

14
214 8

38
232 8

62
507 9

15
478 9

39
233 8

63
58574 17

16
431 9

40
126 8

64
58575 17

17
5 4

41
505 9

65
29280 16

18
27 6

42
501 9

66
29281 16

19
38 6

43
509 9

67
29282 16

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 202

20
30 6

44
62 7

68
29283 16

21
18 6

45
458 10

69
29284 16

22
118 7

46
1017 10

70
29285 16

23
77 8

47
76 8

71
29286 16

Table 131: 1-Field Reference Interlace MV Table 1

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

0
7 3

24
181 9

48
361 10

1
1 3

25
206 11

49
84 10

2
7 4

26
6 4

50
1147 11

3
22 5

27
68 7

51
415 12

4
1 5

28
15 7

52
11133 14

5
69 7

29
70 7

53
142 8

6
24 8

30
14 7

54
2782 12

7
694 10

31
172 8

55
1145 11

8
6 3

32
50 9

56
1390 11

9
4 4

33
55 9

57
2292 12

10
23 5

34
4587 13

58
5567 13

11
16 5

35
10 5

59
1144 11

12
41 6

36
26 8

60
9172 14

13
44 7

37
287 9

61
44529 16

14
346 9

38
22 8

62
22265 15

15
102 10

39
20 8

63
712462 20

16
414 12

40
43 9

64
712463 20

17
9 4

41
360 10

65
356224 19

18
40 6

42
85 10

66
356225 19

19
23 6

43
9173 14

67
356226 19

20
0 5

44
87 7

68
356227 19

21
42 6

45
47 9

69
356228 19

22
4 6

46
54 9

70
356229 19

23
91 8

47
46 9

71
356230 19

Table 132: 1-Field Reference Interlace MV Table 2

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 203

0
2 3

24
51 8

48
1574 11

1
6 4

25
497 9

49
2037 11

2
7 4

26
2 5

50
3147 12

3
13 4

27
1019 10

51
8144 13

4
7 5

28
499 9

52
4173 15

5
48 6

29
34 8

53
101 9

6
255 8

30
508 9

54
3138 12

7
496 9

31
66 9

55
201 10

8
2 2

32
1571 11

56
1575 11

9
0 4

33
131 10

57
3139 12

10
5 5

34
1568 11

58
3146 12

11
25 5

35
125 7

59
4174 15

12
30 5

36
64 9

60
8145 13

13
7 6

37
67 9

61
4175 15

14
99 7

38
996 10

62
1042 13

15
253 8

39
997 10

63
66766 19

16
35 8

40
401 11

64
66767 19

17
14 4

41
4073 12

65
33376 18

18
27 7

42
261 11

66
33377 18

19
26 7

43
520 12

67
33378 18

20
6 6

44
252 8

68
33379 18

21
9 6

45
1572 11

69
33380 18

22
24 7

46
1570 11

70
33381 18

23
197 8

47
400 11

71
33382 18

Table 133: 1-Field Reference Interlace MV Table 3

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

Inde
x

VLC
Codeword

VLC
Size

0
13 4

24
204 8

48
240 8

1
1 4

25
150 8

49
241 8

2
4 4

26
3 4

50
205 8

3
0 4

27
117 7

51
389 9

4
23 5

28
32 6

52
357 10

5
5 5

29
45 6

53
78 7

6
127 7

30
33 6

54
145 8

7
77 7

31
41 7

55
233 8

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 204

8
3 3

32
144 8

56
388 9

9
17 5

33
464 9

57
465 9

10
62 6

34
507 9

58
486 9

11
59 6

35
28 5

59
151 8

12
23 6

36
76 7

60
487 9

13
103 7

37
96 7

61
179 9

14
74 7

38
9 6

62
316 9

15
195 8

39
8 6

63
5710 14

16
242 8

40
45 7

64
5711 14

17
10 4

41
159 8

65
2848 13

18
44 6

42
506 9

66
2849 13

19
50 6

43
317 9

67
2850 13

20
61 6

44
49 6

68
2851 13

21
21 6

45
252 8

69
2852 13

22
40 7

46
88 8

70
2853 13

23
147 8

47
146 8

71
2854 13

11.4 Interlace Pictures MB Mode Tables

11.4.1 Interlace Field P / B Pictures Mixed MV MB Mode Tables

Table 134: Mixed MV MB Mode Table 0

MB
Mode

VLC
Codeword

VLC
Size

0 16 6
1 17 6
2 3 2
3 3 3
4 0 2
5 5 4
6 9 5
7 2 2

Table 135: Mixed MV MB Mode Table 1

MB
Mode

VLC
Codeword

VLC
Size

0 8 5
1 9 5
2 3 3
3 6 3
4 7 3
5 0 2
6 5 4

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 205

7 2 2

Table 136: Mixed MV MB Mode Table 2

MB
Mode

VLC
Codeword

VLC
Size

0 16 6
1 17 6
2 5 4
3 3 3
4 0 2
5 3 2
6 9 5
7 2 2

Table 137: Mixed MV MB Mode Table 3

MB
Mode

VLC
Codeword

VLC
Size

0 56 6
1 57 6
2 15 4
3 4 3
4 5 3
5 6 3
6 29 5
7 0 1

Table 138: Mixed MV MB Mode Table 4

MB
Mode

VLC
Codeword

VLC
Size

0 52 6
1 53 6
2 27 5
3 14 4
4 15 4
5 2 2
6 12 4
7 0 1

Table 139: Mixed MV MB Mode Table 5

MB
Mode

VLC
Codeword

VLC
Size

0 56 6
1 57 6
2 29 5
3 5 3
4 6 3
5 0 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 206

6 15 4
7 4 3

Table 140: Mixed MV MB Mode Table 6

MB
Mode

VLC
Codeword

VLC
Size

0 16 5
1 17 5
2 6 3
3 7 3
4 0 2
5 1 2
6 9 4
7 5 3

Table 141: Mixed MV MB Mode Table 7

MB
Mode

VLC
Codeword

VLC
Size

0 56 6
1 57 6
2 0 1
3 5 3
4 6 3
5 29 5
6 4 3
7 15 4

11.4.2 Interlace Field P / B Pictures 1-MV MB Mode Tables

Table 142: 1-MV MB Mode Table 0

MB
Mode

VLC
Codeword

VLC
Size

0 0 5
1 1 5
2 1 1
3 1 3
4 1 2
5 1 4

Table 143: 1-MV MB Mode Table 1

MB
Mode

VLC
Codeword

VLC
Size

0 0 5
1 1 5
2 1 1
3 1 2
4 1 3

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 207

5 1 4

Table 144: 1-MV MB Mode Table 2

MB
Mode

VLC
Codeword

VLC
Size

0 16 5
1 17 5
2 3 2
3 0 1
4 9 4
5 5 3

Table 145: 1-MV MB Mode Table 3

MB
Mode

VLC
Codeword

VLC
Size

0 20 5
1 21 5
2 3 2
3 11 4
4 0 1
5 4 3

Table 146: 1-MV MB Mode Table 4

MB
Mode

VLC
Codeword

VLC
Size

0 4 4
1 5 4
2 2 2
3 3 3
4 3 2
5 0 2

Table 147: 1-MV MB Mode Table 5

MB
Mode

VLC
Codeword

VLC
Size

0 4 4
1 5 4
2 3 3
3 2 2
4 0 2
5 3 2

Table 148: 1-MV MB Mode Table 6

MB
Mode

VLC
Codeword

VLC
Size

0 0 5

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 208

1 1 5
2 1 3
3 1 4
4 1 1
5 1 2

Table 149: 1-MV MB Mode Table 7

MB
Mode

VLC
Codeword

VLC
Size

0 16 5
1 17 5
2 9 4
3 5 3
4 3 2
5 0 1

11.4.3 Interlace Frame P / B Pictures 4MV MBMODE Tables

Table 150: Interlace Frame 4MV MB Mode Table 0

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1 MV 1 Frame 22 5

1 MV 1 Field 17 5

1 MV 1 No CBP 0 2

1 MV 0 Frame 47 6

1 MV 0 Field 32 6

2 MV (F) N/A Frame 10 4

2 MV (F) N/A Field 1 2

2 MV (F) N/A No CBP 3 2

4 MV N/A Frame 67 7

4 MV N/A Field 133 8

4 MV N/A No CBP 132 8

4 MV (F) N/A Frame 92 7

4 MV (F) N/A Field 19 5

4 MV (F) N/A No CBP 93 7

INTRA N/A N/A 18 5

Table 151: Interlace Frame 4MV MB Mode Table 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 209

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1 MV 1 Frame 3 3

1 MV 1 Field 45 6

1 MV 1 No CBP 0 3

1 MV 0 Frame 7 3

1 MV 0 Field 23 5

2 MV (F) N/A Frame 6 3

2 MV (F) N/A Field 1 3

2 MV (F) N/A No CBP 2 3

4 MV N/A Frame 10 4

4 MV N/A Field 39 6

4 MV N/A No CBP 44 6

4 MV (F) N/A Frame 8 4

4 MV (F) N/A Field 18 5

4 MV (F) N/A No CBP 77 7

INTRA N/A N/A 76 7

Table 152: Interlace Frame 4MV MB Mode Table 2

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1 MV 1 Frame 15 4

1 MV 1 Field 6 3

1 MV 1 No CBP 28 5

1 MV 0 Frame 9 5

1 MV 0 Field 41 7

2 MV (F) N/A Frame 6 4

2 MV (F) N/A Field 2 2

2 MV (F) N/A No CBP 15 5

4 MV N/A Frame 14 5

4 MV N/A Field 8 5

4 MV N/A No CBP 40 7

4 MV (F) N/A Frame 29 5

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 210

4 MV (F) N/A Field 0 2

4 MV (F) N/A No CBP 21 6

INTRA N/A N/A 11 5

Table 153: Interlace Frame 4MV MB Mode Table 3

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1 MV 1 Frame 7 4

1 MV 1 Field 198 9

1 MV 1 No CBP 1 1

1 MV 0 Frame 2 3

1 MV 0 Field 193 9

2 MV (F) N/A Frame 13 5

2 MV (F) N/A Field 25 6

2 MV (F) N/A No CBP 0 2

4 MV N/A Frame 97 8

4 MV N/A Field 1599 12

4 MV N/A No CBP 98 8

4 MV (F) N/A Frame 398 10

4 MV (F) N/A Field 798 11

4 MV (F) N/A No CBP 192 9

INTRA N/A N/A 1598 12

11.4.4 Interlace Frame P / B Pictures Non 4MV MBMODE Tables

Table 154: Interlace Frame Non 4MV MB Mode Table 0

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1 MV 1 Frame 9 4

1 MV 1 Field 22 5

1 MV 1 No CBP 0 2

1 MV 0 Frame 17 5

1 MV 0 Field 16 5

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 211

2 MV (F) N/A Frame 10 4

2 MV (F) N/A Field 1 2

2 MV (F) N/A No CBP 3 2

INTRA N/A N/A 23 5

Table 155: Interlace Frame Non 4MV MB Mode Table 1

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1 MV 1 Frame 7 3

1 MV 1 Field 0 4

1 MV 1 No CBP 5 6

1 MV 0 Frame 2 2

1 MV 0 Field 1 3

2 MV (F) N/A Frame 1 2

2 MV (F) N/A Field 6 3

2 MV (F) N/A No CBP 3 5

INTRA N/A N/A 4 6

Table 156: Interlace Frame Non 4MV MB Mode Table 2

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1 MV 1 Frame 1 2

1 MV 1 Field 0 2

1 MV 1 No CBP 10 4

1 MV 0 Frame 23 5

1 MV 0 Field 44 6

2 MV (F) N/A Frame 8 4

2 MV (F) N/A Field 3 2

2 MV (F) N/A No CBP 9 4

INTRA N/A N/A 45 6

Table 157: Interlace Frame Non 4MV MB Mode Table 3

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 212

MB
Type

MV
Present

Field/Fram
e

Transform

VLC
Codeword

VLC
Size

1 MV 1 Frame 7 4

1 MV 1 Field 97 8

1 MV 1 No CBP 1 1

1 MV 0 Frame 2 3

1 MV 0 Field 49 7

2 MV (F) N/A Frame 13 5

2 MV (F) N/A Field 25 6

2 MV (F) N/A No CBP 0 2

INTRA N/A N/A 96 8

11.5 I-Picture CBPCY Tables
Table 158: I-Picture CBPCY VLC Table

CBPCY VLC Codeword VLC Size CBPCY VLC Codeword VLC Size

0 1 1 32 6 4

1 23 6 33 3 9

2 9 5 34 30 7

3 5 5 35 28 6

4 6 5 36 18 7

5 71 9 37 904 12

6 32 7 38 68 9

7 16 7 39 112 9

8 2 5 40 31 6

9 124 9 41 574 11

10 58 7 42 57 8

11 29 7 43 142 9

12 2 6 44 1 7

13 236 9 45 454 11

14 119 8 46 182 9

15 0 8 47 69 9

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 213

16 3 5 48 20 6

17 183 9 49 575 11

18 44 7 50 125 9

19 19 7 51 24 9

20 1 6 52 7 7

21 360 10 53 455 11

22 70 8 54 134 9

23 63 8 55 25 9

24 30 6 56 21 6

25 1810 13 57 475 10

26 181 9 58 2 9

27 66 8 59 70 9

28 34 7 60 13 8

29 453 11 61 1811 13

30 286 10 62 474 10

31 135 9 63 361 10

11.6 P-Picture CBPCY Tables

Table 159: P-Picture CBPCY VLC Table 0

CBPCY VLC Codeword VLC Size CBPCY VLC Codeword VLC Size

0 0 13 32 6 13

1 1 6 33 7 13

2 1 5 34 54 7

3 4 6 35 103 8

4 5 6 36 8 13

5 1 7 37 9 13

6 12 7 38 10 13

7 4 5 39 110 8

8 13 7 40 11 13

9 14 7 41 12 13

10 10 6 42 111 8

11 11 6 43 56 7

12 12 6 44 114 8

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 214

13 7 5 45 58 7

14 13 6 46 115 8

15 2 3 47 5 3

16 15 7 48 13 13

17 1 8 49 7 12

18 96 8 50 8 12

19 1 13 51 9 12

20 49 7 52 10 12

21 97 8 53 11 12

22 2 13 54 12 12

23 100 8 55 30 6

24 3 13 56 13 12

25 4 13 57 14 12

26 5 13 58 15 12

27 101 8 59 118 8

28 102 8 60 119 8

29 52 7 61 62 7

30 53 7 62 63 7

31 4 3 63 3 2

Table 160: P-Picture CBPCY VLC Table 1

CBPCY VLC Codeword VLC Size CBPCY VLC Codeword VLC Size

0 0 14 32 9 13

1 1 3 33 240 8

2 2 3 34 10 13

3 1 5 35 11 13

4 3 3 36 121 7

5 1 4 37 122 7

6 16 5 38 12 13

7 17 5 39 13 13

8 5 3 40 14 13

9 18 5 41 15 13

10 12 4 42 241 8

11 19 5 43 246 8

12 13 4 44 16 13

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 215

13 1 6 45 17 13

14 28 5 46 124 7

15 58 6 47 63 6

16 1 8 48 18 13

17 1 14 49 19 13

18 1 13 50 20 13

19 2 8 51 21 13

20 3 8 52 22 13

21 2 13 53 23 13

22 3 13 54 24 13

23 236 8 55 25 13

24 237 8 56 26 13

25 4 13 57 27 13

26 5 13 58 28 13

27 238 8 59 29 13

28 6 13 60 30 13

29 7 13 61 31 13

30 239 8 62 247 8

31 8 13 63 125 7

Table 161: P-Picture CBPCY VLC Table 2

CBPCY VLC Codeword VLC Size CBPCY VLC Codeword VLC Size

0 0 13 32 201 8

1 1 5 33 102 7

2 2 5 34 412 9

3 3 5 35 413 9

4 2 4 36 414 9

5 3 4 37 54 6

6 1 6 38 220 8

7 4 4 39 111 7

8 5 4 40 221 8

9 24 6 41 3 13

10 7 4 42 224 8

11 13 5 43 113 7

12 16 5 44 225 8

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 216

13 17 5 45 114 7

14 9 4 46 230 8

15 5 3 47 29 5

16 25 6 48 231 8

17 1 8 49 415 9

18 1 10 50 240 8

19 1 9 51 4 13

20 2 8 52 241 8

21 3 8 53 484 9

22 96 7 54 5 13

23 194 8 55 243 8

24 1 13 56 3 12

25 2 13 57 244 8

26 98 7 58 245 8

27 99 7 59 485 9

28 195 8 60 492 9

29 200 8 61 493 9

30 101 7 62 247 8

31 26 5 63 31 5

Table 162: P-Picture CBPCY VLC Table 3

CBPCY VLC Codeword VLC Size CBPCY VLC Codeword VLC Size

0 0 9 32 28 9

1 1 2 33 29 9

2 1 3 34 30 9

3 1 9 35 31 9

4 2 2 36 32 9

5 2 9 37 33 9

6 3 9 38 34 9

7 4 9 39 35 9

8 3 2 40 36 9

9 5 9 41 37 9

10 6 9 42 38 9

11 7 9 43 39 9

12 8 9 44 40 9

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 217

13 9 9 45 41 9

14 10 9 46 42 9

15 11 9 47 43 9

16 12 9 48 44 9

17 13 9 49 45 9

18 14 9 50 46 9

19 15 9 51 47 9

20 16 9 52 48 9

21 17 9 53 49 9

22 18 9 54 50 9

23 19 9 55 51 9

24 20 9 56 52 9

25 21 9 57 53 9

26 22 9 58 54 9

27 23 9 59 55 9

28 24 9 60 28 8

29 25 9 61 29 8

30 26 9 62 30 8

31 27 9 63 31 8

11.7 DC Differential Tables

11.7.1 Low-motion Tables

Table 163: Low-motion Luminance DC Differential VLC Table

DC
Differential

VLC
Codeword VLC Size

DC
Differential

VLC
Codeword VLC Size

DC
Differential

VLC
Codeword VLC Size

0 1 1 40 151 14 80 197608 23

1 1 2 41 384 14 81 197609 23

2 1 4 42 788 15 82 197610 23

3 1 5 43 789 15 83 197611 23

4 5 5 44 1541 16 84 197612 23

5 7 5 45 1540 16 85 197613 23

6 8 6 46 1542 16 86 197614 23

7 12 6 47 3086 17 87 197615 23

8 0 7 48 197581 23 88 197616 23

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 218

9 2 7 49 197577 23 89 197617 23

10 18 7 50 197576 23 90 197618 23

11 26 7 51 197578 23 91 197619 23

12 3 8 52 197579 23 92 197620 23

13 7 8 53 197580 23 93 197621 23

14 39 8 54 197582 23 94 197622 23

15 55 8 55 197583 23 95 197623 23

16 5 9 56 197584 23 96 197624 23

17 76 9 57 197585 23 97 197625 23

18 108 9 58 197586 23 98 197626 23

19 109 9 59 197587 23 99 197627 23

20 8 10 60 197588 23 100 197628 23

21 25 10 61 197589 23 101 197629 23

22 155 10 62 197590 23 102 197630 23

23 27 10 63 197591 23 103 197631 23

24 154 10 64 197592 23 104 395136 24

25 19 11 65 197593 23 105 395137 24

26 52 11 66 197594 23 106 395138 24

27 53 11 67 197595 23 107 395139 24

28 97 12 68 197596 23 108 395140 24

29 72 13 69 197597 23 109 395141 24

30 196 13 70 197598 23 110 395142 24

31 74 13 71 197599 23 111 395143 24

32 198 13 72 197600 23 112 395144 24

33 199 13 73 197601 23 113 395145 24

34 146 14 74 197602 23 114 395146 24

35 395 14 75 197603 23 115 395147 24

36 147 14 76 197604 23 116 395148 24

37 387 14 77 197605 23 117 395149 24

38 386 14 78 197606 23 118 395150 24

39 150 14 79 197607 23 ESCAPE 395151 24

Table 164: Low-motion Chroma DC Differential VLC Table

DC
Differential

VLC
Codeword VLC Size

DC
Differential

VLC
Codeword VLC Size

DC
Differential

VLC
Codeword VLC Size

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 219

0 0 2 40 1630 11 80 3163240 22

1 1 2 41 3256 12 81 3163241 22

2 5 3 42 3088 12 82 3163242 22

3 9 4 43 3257 12 83 3163243 22

4 13 4 44 6179 13 84 3163244 22

5 17 5 45 12357 14 85 3163245 22

6 29 5 46 24713 15 86 3163246 22

7 31 5 47 49424 16 87 3163247 22

8 33 6 48 3163208 22 88 3163248 22

9 49 6 49 3163209 22 89 3163249 22

10 56 6 50 3163210 22 90 3163250 22

11 51 6 51 3163211 22 91 3163251 22

12 57 6 52 3163212 22 92 3163252 22

13 61 6 53 3163213 22 93 3163253 22

14 97 7 54 3163214 22 94 3163254 22

15 121 7 55 3163215 22 95 3163255 22

16 128 8 56 3163216 22 96 3163256 22

17 200 8 57 3163217 22 97 3163257 22

18 202 8 58 3163218 22 98 3163258 22

19 240 8 59 3163219 22 99 3163259 22

20 129 8 60 3163220 22 100 3163260 22

21 192 8 61 3163221 22 101 3163261 22

22 201 8 62 3163222 22 102 3163262 22

23 263 9 63 3163223 22 103 3163263 22

24 262 9 64 3163224 22 104 6326400 23

25 406 9 65 3163225 22 105 6326401 23

26 387 9 66 3163226 22 106 6326402 23

27 483 9 67 3163227 22 107 6326403 23

28 482 9 68 3163228 22 108 6326404 23

29 522 10 69 3163229 22 109 6326405 23

30 523 10 70 3163230 22 110 6326406 23

31 1545 11 71 3163231 22 111 6326407 23

32 1042 11 72 3163232 22 112 6326408 23

33 1043 11 73 3163233 22 113 6326409 23

34 1547 11 74 3163234 22 114 6326410 23

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 220

35 1041 11 75 3163235 22 115 6326411 23

36 1546 11 76 3163236 22 116 6326412 23

37 1631 11 77 3163237 22 117 6326413 23

38 1040 11 78 3163238 22 118 6326414 23

39 1629 11 79 3163239 22 ESCAPE 6326415 23

11.7.2 High-motion Tables

Table 165: High-motion Luminance DC Differential VLC Table

DC
Differential

VLC
Codeword VLC Size

DC
Differential

VLC
Codeword VLC Size

DC
Differential

VLC
Codeword VLC Size

0 2 2 40 824 12 80 1993024 26

1 3 2 41 829 12 81 1993025 26

2 3 3 42 171 13 82 1993026 26

3 2 4 43 241 13 83 1993027 26

4 5 4 44 1656 13 84 1993028 26

5 1 5 45 242 13 85 1993029 26

6 3 5 46 480 14 86 1993030 26

7 8 5 47 481 14 87 1993031 26

8 0 6 48 340 14 88 1993032 26

9 5 6 49 3314 14 89 1993033 26

10 13 6 50 972 15 90 1993034 26

11 15 6 51 683 15 91 1993035 26

12 19 6 52 6631 15 92 1993036 26

13 8 7 53 974 15 93 1993037 26

14 24 7 54 6630 15 94 1993038 26

15 28 7 55 1364 16 95 1993039 26

16 36 7 56 1951 16 96 1993040 26

17 4 8 57 1365 16 97 1993041 26

18 6 8 58 3901 17 98 1993042 26

19 18 8 59 3895 17 99 1993043 26

20 50 8 60 3900 17 100 1993044 26

21 59 8 61 3893 17 101 1993045 26

22 74 8 62 7789 18 102 1993046 26

23 75 8 63 7784 18 103 1993047 26

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 221

24 11 9 64 15576 19 104 1993048 26

25 38 9 65 15571 19 105 1993049 26

26 39 9 66 15577 19 106 1993050 26

27 102 9 67 31140 20 107 1993051 26

28 116 9 68 996538 25 108 1993052 26

29 117 9 69 996532 25 109 1993053 26

30 20 10 70 996533 25 110 1993054 26

31 28 10 71 996534 25 111 1993055 26

32 31 10 72 996535 25 112 1993056 26

33 29 10 73 996536 25 113 1993057 26

34 43 11 74 996537 25 114 1993058 26

35 61 11 75 996539 25 115 1993059 26

36 413 11 76 996540 25 116 1993060 26

37 415 11 77 996541 25 117 1993061 26

38 84 12 78 996542 25 118 1993062 26

39 825 12 79 996543 25 ESCAPE 1993063 26

Table 166: High-motion Chroma DC Differential VLC Table

DC
Differential

VLC
Codeword VLC Size

DC
Differential

VLC
Codeword VLC Size

DC
Differential

VLC
Codeword VLC Size

0 0 2 40 51124 16 80 13087336 24

1 1 2 41 51125 16 81 13087337 24

2 4 3 42 25566 15 82 13087338 24

3 7 3 43 51127 16 83 13087339 24

4 11 4 44 51128 16 84 13087340 24

5 13 4 45 51129 16 85 13087341 24

6 21 5 46 102245 17 86 13087342 24

7 40 6 47 204488 18 87 13087343 24

8 48 6 48 13087304 24 88 13087344 24

9 50 6 49 13087305 24 89 13087345 24

10 82 7 50 13087306 24 90 13087346 24

11 98 7 51 13087307 24 91 13087347 24

12 102 7 52 13087308 24 92 13087348 24

13 166 8 53 13087309 24 93 13087349 24

14 198 8 54 13087310 24 94 13087350 24

15 207 8 55 13087311 24 95 13087351 24

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 222

16 335 9 56 13087312 24 96 13087352 24

17 398 9 57 13087313 24 97 13087353 24

18 412 9 58 13087314 24 98 13087354 24

19 669 10 59 13087315 24 99 13087355 24

20 826 10 60 13087316 24 100 13087356 24

21 1336 11 61 13087317 24 101 13087357 24

22 1596 11 62 13087318 24 102 13087358 24

23 1598 11 63 13087319 24 103 13087359 24

24 1599 11 64 13087320 24 104 26174592 25

25 1654 11 65 13087321 24 105 26174593 25

26 2675 12 66 13087322 24 106 26174594 25

27 3194 12 67 13087323 24 107 26174595 25

28 3311 12 68 13087324 24 108 26174596 25

29 5349 13 69 13087325 24 109 26174597 25

30 6621 13 70 13087326 24 110 26174598 25

31 10696 14 71 13087327 24 111 26174599 25

32 10697 14 72 13087328 24 112 26174600 25

33 25565 15 73 13087329 24 113 26174601 25

34 13240 14 74 13087330 24 114 26174602 25

35 13241 14 75 13087331 24 115 26174603 25

36 51126 16 76 13087332 24 116 26174604 25

37 25560 15 77 13087333 24 117 26174605 25

38 25567 15 78 13087334 24 118 26174606 25

39 51123 16 79 13087335 24 ESCAPE 26174607 25

11.8 Transform AC Coefficient Tables

11.8.1 High Motion Intra Tables

Table 167: High Motion Intra VLC Table

Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size

0 1 2 62 7920 15 124 9183 14

1 5 3 63 61 6 125 25 5

2 13 4 64 83 9 126 40 9

3 18 5 65 416 11 127 374 11

4 14 6 66 726 13 128 1181 13

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 223

5 21 7 67 3848 14 129 9181 14

6 19 8 68 19 7 130 48 6

7 63 8 69 124 9 131 162 10

8 75 9 70 1985 11 132 751 12

9 287 9 71 1196 14 133 1464 14

10 184 10 72 27 7 134 63 6

11 995 10 73 160 10 135 165 10

12 370 11 74 836 12 136 987 12

13 589 12 75 3961 14 137 2367 14

14 986 12 76 121 7 138 68 7

15 733 13 77 993 10 139 1995 11

16 8021 13 78 724 13 140 2399 15

17 1465 14 79 8966 14 141 99 7

18 16046 14 80 33 8 142 963 12

19 0 4 81 572 10 143 21 8

20 16 5 82 4014 12 144 2294 12

21 8 7 83 9182 14 145 23 8

22 32 8 84 53 8 146 1176 13

23 41 9 85 373 11 147 44 8

24 500 9 86 1971 13 148 1970 13

25 563 10 87 197 8 149 47 8

26 480 11 88 372 11 150 8020 13

27 298 12 89 1925 13 151 141 8

28 989 12 90 72 9 152 1981 13

29 1290 13 91 419 11 153 142 8

30 7977 13 92 1182 13 154 4482 13

31 2626 14 93 44 9 155 251 8

32 4722 15 94 250 10 156 1291 13

33 5943 15 95 2006 11 157 45 8

34 3 5 96 146 10 158 1984 11

35 17 7 97 1484 13 159 121 9

36 196 8 98 7921 15 160 8031 13

37 75 10 99 163 10 161 122 9

38 180 11 100 1005 12 162 8022 13

39 2004 11 101 2366 14 163 561 10

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 224

40 837 12 102 482 11 164 996 10

41 727 13 103 4723 15 165 417 11

42 1983 13 104 1988 11 166 323 11

43 2360 14 105 5255 15 167 503 11

44 3003 14 106 657 12 168 367 12

45 2398 15 107 659 12 169 658 12

46 19 5 108 3978 12 170 743 12

47 120 7 109 1289 13 171 364 12

48 105 9 110 1288 13 172 365 12

49 562 10 111 1933 13 173 988 12

50 1121 11 112 1982 13 174 3979 12

51 1004 12 113 1932 13 175 1177 13

52 1312 13 114 1198 14 176 984 12

53 7978 13 115 3002 14 177 1934 13

54 15952 14 116 8967 14 178 725 13

55 15953 14 117 2970 14 179 8030 13

56 5254 15 118 5942 15 180 7979 13

57 12 6 119 14 4 181 1935 13

58 36 9 120 69 7 182 1197 14

59 148 11 121 499 9 183 16047 14

60 2240 12 122 1146 11 184 9180 14

61 3849 14 123 1500 13 ESCAPE 74 9

Table 168: High Motion Intra Indexed Run and Level Table (Last = 0)

Index Run Level Index Run Level Index Run Level

0 0 1 40 2 7 80 9 1

1 0 2 41 2 8 81 9 2

2 0 3 42 2 9 82 9 3

3 0 4 43 2 10 83 9 4

4 0 5 44 2 11 84 10 1

5 0 6 45 2 12 85 10 2

6 0 7 46 3 1 86 10 3

7 0 8 47 3 2 87 11 1

8 0 9 48 3 3 88 11 2

9 0 10 49 3 4 89 11 3

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 225

10 0 11 50 3 5 90 12 1

11 0 12 51 3 6 91 12 2

12 0 13 52 3 7 92 12 3

13 0 14 53 3 8 93 13 1

14 0 15 54 3 9 94 13 2

15 0 16 55 3 10 95 13 3

16 0 17 56 3 11 96 14 1

17 0 18 57 4 1 97 14 2

18 0 19 58 4 2 98 14 3

19 1 1 59 4 3 99 15 1

20 1 2 60 4 4 100 15 2

21 1 3 61 4 5 101 15 3

22 1 4 62 4 6 102 16 1

23 1 5 63 5 1 103 16 2

24 1 6 64 5 2 104 17 1

25 1 7 65 5 3 105 17 2

26 1 8 66 5 4 106 18 1

27 1 9 67 5 5 107 19 1

28 1 10 68 6 1 108 20 1

29 1 11 69 6 2 109 21 1

30 1 12 70 6 3 110 22 1

31 1 13 71 6 4 111 23 1

32 1 14 72 7 1 112 24 1

33 1 15 73 7 2 113 25 1

34 2 1 74 7 3 114 26 1

35 2 2 75 7 4 115 27 1

36 2 3 76 8 1 116 28 1

37 2 4 77 8 2 117 29 1

38 2 5 78 8 3 118 30 1

39 2 6 79 8 4

Table 169: High Motion Intra Indexed Run and Level Table (Last = 1)

Index Run Level Index Run Level Index Run Level

119 0 1 141 5 1 163 16 1

120 0 2 142 5 2 164 17 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 226

121 0 3 143 6 1 165 18 1

122 0 4 144 6 2 166 19 1

123 0 5 145 7 1 167 20 1

124 0 6 146 7 2 168 21 1

125 1 1 147 8 1 169 22 1

126 1 2 148 8 2 170 23 1

127 1 3 149 9 1 171 24 1

128 1 4 150 9 2 172 25 1

129 1 5 151 10 1 173 26 1

130 2 1 152 10 2 174 27 1

131 2 2 153 11 1 175 28 1

132 2 3 154 11 2 176 29 1

133 2 4 155 12 1 177 30 1

134 3 1 156 12 2 178 31 1

135 3 2 157 13 1 179 32 1

136 3 3 158 13 2 180 33 1

137 3 4 159 14 1 181 34 1

138 4 1 160 14 2 182 35 1

139 4 2 161 15 1 183 36 1

140 4 3 162 15 2 184 37 1

Table 170: High Motion Intra Delta Level Indexed by Run Table (Last = 0)

Run Delta Level Run Delta Level

0 19 16 2

1 15 17 2

2 12 18 1

3 11 19 1

4 6 20 1

5 5 21 1

6 4 22 1

7 4 23 1

8 4 24 1

9 4 25 1

10 3 26 1

11 3 27 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 227

12 3 28 1

13 3 29 1

14 3 30 1

15 3

Table 171: High Motion Intra Delta Level Indexed by Run Table (Last = 1)

Run Delta Level Run Delta Level

0 6 19 1

1 5 20 1

2 4 21 1

3 4 22 1

4 3 23 1

5 2 24 1

6 2 25 1

7 2 26 1

8 2 27 1

9 2 28 1

10 2 29 1

11 2 30 1

12 2 31 1

13 2 32 1

14 2 33 1

15 2 34 1

16 1 35 1

17 1 36 1

18 1 37 1

Table 172: High Motion Intra Delta Run Indexed by Level Table (Last = 0)

Level Delta Run Level Delta Run

1 30 11 3

2 17 12 2

3 15 13 1

4 9 14 1

5 5 15 1

6 4 16 0

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 228

7 3 17 0

8 3 18 0

9 3 19 0

10 3

Table 173: High Motion Intra Delta Run Indexed by Level Table (Last = 1)

Level Delta Run

1 37

2 15

3 4

4 3

5 1

6 0

Table 174: High Motion Inter VLC Table

Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size

0 0 3 57 4188 13 113 13 4

1 3 4 58 14834 14 114 173 9

2 11 5 59 88 7 115 2086 12

3 20 6 60 543 10 116 11596 14

4 63 6 61 3710 12 117 17 5

5 93 7 62 14847 14 118 363 9

6 162 8 63 35 8 119 2943 12

7 172 9 64 739 10 120 20900 15

8 366 9 65 1253 13 121 25 5

9 522 10 66 11840 14 122 539 10

10 738 10 67 161 8 123 5885 13

11 1074 11 68 1470 11 124 29 5

12 1481 11 69 2504 14 125 916 10

13 2087 12 70 131 8 126 10451 14

14 2900 12 71 314 11 127 43 6

15 1254 13 72 5921 13 128 1468 11

16 4191 13 73 68 9 129 23194 15

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 229

17 5930 13 74 630 12 130 47 6

18 8370 14 75 14838 14 131 583 12

19 11598 14 76 139 10 132 16 7

20 14832 14 77 1263 13 133 2613 12

21 16757 15 78 23195 15 134 62 6

22 23198 15 79 520 10 135 2938 12

23 4 4 80 7422 13 136 89 7

24 30 5 81 921 10 137 4190 13

25 66 7 82 7348 13 138 38 8

26 182 8 83 926 10 139 2511 14

27 371 9 84 14835 14 140 85 8

28 917 10 85 1451 11 141 7349 13

29 1838 11 86 29667 15 142 87 8

30 2964 12 87 1847 11 143 3675 12

31 5796 13 88 23199 15 144 160 8

32 8371 14 89 2093 12 145 5224 13

33 11845 14 90 3689 12 146 368 9

34 5 5 91 3688 12 147 144 10

35 64 7 92 1075 11 148 462 9

36 73 9 93 2939 12 149 538 10

37 655 10 94 11768 14 150 536 10

38 1483 11 95 11862 14 151 360 9

39 1162 13 96 11863 14 152 542 10

40 2525 14 97 14839 14 153 580 12

41 29666 15 98 20901 15 154 1846 11

42 24 5 99 3 3 155 312 11

43 37 8 100 42 6 156 1305 11

44 138 10 101 228 8 157 3678 12

45 1307 11 102 654 10 158 1836 11

46 3679 12 103 1845 11 159 2901 12

47 2505 14 104 4184 13 160 2524 14

48 5020 15 105 7418 13 161 8379 14

49 41 6 106 11769 14 162 1164 13

50 79 9 107 16756 15 163 5923 13

51 1042 11 108 9 4 164 11844 14

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 230

52 1165 13 109 84 8 165 5797 13

53 11841 14 110 920 10 166 1304 11

54 56 6 111 1163 13 167 14846 14

55 270 9 112 5021 15 ESCAPE 361 9

56 1448 11

Table 175: High Motion Inter Indexed Run and Level Table (Last = 0)

Index Run Level Index Run Level Index Run Level

0 0 1 33 1 11 66 7 4

1 0 2 34 2 1 67 8 1

2 0 3 35 2 2 68 8 2

3 0 4 36 2 3 69 8 3

4 0 5 37 2 4 70 9 1

5 0 6 38 2 5 71 9 2

6 0 7 39 2 6 72 9 3

7 0 8 40 2 7 73 10 1

8 0 9 41 2 8 74 10 2

9 0 10 42 3 1 75 10 3

10 0 11 43 3 2 76 11 1

11 0 12 44 3 3 77 11 2

12 0 13 45 3 4 78 11 3

13 0 14 46 3 5 79 12 1

14 0 15 47 3 6 80 12 2

15 0 16 48 3 7 81 13 1

16 0 17 49 4 1 82 13 2

17 0 18 50 4 2 83 14 1

18 0 19 51 4 3 84 14 2

19 0 20 52 4 4 85 15 1

20 0 21 53 4 5 86 15 2

21 0 22 54 5 1 87 16 1

22 0 23 55 5 2 88 16 2

23 1 1 56 5 3 89 17 1

24 1 2 57 5 4 90 18 1

25 1 3 58 5 5 91 19 1

26 1 4 59 6 1 92 20 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 231

27 1 5 60 6 2 93 21 1

28 1 6 61 6 3 94 22 1

29 1 7 62 6 4 95 23 1

30 1 8 63 7 1 96 24 1

31 1 9 64 7 2 97 25 1

32 1 10 65 7 3 98 26 1

Table 176: High Motion Inter Indexed Run and Level Table (Last = 1)

Index Run Level Index Run Level Index Run Level

99 0 1 122 4 2 145 14 2

100 0 2 123 4 3 146 15 1

101 0 3 124 5 1 147 16 1

102 0 4 125 5 2 148 17 1

103 0 5 126 5 3 149 18 1

104 0 6 127 6 1 150 19 1

105 0 7 128 6 2 151 20 1

106 0 8 129 6 3 152 21 1

107 0 9 130 7 1 153 22 1

108 1 1 131 7 2 154 23 1

109 1 2 132 8 1 155 24 1

110 1 3 133 8 2 156 25 1

111 1 4 134 9 1 157 26 1

112 1 5 135 9 2 158 27 1

113 2 1 136 10 1 159 28 1

114 2 2 137 10 2 160 29 1

115 2 3 138 11 1 161 30 1

116 2 4 139 11 2 162 31 1

117 3 1 140 12 1 163 32 1

118 3 2 141 12 2 164 33 1

119 3 3 142 13 1 165 34 1

120 3 4 143 13 2 166 35 1

121 4 1 144 14 1 167 36 1

Table 177: High Motion Inter Delta Level Indexed by Run Table (Last = 0)

Run Delta Level Run Delta Level

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 232

0 23 14 2

1 11 15 2

2 8 16 2

3 7 17 1

4 5 18 1

5 5 19 1

6 4 20 1

7 4 21 1

8 3 22 1

9 3 23 1

10 3 24 1

11 3 25 1

12 2 26 1

13 2

Table 178: High Motion Inter Delta Level Indexed by Run Table (Last = 1)

Run Delta Level Run Delta Level

0 9 19 1

1 5 20 1

2 4 21 1

3 4 22 1

4 3 23 1

5 3 24 1

6 3 25 1

7 2 26 1

8 2 27 1

9 2 28 1

10 2 29 1

11 2 30 1

12 2 31 1

13 2 32 1

14 2 33 1

15 1 34 1

16 1 35 1

17 1 36 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 233

18 1

Table 179: High Motion Inter Delta Run Indexed by Level Table (Last = 0)

Level Delta Run Level Delta Run

1 26 13 0

2 16 14 0

3 11 15 0

4 7 16 0

5 5 17 0

6 3 18 0

7 3 19 0

8 2 20 0

9 1 21 0

10 1 22 0

11 1 23 0

12 0

Table 180: High Motion Inter Delta Run Indexed by Level Table (Last = 1)

Level Delta Run

1 36

2 14

3 6

4 3

5 1

6 0

7 0

8 0

9 0

11.8.2 Low Motion Intra Tables

Table 181: Low Motion Intra VLC Table

Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size

0 1 2 45 156 12 89 18 5

1 6 3 46 317 13 90 232 8

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 234

2 15 4 47 59 6 91 76 11

3 22 5 48 28 9 92 310 13

4 32 6 49 20 11 93 57 6

5 24 7 50 2494 12 94 612 10

6 8 8 51 6 7 95 3770 12

7 154 8 52 122 9 96 0 7

8 86 9 53 400 11 97 174 10

9 318 9 54 311 13 98 2460 12

10 240 10 55 27 7 99 31 7

11 933 10 56 8 10 100 1246 11

12 119 11 57 1884 11 101 67 7

13 495 11 58 113 7 102 1244 11

14 154 12 59 215 10 103 3 8

15 93 13 60 2495 12 104 971 12

16 1 4 61 7 8 105 6 8

17 17 5 62 175 10 106 2462 12

18 2 7 63 1228 11 107 42 8

19 11 8 64 52 8 108 1521 13

20 18 9 65 613 10 109 15 8

21 470 9 66 159 12 110 2558 12

22 638 10 67 224 8 111 51 8

23 401 11 68 22 11 112 2559 12

24 234 12 69 807 12 113 152 8

25 988 12 70 21 9 114 2463 12

26 315 13 71 381 11 115 234 8

27 4 5 72 3771 12 116 316 13

28 20 7 73 20 9 117 46 8

29 158 8 74 246 10 118 402 11

30 9 10 75 484 11 119 310 9

31 428 11 76 203 10 120 106 9

32 482 11 77 2461 12 121 21 11

33 970 12 78 202 10 122 943 10

34 95 13 79 764 12 123 483 11

35 23 5 80 383 11 124 116 11

36 78 7 81 1229 11 125 235 12

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 235

37 94 9 82 765 12 126 761 12

38 243 10 83 1278 11 127 92 13

39 429 11 84 314 13 128 237 12

40 236 12 85 10 4 129 989 12

41 1520 13 86 66 7 130 806 12

42 14 6 87 467 9 131 94 13

43 225 8 88 1245 11 ESCAPE 22 7

44 932 10

Table 182: Low Motion Intra Indexed Run and Level Table (Last = 0)

Index Run Level Index Run Level Index Run Level

0 0 1 29 2 3 57 7 3

1 0 2 30 2 4 58 8 1

2 0 3 31 2 5 59 8 2

3 0 4 32 2 6 60 8 3

4 0 5 33 2 7 61 9 1

5 0 6 34 2 8 62 9 2

6 0 7 35 3 1 63 9 3

7 0 8 36 3 2 64 10 1

8 0 9 37 3 3 65 10 2

9 0 10 38 3 4 66 10 3

10 0 11 39 3 5 67 11 1

11 0 12 40 3 6 68 11 2

12 0 13 41 3 7 69 11 3

13 0 14 42 4 1 70 12 1

14 0 15 43 4 2 71 12 2

15 0 16 44 4 3 72 12 3

16 1 1 45 4 4 73 13 1

17 1 2 46 4 5 74 13 2

18 1 3 47 5 1 75 13 3

19 1 4 48 5 2 76 14 1

20 1 5 49 5 3 77 14 2

21 1 6 50 5 4 78 15 1

22 1 7 51 6 1 79 15 2

23 1 8 52 6 2 80 16 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 236

24 1 9 53 6 3 81 17 1

25 1 10 54 6 4 82 18 1

26 1 11 55 7 1 83 19 1

27 2 1 56 7 2 84 20 1

28 2 2

Table 183: Low Motion Intra Indexed Run and Level Table (Last = 1)

Index Run Level Index Run Level Index Run Level

85 0 1 101 5 1 117 13 1

86 0 2 102 5 2 118 13 2

87 0 3 103 6 1 119 14 1

88 0 4 104 6 2 120 15 1

89 1 1 105 7 1 121 16 1

90 1 2 106 7 2 122 17 1

91 1 3 107 8 1 123 18 1

92 1 4 108 8 2 124 19 1

93 2 1 109 9 1 125 20 1

94 2 2 110 9 2 126 21 1

95 2 3 111 10 1 127 22 1

96 3 1 112 10 2 128 23 1

97 3 2 113 11 1 129 24 1

98 3 3 114 11 2 130 25 1

99 4 1 115 12 1 131 26 1

100 4 2 116 12 2

Table 184: Low Motion Intra Delta Level Indexed by Run Table (Last = 0)

Run Delta Level Run Delta Level

0 16 11 3

1 11 12 3

2 8 13 3

3 7 14 2

4 5 15 2

5 4 16 1

6 4 17 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 237

7 3 18 1

8 3 19 1

9 3 20 1

10 3

Table 185: Low Motion Intra Delta Level Indexed by Run Table (Last = 1)

Run Delta Level Run Delta Level

0 4 14 1

1 4 15 1

2 3 16 1

3 3 17 1

4 2 18 1

5 2 19 1

6 2 20 1

7 2 21 1

8 2 22 1

9 2 23 1

10 2 24 1

11 2 25 1

12 2 26 1

13 2

Table 186: Low Motion Intra Delta Run Indexed by Level Table (Last = 0)

Level Delta Run Level Delta Run

1 20 9 1

2 15 10 1

3 13 11 1

4 6 12 0

5 4 13 0

6 3 14 0

7 3 15 0

8 2 16 0

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 238

Table 187: Low Motion Intra Delta Run Indexed by Level Table (Last = 1)

Level Delta Run

1 26

2 13

3 3

4 1

11.8.3 Low Motion Inter Tables

Table 188: Low Motion Inter VLC Table

Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size

0 4 3 50 384 11 100 4 6

1 20 5 51 1436 14 101 796 12

2 23 7 52 125 8 102 6 6

3 127 8 53 356 12 103 200 13

4 340 9 54 1901 15 104 13 6

5 498 10 55 2 9 105 474 13

6 191 11 56 397 11 106 7 6

7 101 12 57 5505 13 107 201 13

8 2730 12 58 173 8 108 1 7

9 1584 13 59 96 12 109 46 14

10 5527 13 60 3175 14 110 20 7

11 951 14 61 28 9 111 5526 13

12 11042 14 62 238 13 112 10 7

13 3046 15 63 3 9 113 2754 12

14 11 4 64 719 13 114 22 7

15 55 7 65 217 9 115 347 14

16 98 9 66 5504 13 116 21 7

17 7 11 67 2 11 117 346 14

18 358 12 68 387 11 118 15 8

19 206 13 69 87 12 119 94 15

20 5520 13 70 97 12 120 126 8

21 1526 14 71 49 11 121 171 8

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 239

22 3047 15 72 102 12 122 45 9

23 7 5 73 1585 13 123 216 9

24 109 8 74 1586 13 124 11 9

25 3 11 75 172 13 125 20 10

26 799 12 76 797 12 126 691 10

27 1522 14 77 118 12 127 499 10

28 2 6 78 58 11 128 58 10

29 97 9 79 357 12 129 0 10

30 85 12 80 3174 14 130 88 10

31 479 14 81 3 2 131 46 9

32 26 6 82 84 7 132 94 10

33 30 10 83 683 10 133 1379 11

34 2761 12 84 22 13 134 236 12

35 11043 14 85 1527 14 135 84 12

36 30 6 86 5 4 136 2753 12

37 31 10 87 248 9 137 5462 13

38 2755 12 88 2729 12 138 762 13

39 11051 14 89 95 15 139 385 11

40 6 7 90 4 4 140 5463 13

41 4 11 91 28 10 141 1437 14

42 760 13 92 5456 13 142 10915 14

43 25 7 93 4 5 143 11050 14

44 6 11 94 119 11 144 478 14

45 1597 13 95 1900 15 145 1596 13

46 87 7 96 14 5 146 207 13

47 386 11 97 10 12 147 5524 13

48 10914 14 98 12 5 ESCAPE 13 9

49 4 8 99 1378 11

Table 189: Low Motion Inter Indexed Run and Level Table (Last = 0)

Index Run Level Index Run Level Index Run Level

0 0 1 27 2 5 54 10 3

1 0 2 28 3 1 55 11 1

2 0 3 29 3 2 56 11 2

3 0 4 30 3 3 57 11 3

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 240

4 0 5 31 3 4 58 12 1

5 0 6 32 4 1 59 12 2

6 0 7 33 4 2 60 12 3

7 0 8 34 4 3 61 13 1

8 0 9 35 4 4 62 13 2

9 0 10 36 5 1 63 14 1

10 0 11 37 5 2 64 14 2

11 0 12 38 5 3 65 15 1

12 0 13 39 5 4 66 15 2

13 0 14 40 6 1 67 16 1

14 1 1 41 6 2 68 17 1

15 1 2 42 6 3 69 18 1

16 1 3 43 7 1 70 19 1

17 1 4 44 7 2 71 20 1

18 1 5 45 7 3 72 21 1

19 1 6 46 8 1 73 22 1

20 1 7 47 8 2 74 23 1

21 1 8 48 8 3 75 24 1

22 1 9 49 9 1 76 25 1

23 2 1 50 9 2 77 26 1

24 2 2 51 9 3 78 27 1

25 2 3 52 10 1 79 28 1

26 2 4 53 10 2 80 29 1

Table 190: Low Motion Inter Indexed Run and Level Table (Last = 1)

Index Run Level Index Run Level Index Run Level

81 0 1 104 8 1 126 22 1

82 0 2 105 8 2 127 23 1

83 0 3 106 9 1 128 24 1

84 0 4 107 9 2 129 25 1

85 0 5 108 10 1 130 26 1

86 1 1 109 10 2 131 27 1

87 1 2 110 11 1 132 28 1

88 1 3 111 11 2 133 29 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 241

89 1 4 112 12 1 134 30 1

90 2 1 113 12 2 135 31 1

91 2 2 114 13 1 136 32 1

92 2 3 115 13 2 137 33 1

93 3 1 116 14 1 138 34 1

94 3 2 117 14 2 139 35 1

95 3 3 118 15 1 140 36 1

96 4 1 119 15 2 141 37 1

97 4 2 120 16 1 142 38 1

98 5 1 121 17 1 143 39 1

99 5 2 122 18 1 144 40 1

100 6 1 123 19 1 145 41 1

101 6 2 124 20 1 146 42 1

102 7 1 125 21 1 147 43 1

103 7 2

Table 191: Low Motion Inter Delta Level Indexed by Run Table (Last = 0)

Run Delta Level Run Delta Level

0 14 15 2

1 9 16 1

2 5 17 1

3 4 18 1

4 4 19 1

5 4 20 1

6 3 21 1

7 3 22 1

8 3 23 1

9 3 24 1

10 3 25 1

11 3 26 1

12 3 27 1

13 2 28 1

14 2 29 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 242

Table 192: Low Motion Inter Delta Level Indexed by Run Table (Last = 1)

Run Delta Level Run Delta Level

0 5 22 1

1 4 23 1

2 3 24 1

3 3 25 1

4 2 26 1

5 2 27 1

6 2 28 1

7 2 29 1

8 2 30 1

9 2 31 1

10 2 32 1

11 2 33 1

12 2 34 1

13 2 35 1

14 2 36 1

15 2 37 1

16 1 38 1

17 1 39 1

18 1 40 1

19 1 41 1

20 1 42 1

21 1 43 1

Table 193: Low Motion Inter Delta Run Indexed by Level Table (Last = 0)

Level Delta Run Level Delta Run

1 29 8 1

2 15 9 1

3 12 10 0

4 5 11 0

5 2 12 0

6 1 13 0

7 1 14 0

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 243

Table 194: Low Motion Inter Delta Run Indexed by Level Table (Last = 1)

Level Delta Run

1 43

2 15

3 3

4 1

5 0

11.8.4 Mid Rate Intra Tables

Table 195: Mid Rate Intra VLC Table

Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size

0 2 2 35 83 12 69 22 8

1 6 3 36 85 12 70 23 9

2 15 4 37 11 5 71 6 10

3 13 5 38 21 7 72 5 11

4 12 5 39 30 9 73 4 11

5 21 6 40 12 10 74 89 12

6 19 6 41 86 12 75 15 6

7 18 6 42 17 6 76 22 9

8 23 7 43 27 8 77 5 10

9 31 8 44 29 9 78 14 6

10 30 8 45 11 10 79 4 10

11 29 8 46 16 6 80 17 7

12 37 9 47 34 9 81 36 11

13 36 9 48 10 10 82 16 7

14 35 9 49 13 6 83 37 11

15 33 9 50 28 9 84 19 7

16 33 10 51 8 10 85 90 12

17 32 10 52 18 7 86 21 8

18 15 10 53 27 9 87 91 12

19 14 10 54 84 12 88 20 8

20 7 11 55 20 7 89 19 8

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 244

21 6 11 56 26 9 90 26 8

22 32 11 57 87 12 91 21 9

23 33 11 58 25 8 92 20 9

24 80 12 59 9 10 93 19 9

25 81 12 60 24 8 94 18 9

26 82 12 61 35 11 95 17 9

27 14 4 62 23 8 96 38 11

28 20 6 63 25 9 97 39 11

29 22 7 64 24 9 98 92 12

30 28 8 65 7 10 99 93 12

31 32 9 66 88 12 100 94 12

32 31 9 67 7 4 101 95 12

33 13 10 68 12 6 ESCAPE 3 7

34 34 11

Table 196: Mid Rate Intra Indexed Run and Level Table (Last = 0)

Index Run Level Index Run Level Index Run Level

0 0 1 23 0 24 45 3 4

1 0 2 24 0 25 46 4 1

2 0 3 25 0 26 47 4 2

3 0 4 26 0 27 48 4 3

4 0 5 27 1 1 49 5 1

5 0 6 28 1 2 50 5 2

6 0 7 29 1 3 51 5 3

7 0 8 30 1 4 52 6 1

8 0 9 31 1 5 53 6 2

9 0 10 32 1 6 54 6 3

10 0 11 33 1 7 55 7 1

11 0 12 34 1 8 56 7 2

12 0 13 35 1 9 57 7 3

13 0 14 36 1 10 58 8 1

14 0 15 37 2 1 59 8 2

15 0 16 38 2 2 60 9 1

16 0 17 39 2 3 61 9 2

17 0 18 40 2 4 62 10 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 245

18 0 19 41 2 5 63 11 1

19 0 20 42 3 1 64 12 1

20 0 21 43 3 2 65 13 1

21 0 22 44 3 3 66 14 1

22 0 23

Table 197: Mid Rate Intra Indexed Run and Level Table (Last = 1)

Index Run Level Index Run Level Index Run Level

67 0 1 79 2 2 91 10 1

68 0 2 80 3 1 92 11 1

69 0 3 81 3 2 93 12 1

70 0 4 82 4 1 94 13 1

71 0 5 83 4 2 95 14 1

72 0 6 84 5 1 96 15 1

73 0 7 85 5 2 97 16 1

74 0 8 86 6 1 98 17 1

75 1 1 87 6 2 99 18 1

76 1 2 88 7 1 100 19 1

77 1 3 89 8 1 101 20 1

78 2 1 90 9 1

Table 198: Mid Rate Intra Delta Level Indexed by Run Table (Last = 0)

Run Delta Level Run Delta Level

0 27 8 2

1 10 9 2

2 5 10 1

3 4 11 1

4 3 12 1

5 3 13 1

6 3 14 1

7 3

Table 199: Mid Rate Intra Delta Level Indexed by Run Table (Last = 1)

Run Delta Level Run Delta Level

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 246

0 8 11 1

1 3 12 1

2 2 13 1

3 2 14 1

4 2 15 1

5 2 16 1

6 2 17 1

7 1 18 1

8 1 19 1

9 1 20 1

10 1

Table 200: Mid Rate Intra Delta Run Indexed by Level Table (Last = 0)

Level Delta Run Level Delta Run

1 14 15 0

2 9 16 0

3 7 17 0

4 3 18 0

5 2 19 0

6 1 20 0

7 1 21 0

8 1 22 0

9 1 23 0

10 1 24 0

11 0 25 0

12 0 26 0

13 0 27 0

14 0

Table 201: Mid Rate Intra Delta Run Indexed by Level Table (Last = 1)

Level Delta Run

1 20

2 6

3 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 247

4 0

5 0

6 0

7 0

8 0

11.8.5 Mid Rate Inter Tables

Table 202: Mid Rate Inter VLC Table

Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size

0 2 2 35 10 10 69 16 7

1 15 4 36 17 6 70 26 8

2 21 6 37 9 10 71 25 8

3 23 7 38 16 6 72 24 8

4 31 8 39 8 10 73 23 8

5 37 9 40 22 7 74 22 8

6 36 9 41 85 12 75 21 8

7 33 10 42 21 7 76 20 8

8 32 10 43 20 7 77 19 8

9 7 11 44 28 8 78 24 9

10 6 11 45 27 8 79 23 9

11 32 11 46 33 9 80 22 9

12 6 3 47 32 9 81 21 9

13 20 6 48 31 9 82 20 9

14 30 8 49 30 9 83 19 9

15 15 10 50 29 9 84 18 9

16 33 11 51 28 9 85 17 9

17 80 12 52 27 9 86 7 10

18 14 4 53 26 9 87 6 10

19 29 8 54 34 11 88 5 10

20 14 10 55 35 11 89 4 10

21 81 12 56 86 12 90 36 11

22 13 5 57 87 12 91 37 11

23 35 9 58 7 4 92 38 11

24 13 10 59 25 9 93 39 11

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 248

25 12 5 60 5 11 94 88 12

26 34 9 61 15 6 95 89 12

27 82 12 62 4 11 96 90 12

28 11 5 63 14 6 97 91 12

29 12 10 64 13 6 98 92 12

30 83 12 65 12 6 99 93 12

31 19 6 66 19 7 100 94 12

32 11 10 67 18 7 101 95 12

33 84 12 68 17 7 ESCAPE 3 7

34 18 6

Table 203: Mid Rate Inter Indexed Run and Level Table (Last = 0)

Index Run Level Index Run Level Index Run Level

0 0 1 20 2 3 39 9 2

1 0 2 21 2 4 40 10 1

2 0 3 22 3 1 41 10 2

3 0 4 23 3 2 42 11 1

4 0 5 24 3 3 43 12 1

5 0 6 25 4 1 44 13 1

6 0 7 26 4 2 45 14 1

7 0 8 27 4 3 46 15 1

8 0 9 28 5 1 47 16 1

9 0 10 29 5 2 48 17 1

10 0 11 30 5 3 49 18 1

11 0 12 31 6 1 50 19 1

12 1 1 32 6 2 51 20 1

13 1 2 33 6 3 52 21 1

14 1 3 34 7 1 53 22 1

15 1 4 35 7 2 54 23 1

16 1 5 36 8 1 55 24 1

17 1 6 37 8 2 56 25 1

18 2 1 38 9 1 57 26 1

19 2 2

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 249

Table 204: Mid Rate Inter Indexed Run and Level Table (Last = 1)

Index Run Level Index Run Level Index Run Level

58 0 1 73 12 1 88 27 1

59 0 2 74 13 1 89 28 1

60 0 3 75 14 1 90 29 1

61 1 1 76 15 1 91 30 1

62 1 2 77 16 1 92 31 1

63 2 1 78 17 1 93 32 1

64 3 1 79 18 1 94 33 1

65 4 1 80 19 1 95 34 1

66 5 1 81 20 1 96 35 1

67 6 1 82 21 1 97 36 1

68 7 1 83 22 1 98 37 1

69 8 1 84 23 1 99 38 1

70 9 1 85 24 1 100 39 1

71 10 1 86 25 1 101 40 1

72 11 1 87 26 1

Table 205: Mid Rate Inter Delta Level Indexed by Run Table (Last = 0)

Run Delta Level Run Delta Level

0 12 14 1

1 6 15 1

2 4 16 1

3 3 17 1

4 3 18 1

5 3 19 1

6 3 20 1

7 2 21 1

8 2 22 1

9 2 23 1

10 2 24 1

11 1 25 1

12 1 26 1

13 1

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 250

Table 206: Mid Rate Inter Delta Level Indexed by Run Table (Last = 1)

Run Delta Level Run Delta Level

0 3 21 1

1 2 22 1

2 1 23 1

3 1 24 1

4 1 25 1

5 1 26 1

6 1 27 1

7 1 28 1

8 1 29 1

9 1 30 1

10 1 31 1

11 1 32 1

12 1 33 1

13 1 34 1

14 1 35 1

15 1 36 1

16 1 37 1

17 1 38 1

18 1 39 1

19 1 40 1

20 1

Table 207: Mid Rate Inter Delta Run Indexed by Level Table (Last = 0)

Level Delta Run Level Delta Run

1 26 7 0

2 10 8 0

3 6 9 0

4 2 10 0

5 1 11 0

6 1 12 0

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 251

Table 208: Mid Rate Inter Delta Run Indexed by Level Table (Last = 1)

Level Delta Run

1 40

2 1

3 0

11.8.6 High Rate Intra Tables

Table 209: High Rate Intra VLC Table

Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size

0 0 2 54 7961 13 108 72 8

1 3 3 55 7605 13 109 1996 11

2 13 4 56 9 4 110 2721 12

3 5 4 57 16 5 111 384 9

4 28 5 58 41 6 112 1125 11

5 22 5 59 98 7 113 6405 13

6 63 6 60 243 8 114 994 10

7 58 6 61 173 8 115 3777 12

8 46 6 62 485 9 116 15515 14

9 34 6 63 377 9 117 756 10

10 123 7 64 156 9 118 2248 12

11 103 7 65 945 10 119 1985 11

12 95 7 66 686 10 120 2344 13

13 71 7 67 295 10 121 1505 11

14 38 7 68 1902 11 122 12813 14

15 239 8 69 1392 11 123 3778 12

16 205 8 70 629 11 124 25624 15

17 193 8 71 3877 12 125 7988 13

18 169 8 72 3776 12 126 120 7

19 79 8 73 2720 12 127 341 9

20 498 9 74 2263 12 128 1362 11

21 477 9 75 7756 13 129 6431 13

22 409 9 76 8 5 130 250 8

23 389 9 77 99 7 131 2012 11

24 349 9 78 175 8 132 6407 13

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 252

25 283 9 79 379 9 133 172 8

26 1007 10 80 947 10 134 585 11

27 993 10 81 2013 11 135 5041 14

28 968 10 82 1600 11 136 502 9

29 817 10 83 3981 12 137 2786 12

30 771 10 84 3009 12 138 476 9

31 753 10 85 1169 12 139 1261 12

32 672 10 86 40 6 140 388 9

33 563 10 87 195 8 141 6404 13

34 294 10 88 337 9 142 342 9

35 1984 11 89 673 10 143 2521 13

36 1903 11 90 1395 11 144 999 10

37 1900 11 91 3779 12 145 2345 13

38 1633 11 92 7989 13 146 946 10

39 1540 11 93 101 7 147 15208 14

40 1394 11 94 474 9 148 757 10

41 1361 11 95 687 10 149 5040 14

42 1130 11 96 631 11 150 802 10

43 628 11 97 2249 12 151 15209 14

44 3879 12 98 6017 13 152 564 10

45 3876 12 99 37 7 153 31029 15

46 3803 12 100 280 9 154 1991 11

47 3214 12 101 1606 11 155 51251 16

48 3083 12 102 2726 12 156 1632 11

49 3082 12 103 6016 13 157 31028 15

50 2787 12 104 201 8 158 587 11

51 2262 12 105 801 10 159 51250 16

52 1168 12 106 3995 12 160 2727 12

53 1173 12 107 6430 13 161 7960 13

 ESCAPE 122 7

Table 210: High Rate Intra Indexed Run and Level Table (Last = 0)

Index Run Level Index Run Level Index Run Level

0 0 1 42 0 43 84 2 9

1 0 2 43 0 44 85 2 10

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 253

2 0 3 44 0 45 86 3 1

3 0 4 45 0 46 87 3 2

4 0 5 46 0 47 88 3 3

5 0 6 47 0 48 89 3 4

6 0 7 48 0 49 90 3 5

7 0 8 49 0 50 91 3 6

8 0 9 50 0 51 92 3 7

9 0 10 51 0 52 93 4 1

10 0 11 52 0 53 94 4 2

11 0 12 53 0 54 95 4 3

12 0 13 54 0 55 96 4 4

13 0 14 55 0 56 97 4 5

14 0 15 56 1 1 98 4 6

15 0 16 57 1 2 99 5 1

16 0 17 58 1 3 100 5 2

17 0 18 59 1 4 101 5 3

18 0 19 60 1 5 102 5 4

19 0 20 61 1 6 103 5 5

20 0 21 62 1 7 104 6 1

21 0 22 63 1 8 105 6 2

22 0 23 64 1 9 106 6 3

23 0 24 65 1 10 107 6 4

24 0 25 66 1 11 108 7 1

25 0 26 67 1 12 109 7 2

26 0 27 68 1 13 110 7 3

27 0 28 69 1 14 111 8 1

28 0 29 70 1 15 112 8 2

29 0 30 71 1 16 113 8 3

30 0 31 72 1 17 114 9 1

31 0 32 73 1 18 115 9 2

32 0 33 74 1 19 116 9 3

33 0 34 75 1 20 117 10 1

34 0 35 76 2 1 118 10 2

35 0 36 77 2 2 119 11 1

36 0 37 78 2 3 120 11 2

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 254

37 0 38 79 2 4 121 12 1

38 0 39 80 2 5 122 12 2

39 0 40 81 2 6 123 13 1

40 0 41 82 2 7 124 13 2

41 0 42 83 2 8 125 14 1

Table 211: High Rate Intra Indexed Run and Level Table (Last = 1)

Index Run Level Index Run Level Index Run Level

126 0 1 138 4 1 150 10 1

127 0 2 139 4 2 151 10 2

128 0 3 140 5 1 152 11 1

129 0 4 141 5 2 153 11 2

130 1 1 142 6 1 154 12 1

131 1 2 143 6 2 155 12 2

132 1 3 144 7 1 156 13 1

133 2 1 145 7 2 157 13 2

134 2 2 146 8 1 158 14 1

135 2 3 147 8 2 159 14 2

136 3 1 148 9 1 160 15 1

137 3 2 149 9 2 161 16 1

Table 212: High Rate Intra Delta Level Indexed by Run Table (Last = 0)

Run Delta Level Run Delta Level

0 56 8 3

1 20 9 3

2 10 10 2

3 7 11 2

4 6 12 2

5 5 13 2

6 4 14 1

7 3

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 255

Table 213: High Rate Intra Delta Level Indexed by Run Table (Last = 1)

Run Delta Level Run Delta Level

0 4 9 2

1 3 10 2

2 3 11 2

3 2 12 2

4 2 13 2

5 2 14 2

6 2 15 1

7 2 16 1

8 2

Table 214: High Rate Intra Delta Run Indexed by Level Table (Last = 0)

Level Delta Run Level Delta Run

1 14 29 0

2 13 30 0

3 9 31 0

4 6 32 0

5 5 33 0

6 4 34 0

7 3 35 0

8 2 36 0

9 2 37 0

10 2 38 0

11 1 39 0

12 1 40 0

13 1 41 0

14 1 42 0

15 1 43 0

16 1 44 0

17 1 45 0

18 1 46 0

19 1 47 0

20 1 48 0

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 256

21 0 49 0

22 0 50 0

23 0 51 0

24 0 52 0

25 0 53 0

26 0 54 0

27 0 55 0

28 0 56 0

Table 215: High Rate Intra Delta Run Indexed by Level Table (Last = 1)

Level Delta Run

1 16

2 14

3 2

4 0

11.8.7 High Rate Inter Tables

Table 216: High Rate Inter VLC Table

Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size

0 2 2 59 7 5 118 31989 15

1 0 3 60 472 9 119 117 7

2 30 5 61 728 11 120 3364 12

3 4 5 62 7975 13 121 63977 16

4 18 6 63 13460 14 122 46 7

5 112 7 64 53 6 123 7970 13

6 26 7 65 993 10 124 33 7

7 95 8 66 1436 12 125 1359 13

8 71 8 67 14531 14 126 20 7

9 467 9 68 12 6 127 14916 14

10 181 9 69 357 10 128 228 8

11 87 9 70 7459 13 129 31991 15

12 949 10 71 5688 14 130 94 8

13 365 10 72 104 7 131 29061 15

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 257

14 354 10 73 1683 11 132 55 8

15 1998 11 74 14917 14 133 11379 15

16 1817 11 75 32 7 134 475 9

17 1681 11 76 3984 12 135 23005 16

18 710 11 77 31990 15 136 455 9

19 342 11 78 232 8 137 26923 15

20 3986 12 79 1423 12 138 422 9

21 3374 12 80 11503 15 139 22757 16

22 3360 12 81 69 8 140 180 9

23 1438 12 82 2874 13 141 127952 17

24 1128 12 83 497 9 142 176 9

25 678 12 84 15174 14 143 45513 17

26 7586 13 85 423 9 144 998 10

27 7264 13 86 5750 14 145 92016 18

28 6723 13 87 86 9 146 366 10

29 2845 13 88 26922 15 147 255906 18

30 2240 13 89 909 10 148 283 10

31 1373 13 90 58121 16 149 1023629 20

32 3 3 91 170 10 150 217 10

33 10 5 92 116241 17 151 1023631 20

34 119 7 93 735 11 152 168 10

35 229 8 94 46009 17 153 182051 19

36 473 9 95 712 11 154 1865 11

37 997 10 96 232480 18 155 929924 20

38 358 10 97 432 11 156 1686 11

39 1684 11 98 91024 18 157 364101 20

40 338 11 99 3999 12 158 734 11

41 1439 12 100 92017 18 159 728200 21

42 7996 13 101 3792 12 160 561 11

43 6731 13 102 464963 19 161 1859850 21

44 1374 13 103 3370 12 162 433 11

45 12 4 104 1023628 20 163 7439405 23

46 125 7 105 1121 12 164 3371 12

47 68 8 106 1023630 20 165 3719703 22

48 992 10 107 2919 13 166 3375 12

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 258

49 1897 11 108 1375 13 167 1456403 22

50 3633 12 109 63 6 168 1458 12

51 7974 13 110 109 9 169 1456402 22

52 1372 13 111 3728 12 170 1129 12

53 27 5 112 1358 13 171 7439404 23

54 226 8 113 19 6 172 6722 13

55 933 10 114 281 10 173 2241 13

56 713 11 115 2918 13 ESCAPE 115 7

57 7971 13 116 11 6

58 15175 14 117 565 11

Table 217: High Rate Inter Indexed Run and Level Table (Last = 0)

Index Run Level Index Run Level Index Run Level

0 0 1 37 1 6 74 7 3

1 0 2 38 1 7 75 8 1

2 0 3 39 1 8 76 8 2

3 0 4 40 1 9 77 8 3

4 0 5 41 1 10 78 9 1

5 0 6 42 1 11 79 9 2

6 0 7 43 1 12 80 9 3

7 0 8 44 1 13 81 10 1

8 0 9 45 2 1 82 10 2

9 0 10 46 2 2 83 11 1

10 0 11 47 2 3 84 11 2

11 0 12 48 2 4 85 12 1

12 0 13 49 2 5 86 12 2

13 0 14 50 2 6 87 13 1

14 0 15 51 2 7 88 13 2

15 0 16 52 2 8 89 14 1

16 0 17 53 3 1 90 14 2

17 0 18 54 3 2 91 15 1

18 0 19 55 3 3 92 15 2

19 0 20 56 3 4 93 16 1

20 0 21 57 3 5 94 16 2

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 259

21 0 22 58 3 6 95 17 1

22 0 23 59 4 1 96 17 2

23 0 24 60 4 2 97 18 1

24 0 25 61 4 3 98 18 2

25 0 26 62 4 4 99 19 1

26 0 27 63 4 5 100 19 2

27 0 28 64 5 1 101 20 1

28 0 29 65 5 2 102 20 2

29 0 30 66 5 3 103 21 1

30 0 31 67 5 4 104 21 2

31 0 32 68 6 1 105 22 1

32 1 1 69 6 2 106 22 2

33 1 2 70 6 3 107 23 1

34 1 3 71 6 4 108 24 1

35 1 4 72 7 1

36 1 5 73 7 2

Table 218: High Rate Inter Indexed Run and Level Table (Last = 1)

Index Run Level Index Run Level Index Run Level

109 0 1 131 8 2 153 19 2

110 0 2 132 9 1 154 20 1

111 0 3 133 9 2 155 20 2

112 0 4 134 10 1 156 21 1

113 1 1 135 10 2 157 21 2

114 1 2 136 11 1 158 22 1

115 1 3 137 11 2 159 22 2

116 2 1 138 12 1 160 23 1

117 2 2 139 12 2 161 23 2

118 2 3 140 13 1 162 24 1

119 3 1 141 13 2 163 24 2

120 3 2 142 14 1 164 25 1

121 3 3 143 14 2 165 25 2

122 4 1 144 15 1 166 26 1

123 4 2 145 15 2 167 26 2

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 260

124 5 1 146 16 1 168 27 1

125 5 2 147 16 2 169 27 2

126 6 1 148 17 1 170 28 1

127 6 2 149 17 2 171 28 2

128 7 1 150 18 1 172 29 1

129 7 2 151 18 2 173 30 1

130 8 1 152 19 1

Table 219: High Rate Inter Delta Level Indexed by Run Table (Last = 0)

Run Delta Level Run Delta Level

0 32 13 2

1 13 14 2

2 8 15 2

3 6 16 2

4 5 17 2

5 4 18 2

6 4 19 2

7 3 20 2

8 3 21 2

9 3 22 2

10 2 23 1

11 2 24 1

12 2

Table 220: High Rate Inter Delta Level Indexed by Run Table (Last = 1)

Run Delta Level Run Delta Level

0 4 16 2

1 3 17 2

2 3 18 2

3 3 19 2

4 2 20 2

5 2 21 2

6 2 22 2

7 2 23 2

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 261

8 2 24 2

9 2 25 2

10 2 26 2

11 2 27 2

12 2 28 2

13 2 29 1

14 2 30 1

15 2

Table 221: High Rate Inter Delta Run Indexed by Level Table (Last = 0)

Level Delta Run Level Delta Run

1 24 17 0

2 22 18 0

3 9 19 0

4 6 20 0

5 4 21 0

6 3 22 0

7 2 23 0

8 2 24 0

9 1 25 0

10 1 26 0

11 1 27 0

12 1 28 0

13 1 29 0

14 0 30 0

15 0 31 0

16 0 32 0

Table 222: High Rate Inter Delta Run Indexed by Level Table (Last = 1)

Level Delta Run

1 30

2 28

3 3

4 0

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 262

11.9 Zigzag Tables

11.9.1 Intra zigzag tables

Table 223: Intra Normal Scan

0 2 3 9 10 21 22 36

1 4 8 11 20 23 35 37

5 7 12 19 24 34 38 49

6 13 18 25 33 39 48 50

14 16 26 32 40 47 51 58

15 27 31 41 46 52 57 59

17 29 42 44 53 55 60 62

28 30 43 45 54 56 61 63

Table 224: Intra Horizontal Scan

0 1 3 4 10 11 22 23

2 5 9 12 21 24 36 37

6 8 13 20 25 35 38 48

7 14 19 26 34 39 47 49

15 18 27 33 40 46 50 57

16 28 32 41 45 51 56 58

17 30 42 44 52 55 59 62

29 31 43 53 54 60 61 63

Table 225: Intra Vertical Scan

0 3 8 9 20 21 34 35

1 7 10 19 22 33 36 49

2 11 18 23 32 37 48 50

4 12 17 24 31 38 47 51

5 16 25 30 39 46 52 57

6 15 29 40 45 53 56 58

13 26 28 41 44 55 59 62

14 27 42 43 54 60 61 63

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 263

11.9.2 Inter zigzag tables

Table 226: Inter 8x8 Scan for Simple and Main Profiles and Progressive Mode in Advanced Profile

0 2 3 9 10 23 24 38

1 4 8 11 22 25 37 39

5 7 12 21 26 36 40 51

6 13 20 27 35 41 50 52

14 19 28 34 42 49 53 60

15 18 33 43 48 54 59 61

16 29 32 44 47 55 58 62

17 30 31 45 46 56 57 63

Table 227: Inter 8x4 Scan for Simple and Main Profiles

0 1 2 4 8 14 21 27

3 5 6 9 13 17 24 29

7 10 12 15 18 22 25 30

11 16 19 20 23 26 28 31

Table 228: Inter 4x8 Scan for Simple and Main Profiles

0 2 7 19

1 4 9 22

3 6 12 24

5 10 15 26

8 14 18 28

11 17 23 29

13 20 25 30

16 21 27 31

Table 229: Inter 4x4 Scan for Simple and Main Profiles and Progressive Mode in Advanced Profile

0 3 7 11

1 4 8 12

2 6 9 14

5 10 13 15

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 264

Table 230: Progressive Mode Inter 8x4 Scan for Advanced Profile

0 2 4 7 10 14 21 27

1 5 6 11 13 17 24 29

3 9 12 15 18 22 25 30

8 16 19 20 23 26 28 31

Table 231: Progressive Mode Inter 4x8 Scan for Advanced Profile

0 1 3 13

2 4 8 17

5 6 11 24

7 10 15 26

9 14 20 28

12 19 23 29

16 21 25 30

18 22 27 31

Table 232: Interlace Mode Inter 8x8 Scan for Advanced Profile

0 2 6 13 17 29 33 38

1 5 12 16 28 32 37 39

3 11 15 27 31 36 40 51

4 14 22 30 35 41 50 52

7 18 23 34 42 49 53 60

8 19 24 43 48 54 59 61

9 20 25 44 47 55 58 62

10 21 26 45 46 56 57 63

Table 233: Interlace Mode Inter 8x4 Scan for Advanced Profile

0 4 6 10 13 17 21 27

1 5 9 14 16 18 24 29

2 7 11 15 19 22 25 30

3 8 12 20 23 26 28 31

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 265

Table 234: Interlace Mode Inter 4x8 Scan for Advanced Profile

0 1 2 9

3 5 8 22

4 7 15 24

6 14 17 26

10 16 19 28

11 18 23 29

12 20 25 30

13 21 27 31

Table 235: Interlace Mode Inter 4x4 Scan for Advanced Profile

0 4 7 11

1 5 9 13

2 6 10 14

3 8 12 15

11.10 Motion Vector Differential Tables

Table 236: Motion Vector Differential VLC Table 0

Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size

0 0 6 25 167 10 50 21 5

1 2 7 26 49 8 51 22 5

2 3 7 27 194 10 52 39 6

3 8 8 28 195 10 53 204 9

4 576 14 29 581 14 54 103 8

5 3 6 30 582 14 55 23 5

6 2 5 31 583 14 56 24 5

7 6 6 32 292 13 57 25 5

8 5 7 33 293 13 58 104 7

9 577 14 34 294 13 59 410 10

10 578 14 35 13 6 60 105 7

11 7 6 36 2 3 61 106 7

12 8 6 37 7 5 62 107 7

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 266

13 9 6 38 24 6 63 108 7

14 40 8 39 50 8 64 109 7

15 19 9 40 102 9 65 220 8

16 37 10 41 295 13 66 411 10

17 82 9 42 13 5 67 442 9

18 21 7 43 7 4 68 222 8

19 22 7 44 8 4 69 443 9

20 23 7 45 18 5 70 446 9

21 579 14 46 50 7 71 447 9

22 580 14 47 103 9 72 7 3

23 166 10 48 38 6

24 96 9 49 20 5

Table 237: Motion Vector Differential VLC Table 1

Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size

0 0 5 25 3012 14 50 58 6

1 4 7 26 3013 14 51 163 8

2 5 7 27 3014 14 52 236 8

3 3 6 28 3015 14 53 237 8

4 4 6 29 3016 14 54 3023 14

5 3 5 30 3017 14 55 119 7

6 4 5 31 3018 14 56 120 7

7 5 6 32 3019 14 57 242 8

8 20 7 33 3020 14 58 122 7

9 6 5 34 3021 14 59 486 9

10 21 7 35 3022 14 60 1512 13

11 44 8 36 1 2 61 487 9

12 45 8 37 4 3 62 246 8

13 46 8 38 15 6 63 494 9

14 3008 14 39 160 8 64 1513 13

15 95 9 40 161 8 65 495 9

16 112 9 41 41 6 66 1514 13

17 113 9 42 6 3 67 1515 13

18 57 8 43 11 4 68 1516 13

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 267

19 3009 14 44 42 6 69 1517 13

20 3010 14 45 162 8 70 1518 13

21 116 9 46 43 6 71 1519 13

22 117 9 47 119 9 72 31 5

23 3011 14 48 56 6

24 118 9 49 57 6

Table 238: Motion Vector Differential VLC Table 2

Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size

0 0 3 25 276 11 50 297 11

1 512 12 26 277 11 51 298 11

2 513 12 27 278 11 52 299 11

3 514 12 28 279 11 53 300 11

4 515 12 29 280 11 54 301 11

5 2 3 30 281 11 55 302 11

6 3 4 31 282 11 56 303 11

7 258 11 32 283 11 57 304 11

8 259 11 33 284 11 58 305 11

9 260 11 34 285 11 59 306 11

10 261 11 35 286 11 60 307 11

11 262 11 36 1 1 61 308 11

12 263 11 37 5 5 62 309 11

13 264 11 38 287 11 63 310 11

14 265 11 39 288 11 64 311 11

15 266 11 40 289 11 65 312 11

16 267 11 41 290 11 66 313 11

17 268 11 42 6 4 67 314 11

18 269 11 43 7 4 68 315 11

19 270 11 44 291 11 69 316 11

20 271 11 45 292 11 70 317 11

21 272 11 46 293 11 71 318 11

22 273 11 47 294 11 72 319 11

23 274 11 48 295 11

24 275 11 49 296 11

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 268

Table 239: Motion Vector Differential VLC Table 3

Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size Index
VLC

Codeword VLC Size

0 0 15 25 6 10 50 5 3

1 1 11 26 14 11 51 18 5

2 1 15 27 8 10 52 29 6

3 2 15 28 106 15 53 152 8

4 3 15 29 107 15 54 77 7

5 4 15 30 108 15 55 24 5

6 1 12 31 15 11 56 25 5

7 5 15 32 109 15 57 26 5

8 4 12 33 9 10 58 39 6

9 3 11 34 55 14 59 108 7

10 5 12 35 10 10 60 13 9

11 8 12 36 1 4 61 109 7

12 6 15 37 2 4 62 55 6

13 9 12 38 1 5 63 56 6

14 10 12 39 2 7 64 57 6

15 11 12 40 3 8 65 116 7

16 12 12 41 12 9 66 11 10

17 7 15 42 6 5 67 153 8

18 104 15 43 2 3 68 234 8

19 14 12 44 6 4 69 235 8

20 105 15 45 7 5 70 118 7

21 4 10 46 28 6 71 119 7

22 10 11 47 7 8 72 15 4

23 15 12 48 15 5

24 11 11 49 8 4

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 269

Annex A
 Transform Specification

A.1 Inverse Transform

(This section forms an integral part of this recommendation, and is normative)

The formulas in Figure 108 through Figure 111 defines the Inverse Transform required for conformance. An exact
match to the values produced as specified in this annex is required. Figure 108 defines the implentation for the 8x8
Inverse Transform. Figure 109 defines the implentation for the 4x8 Inverse Transform. Figure 110 defines the
implentation for the 8x4 Inverse Transform. Figure 111 defines the implentation for the 4x4 Inverse Transform.

The size of the input and output samples is representable in 16 bits, although the input requires only 12 bits and the
output requires only 10 bits. 16 bit modulo arithmetic is necessary and sufficient when calculating sums and
differences. When multiplying two numbers, a 16 bit signed representation of the product is necessary and sufficient.

The transform matrices for a 1D 8 point inverse transformation and a 1D 4 point inverse transformation are presented
in Figure 104 and Figure 105.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

=

491516161594

616166616166

916415154169

1212121212121212

154169916415

166616166616

161594491516

1212121212121212

8T

Figure 104: Matrix for 1-D 8-point Inverse Transform

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
=

10-2222-10

17171717

22-10-1022

17171717

4T

Figure 105: Matrix for 1-D 4-point Inverse Transform

These matrices are split into even and odd components, with the even component divided by 2. The even components
are of relevance to the definition of the normative inverse transform, and are shown in Figure 106 and Figure 107.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 270

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−
−−−−

−−−−
−−−−

−−−−
−−−−

−−−−

=

25788752

38833883

48277284

66666666

72855827

83388338

87422478

66666666

8
eT

Figure 106: Even component of 8-point Inverse Transform

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
=

5-1111-5

8888

11-5-511

8888

4
eT

Figure 107: Even component of 4-point Inverse Transform

In the equations shown in Figure 108 through Figure 111, the dequantized transform coefficients forming the input to
the inverse transform are represented as the matrix D. Matrix R represents the reconstructed output. D1 is the
intermediate result after row-wise transformation, which is always the first step. Bitshifts defined on a matrix are
carried out componentwise on the matrix entries, in signed integer arithmetic. The prime operator applied to a matrix
denotes its transpose.

() 3481 >>+⋅= TDD

Error! Objects cannot be created from editing field codes.

Figure 108: 8x8 Inverse Transform

() 3441 >>+⋅= TDD

Error! Objects cannot be created from editing field codes.
Figure 109: 4x8 Inverse Transform

() 3481 >>+⋅= TDD

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 271

[]

632

1

1

00

11

00

11

2

2

2

2

14

12

12

111

>>

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+⋅′=

>>=′
>>=′

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
⋅′=

a

b

b

a

e

bb

aa

ba

D

D

D

D

DTR

DD

DD

DDD

Figure 110: 8x4 Inverse Transform

() 3441 >>+⋅= TDD

[]

632

1

1

00

11

00

11

2

2

2

2

14

12

12

111

>>

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+⋅′=

>>=′
>>=′

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
⋅′=

a

b

b

a

e

bb

aa

ba

D

D

D

D

DTR

DD

DD

DDD

Figure 111: 4x4 Inverse Transform

A.2 Forward Transform

(This section is informative)

There is no requirement of bit-exactness on the forward transform and hence this section is only informative. The
forward transform may be implemented in scaled integer arithmetic or using floating point or other means. The
matrix-multiplication representation of the forward transform shown below is purely an analytical representation
unlike for the inverse transform where it the matrix multiplies specifically referred to integer multiplications with 16
bit registers. Rounding between stages may be done as necessary and this choice is left to the encoder.

The 4x4, 4x8, 8x4 and 8x8 transforms of the data matrix D may be calculated using the following set of equations for
these four cases:

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 272

()
()
()
() 8888

8484

4848

4444

ˆ

ˆ

ˆ

ˆ

NTDTD

NTDTD

NTDTD

NTDTD

o

o

o

o

′=

′=

′=

′=

where the operator o is a componentwise multiplication. The normalization matrices ijN are given by

ijij ccN ′=

where the column vectors c are

′
⎟
⎠

⎞
⎜
⎝

⎛=

′
⎟
⎠

⎞
⎜
⎝

⎛=

289

8

292

8

289

8

288

8

289

8

292

8

289

8

288

8

292

8

289

8

292

8

289

8

8

4

c

c

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 273

Annex B
Spatial Alignment of Video Samples in Variable Resolution Coding

(This annex forms an integral part of this recommendation and is normative)

The following section describes the upsampling and downsampling process used in codec implementation. On the
encoder side, downsampling is applied to the input frame if the current resolution is smaller than the original
resolution as described in section 8.1.1.3. On the decoder side, upsampling is applied to the decoded frame if the
current resolution is smaller than the original resolution. Since both of these operations occur outside the
reconstruction loop, the implementer is free to use any method to upsample or downsample the frames. However,
attention should be paid to the relative spatial positioning of the samples produced from the upsampling and
downsampling processes. In particular, the video samples of the downsampled frame should have the following spatial
alignment with respect to the video samples of the frame at the original resolution.

Figure 112: Relative Spatial Alignment of the video samples of the Downsampled Frame,

and video samples of the Original Frame.

The following definitions are used for the downsampling/upsampling pseudocode examples:

Nu = number of samples in upsampled (full resolution) line

Nd = number of samples in a downsampled (half resolution) line

The term ‘line’ refers to all the samples in a horizontal row or vertical column in a Y, Cb or Cr component plane.
Upsampling or downsampling operations are identical for both rows and columns, so the following examples are
illustrated using one dimensional line of samples. In cases where both vertical and horizontal upsampling or
downsampling is performed, the horizontal lines are resampled first, followed by the vertical lines.

For luminance lines:

Nd = Nu / 2 (where Nu is the number of samples in a full resolution luminance line)

if ((Nd & 15) != 0)

 Nd = Nd + 16 – (Nd & 15)

For chroma lines:

Nd = Nu / 2 (where Nu is the number of samples in a full resolution chroma line)

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 274

if ((Nd & 7) != 0)

 Nd = Nd + 8 – (Nd & 7)

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 275

Annex C
 Hypothetical reference decoder

(This annex forms an integral part of this recommendation and is normative)

Coded video bit streams shall meet the constraints imposed by a hypothetical reference decoder (HRD) defined in this
annex. The HRD is conceptually connected to the output of an encoder, and consists of a buffer, a decoder, and a
display unit, as illustrated in Figure C.1.

Figure C.1. Components of an HRD: decoder buffer, decoder, and display unit

The HRD does not mandate buffering, decoding, or display mechanisms for decoder implementations. Its main goal is
to limit the encoder’s bit rate fluctuations according to a basic buffering model, so that the resources necessary to
decode the bit stream are predictable.

The HRD may operate in constant-delay mode or variable-delay mode. Constant-delay is appropriate for most
applications, including broadcast, streaming, packaged media (e.g., DVD), etc. Variable-delay is appropriate for video
conferencing.

All computations in this Annex are done with real-values, so that no rounding errors may propagate.

C.1 Leaky Bucket Model

C.1.1 This subclause is informative and defines a leaky bucket model.

The buffering model that governs the operation of the HRD is known as a leaky bucket and is described in this section.
A leaky bucket is characterized by three parameters, (R, B, F), where:

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 276

• R is the peak transmission bit rate (in bits per second) at which bits enter the decoder buffer,
• B is the capacity (in bits) of the decoder buffer, and
• F is the initial decoder buffer fullness (in bits) 2, which shall be smaller than or equal to B.

In the HRD, the video bit stream is received at bit rate smaller than or equal to the peak transmission rate R, and it is
stored into a decoder buffer of size B until the buffer fullness reaches F bits. Then, the decoder instantaneously
removes the bits for the first video frame of the sequence from the buffer, and instantaneously decodes that frame. The
bits for the following frames are also removed and decoded instantaneously at subsequent time intervals.

Figure C.2 illustrates the decoder buffer fullness as a function of time for a bit stream that is contained in a leaky
bucket of parameters (R, B, F). The decoder buffer fullness β i after removing frame i, with i > 1, may be expressed as
follows:

 β1 = F – b1

β i
 = min(B, β i–1 + Ri (ti – ti–1) – bi), (C.1)

where ti is the decoding time for frame i, and bi is the number of bits for frame i. The parameter Ri is the average bit
rate (in bits per second) that enters the buffer during the time interval (ti, ti-1) and is such that Ri <= R for all i. In
Figure C.2, the transmission rate happens to be constant and equal to the peak R, and hence Ri = R for all i.

In the leaky bucket model defined for this HRD, the decoder buffer may fill up, but shall not overflow. To be more
concrete, the buffer fullness at any time instant shall be less than or equal to B. As a result, in equation (C.1), observe
that the min(B, x) operator implies that β i <= B, for all i. An example of a decoder buffer that fills up in several
periods of time is shown in Figure C.3.

When the decoder buffer is full, it is assumed that the encoder will not send any more bits until there is room in the
buffer. This phenomenon occurs frequently in practice. For example, a DVD includes a video coded bit stream of
average rate 4-6 Mbps, while the disk drive speed or peak rate R is about 10 Mbits/sec. Since the bit rate used in most
time intervals is less than 10 Mbits/sec, the decoder buffer is often full. More generally, if an encoder is producing
fewer bits than those available in the channel, the decoder buffer will stop filling up.

2 A leaky bucket may also be specified by parameters (R, B, Fe), where Fe is the initial encoder buffer fullness. Here, we have chosen to use the initial
decoder buffer fullness F.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 277

Figure C.2. The plot illustrates an example of decoder buffer fullness when decoding a generic video bit stream that is contained
in a leaky bucket of parameters (R, B, F). R is the peak incoming (or channel) bit rate in bits/sec, and in this case the transmission
rate is constant and equal to the peak R throughout the video sequence. B is the buffer size in bits and F is the initial decoder buffer
fullness in bits. D = F/R is the initial or start-up (buffer) delay in seconds. The number of bits for the ith frame is bi. The coded
video frames are removed from the buffer (typically according to the video frame rate), as shown by the drops in buffer fullness,
and are decoded instantaneously.

Figure C.3. Plot of decoder buffer fullness, where the fullness reaches the maximum buffer size B during some time segments. In
this example, such segments are a subset of the intervals (t2, t3) and (t3, t4). When the decoder buffer is full, the encoder does not
send any bits.

Decoder buffer underflow occurs usually if an encoder produces relatively large frames. The decoder buffer fullness
may then be reduced to the point that the bits for the next frame are not available at the decoding time.

A leaky bucket with parameters (R, B, F) is said to contain a coded video bit stream if there is no underflow of the
decoder buffer (i.e., β i >= 0, for all i). To be more concrete, a leaky bucket with parameters (R, B, F) contains a
coded video bit stream if the following constraints hold:

 β 1 = F – b1

β i
 = min(B, β i–1 + Ri (ti – ti–1) – bi), i > 1

Ri <= R all i

b

F

t t t

b

b

t

b

B

0
seconds

bits slope
R

D

t -D

t t t

B

0
seconds

bits slope
R

t t t

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 278

β i >= 0 all i (C.2)

C.1.2 This subclause defines a requirement on all video bit streams when the HRD operates in
constant-delay mode.

A compliant video bit stream shall meet the restrictions imposed by equation (C.2), so that at least one leaky bucket
(R, B, F) contains the bit stream. The leaky bucket values (R, B, F) shall be signaled in the bit stream, so that the rate
and buffer size resources necessary to decode this bit stream are predictable.

C.1.3 This subclause is informative only. It describes CBR and VBR bit streams.

A video bit stream that meets the constraints of the equations in (C.2) may be denoted a variable bit rate or VBR bit
stream, e.g., see [MPEG2].

If the constraints in equation (C.2) apply to a bit stream without the min(B, x) operator (i.e., β i
 = β i–1 + Ri (ti – ti–1)

– bi , for all i), and there is no buffer overflow (i.e., β i + bi <= B, for all i), the bit stream may be denoted a constant bit
rate or CBR bit stream.

Since CBR bit streams are a special case of VBR bit streams, this recommendation does not make a distinction
between them.

C.2 Multiple Leaky Buckets

This clause is informative only and explains the concept of multiple leaky buckets.

A given video stream may be contained in many leaky buckets. For example, if a video stream is contained in a leaky
bucket with parameters (R, B, F), it will also be contained in a leaky bucket with a larger buffer size (R, B’, F), B’ > B,
or in a leaky bucket with a higher peak transmission bit rate (R’, B, F), R’ > R, or in a leaky bucket with larger initial
buffer fullness (R, B, F’), F’ > F, F ≤ B. Moreover, it may also be contained in a leaky bucket with a lower peak
transmission bit rate (R’, B, F), R’ < R, if the video is time-limited. In the worst case, as R’ approaches 0, the buffer
size and initial buffer fullness may be as large as the bit stream itself. In short, a video bit stream may be transmitted
at any peak transmission bit rate (regardless of the average bit rate of the sequence) without suffering decoder buffer
underflow, as long as the buffer size and delay are large enough.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 279

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

6

7

8

9

x 10
4

B
m

in
 (

K
bi

ts
)

Rmin (Kbits/sec)

Figure C.4. Illustration of peak bit rate Rmin and buffer size Bmin values for a given video bit stream. This curve
indicates that in order to transmit the stream at a peak bit rate R, the decoder needs to buffer at least Bmin(R) bits.
Observe that higher peak rates require smaller buffer sizes. Alternatively, if the size of the decoder buffer is B, the
minimum peak rate required for transmitting the bit stream is the associated Rmin(B).

Further, as proven in [HRD], for any value of the peak transmission bit rate R, and assuming Ri = R for all i in
equation (C.2), one may find the minimum buffer size Bmin and the minimum initial buffer fullness Fmin that will
contain the video bit stream. These minimum values may be computed using a simple search using the constraints in
(C.2), as demonstrated in [HRD]. By computing Bmin for each R, we may plot a curve of optimum R-B values such as
the one in Figure C.4.

C.3 Bit Stream Syntax for the Hypothetical Reference Decoder

C.3.1 This subclause only applies when the HRD operates in constant-delay mode. It describes
syntax required in a video bit stream that is compliant to the Advanced profile, when
operating in such mode.

The encoder shall signal N leaky bucket models, each of which shall contain the video bit stream, as defined in (C.2).
The desired value of N may be selected by the encoder (where N > 0).

The parameter values of these leaky buckets may be expressed as follows:

 (R1, B1, F1), (R2, B2, F2), … , (RN, BN, FN), (C.3)

The HRD syntax element values are to be communicated to the decoder by the Transport Layer for video bit streams
compliant to the Simple and Main profiles.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 280

The HRD syntax element values shall be inserted at the sequence header for video bit streams compliant to the
Advanced profile, except when the encoder is operating in variable-delay mode. The sequence header for the
Advanced profile is described in Section 6.1.

Observe that the number of bits used in prior frames does not affect the equations in (C.2) to determine the leaky
bucket constraints for the remaining of the video bit stream, and hence the leaky bucket values may be modified
throughout the video bit stream. Also, an encoder may want to use fewer leaky buckets later in the bit stream to avoid
syntax overhead.

The HRD syntax elements are inserted in the video bit stream headers as follows:

hrd_parameters() Descriptor Range

{

 hrd_num_leaky_buckets FLC-5 (1, 32)

 bit_rate_exponent FLC-4 (6,21)

 buffer_size_exponent FLC-4 (4,19)

 for(n=1; n <= hrd_num_leaky_buckets; n++)

 {

 hrd_rate[n] FLC-16 (1,216)

 hrd_buffer[n] FLC-16 (1,216)

 hrd_fullness[n] FLC - 8 (0, 255)

 }

hrd_num_leaky_buckets – A number between 1 and 32 that specifies the number of leaky buckets N. The value of N-
1 is encoded as a fixed length code in binary using 5 bits.

hrd_rate[n] and bit_rate_exponent – These syntax elements define the peak transmission rate Rn in bits per second
for the nth leaky bucket. The mantissa of Rn is encoded in the syntax element hrd_rate[n] using a fixed-length code of
16 bits, and has the range from 1 to 216 . The base-2 exponent of Rn is encoded in the syntax element
bit_rate_exponent in fixed length using 4 bits , and takes the range from 6 to 21.

The rates shall be ordered from smallest to largest, i.e., hrd_rate[n] < hrd_rate[n+1].

hrd_buffer[n] and buffer_size_exponent – These syntax elements define the buffer size Bn in bits for the nth leaky
bucket. The mantissa of Bn is encoded in the syntax element hrd_buffer[n], using a fixed length code of 16 bits, and
has the range 1 to 216. The value of the base-2 exponent of Bn is encoded in the syntax element buffer_size_exponent
using a fixed length of 4 bits, and takes the range from 4 to 19.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 281

The buffer sizes shall be ordered from largest to smallest, i.e., hrd_buffer[n] >= hrd_buffer[n+1].

hrd_fullness[n] – This syntax element defines the decoder buffer fullness as an upwards rounded fraction of the buffer
size Bn, in units of Bn/256. This element may take values in the range 1 to 256 and is encoded in binary using the 8 bit
values 0 through 255 to uniformly cover the range. Its value is computed as follows:

 hrd_fullness[n] = 1
),min(

256 , −⎥
⎥

⎤
⎢
⎢

⎡ +
×

n

inin

B

bB β
 (C.4)

where min(Bn, β i,n + bi) is the decoder buffer fullness in bits before removing the current ith frame.

In equation (C.2), the decoder buffer fullness after removing the ith frame equals β i. Here we use similar notation for
the equivalent value β i,n, but the subscript n denotes the nth leaky bucket.

The ⎡ ⎤x operator rounds up the value of x to the nearest higher integer. For example, ⎡ ⎤14.3 = 15.

Observe that in the first frame of the video stream (i.e., i=1), the initial buffer fullness Fn = (β 1,n + b1).

C.3.2 This subclause is informative only.

In practice, an encoder may do the following:

(a) Pre-select the leaky bucket values in (C.3) and encode the bit stream with a rate control that makes sure that all of

the leaky bucket constraints are met.
(b) Encode the bit stream and then use the equations in (C.2) to compute a set of leaky buckets containing the bit

stream at N different values of R.
(c) Do both (a) and (b), i.e., pre-select the leaky buckets and later compute more after the bit stream is encoded.

Approach (a) may be applied to live or on-demand transmission applications, while (b) and (c) only apply to on-
demand. Observe that the N leaky bucket approach used in the HRD of this recommendation is also used in the H.264
standard (c.f., [HRD]). If N=1, the hypothetical reference decoder is a subset of MPEG-2’s Video Buffering Verifier
[MPEG2].

C.4 Interpolating Leaky Buckets

This clause is informative for the HRD, although equations (C.5) and (C.6) are normative for time-conformant
decoders.

Another key observation proven in [HRD] is that the curve of (Rmin, Bmin) pairs, or that of (Rmin, Fmin) for any bit
stream (such as the one in Figure C.4) is piecewise linear and convex. Because of the convexity, if N points of the

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 282

curve are provided, the decoder may linearly interpolate the values to arrive at some points (Rinterp, Binterp, Finterp) that
are slightly but safely larger than (Rmin, Bmin, Fmin).

As mentioned earlier, the leaky buckets in (C.3) are ordered from smallest to largest bit rate, i.e., Rn < Rn+1. Let us
assume that the encoder computes these leaky bucket models correctly and hence Bn > Bn+1. Figure C.5 illustrates a set
of N leaky bucket models and their interpolated or extrapolated (R, B) values.

BN

…

(R1,B1)

(R2,B2)

(R3, B3)

(RN-1,BN-1)

(RN,BN)

B
(bits)

B (bits)

TRRBB)(11 −+=

R (bits/sec)

Figure C.5. Example of (R, B) values available for the generalized hypothetical reference decoder (GHRD), all of which are
guaranteed to contain the bit stream. T is the time length or duration of the encoded video sequence.

The interpolated buffer size B between points n and n+1 follow the straight line:

 1
11

1
+

++

+

−
−

+
−
−

= n
nn

n
n

nn

n B
RR

RR
B

RR

RR
B , Rn < R < Rn+1. (C.5)

Likewise, the initial decoder buffer fullness F may be linearly interpolated:

1
11

1
+

++

+

−
−

+
−
−

= n
nn

n
n

nn

n F
RR

RR
F

RR

RR
F , Rn < R < Rn+1. (C.6)

The resulting leaky bucket with parameters (R, B, F) is guaranteed to contain the bit stream, because, as proven in
[HRD], the minimum buffer size Bmin is convex in both R and F, that is, the minimum buffer size Bmin corresponding
to any convex combination (R,F) = a(Rk,Fk) + (1-a)(Rk+1,Fk+1), 0 < a < 1, is less than or equal to B = aBk + (1-a)Bk+1.

As discussed earlier, if R is larger than RN, the leaky bucket (R, BN, FN) will also contain the bit stream, and hence BN
and FN are the buffer size and initial decoder buffer fullness recommended when R ≥ RN. If R is smaller than R1, then
the upper bound B = B1 + (R1-R)T may be used (and one may set F = B), where T is the time length of the video
sequence in seconds. These (R, B) values outside the range of the N points are also shown in Figure C.5.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 283

Using equations (C.5) and (C.6), when the transmission peak rate of a given encoding/decoding system is known, the
decoder may determine a nearly minimum leaky bucket buffer size and delay. Alternatively, knowing the physical
buffer size, a smart decoder may ask a transmitter to use the smallest peak rate that will enable decoding in such buffer
size. In short, the leaky bucket model values in equation (C.3) may be linearly interpolated or extrapolated to be able to
determine nearly optimum leaky buckets.

C.5 Display issues

This clause is informative only.

The leaky bucket model does not address when a video frame is displayed in the HRD display unit. Any compliant
decoder, including this HRD, should display frames in the proper order. For example, if a frame is composed of two
fields, it is assumed that the field that comes first in time will be displayed first. P frames and B frames should also be
re-ordered properly before display. If 3:2 pull-up occurs after decoding, the correct fields should be repeated to produce
an accurate 3:2 telecine pattern on the display. Nevertheless, constraints on display times (e.g., according to the
decoding times t1, t2, etc.) are beyond the scope of this draft and belong to the system layer. The objective of the HRD
in this recommendation is only to impose some basic buffering constraints on the video bit stream, rather than
mandate any decoding, buffering, or display mechanisms to implementers.

C.6 Time-Conformant Decoders

This clause is normative for decoder implementations that wish to be time-conformant. This is the only clause in the
HRD that refers to and constraints practical decoder implementations.

Time-conformant decoders are of interest for broadcast or other applications with a fixed end-to-end delay, where a
practical decoder needs to decode the bit streams without suffering from buffer underflow. If a practical decoder wishes
to be time-conformant, the HRD parameters provide some helpful constraints.

Given a fixed transmission rate and decoder buffer size, a time-conformant decoder implementation shall buffer
enough data initially to prevent buffer underflow during the decoding process. Such a decoder shall therefore operate
according to either one of the N leaky buckets, or one of the interpolated leaky buckets defined in (C.5) and (C.6).

Given a channel rate R, a time-conformant decoder implementation shall use equations (C.5) and (C.6) to find a
minimum value of B and F, shall confirm that the physical buffer size in the decoder is larger than or equal to B, and
shall buffer at least F bits before starting the decoding process.

Given a physical buffer size B, a time-conformant decoder implementation shall use equations (C.5) and (C.6) to find
a minimum value of R and F, shall ensure that the channel rate is larger than or equal to R, and shall buffer at least F
bits before starting the decoding process.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 284

C.7 Variable-Delay Mode

This clause refers to the variable-delay mode of operation in the HRD, which is useful for video conferencing
applications.

This mode of operation in the HRD is signaled when HRD parameter are not signaled in the sequence header. In this
mode:

• The syntax element hrd_num_leaky_buckets may only take values 0 or 1.

If equal to 0, the leaky bucket used is (R1, B1, F1), where R1 and B1 correspond to the values Rmax and Bmax
for the given profile and level of the bit stream, as defined in Annex D. The initial buffer fullness equals the
buffer size, i.e., F1=B1.

If equal to 1, the leaky bucket used is (R1, B1, F1) and is signaled in the bit stream according to the syntax
defined in subclause C.3.1.

• The initial buffer fullness is F1. In practice, F1 may equal the number of bits for the first frame, i.e., F1= b1.

• The decoder buffer in the HRD is examined every T seconds, where T is the inverse of the maximum frame rate in

the example column of Table D.2, for the respective profile and level of the given bit stream. If at least one
complete coded picture is in the buffer, then all the data for the earliest picture in the bit stream order is
instantaneously removed. Immediately before removing the picture, the buffer fullness shall be less than B1.

In this mode, the HRD waits until a complete video frame has arrived at the buffer, before decoding the frame. As a
result, the delay is minimized for a given frame, but the end-to-end delay is not constant. This mode enables the
encoder to send big pictures to the decoder while preventing buffer overflow.

The variable-delay mode of operation is similar to the low-delay mode in MPEG-2 [MPEG2], or the default HRD
operating mode in H.263 [H263].

C.8 Benefits of multiple leaky buckets

This clause is informative only and describes the benefits of indicating multiple leaky buckets that contain a video bit
stream.

In the constant-delay mode, prior hypothetical reference decoders operate with a fixed peak bit rate, buffer size, and
initial delay. However, in many of today’s video applications (e.g., video streaming through the Internet) the peak
transmission bit rate varies according to the network path (e.g., how the user connects to the network: by modem,
ISDN, DSL, cable, etc.) and also fluctuates in time according to network conditions (e.g., congestion, the number of

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 285

users connected, etc.) In addition, the video bit streams are delivered to a variety of devices with different buffer
capabilities (e.g., hand-sets, PDAs, PCs, set-top-boxes, DVD-like players, etc.) and are created for scenarios with
different delay requirements (e.g., low-delay streaming, progressive download or pseudo-streaming, etc.) The multiple
leaky bucket approach used in the HRD of this specification is more flexible than prior HRDs and enables a system to
decode a bit stream at different peak transmission bit rates, and with different buffer sizes and start-up delays.

To be more concrete, given a desired peak transmission bit rate, a time-conformant decoder will select the smallest
buffer size and delay (according to the available leaky bucket data) that will be able to decode the bit stream without
suffering from buffer underflow. Conversely, for a given buffer size, the hypothetical decoder will select and operate at
the minimum required peak transmission bit rate.

There are multiple benefits of this generalized hypothetical reference decoder. For example, a content provider may
create a bit stream once, and a server may deliver it to multiple devices of different capabilities, using a variety of
channels having different peak transmission bit rates. Or a server and a terminal may negotiate the best leaky bucket
for the given networking conditions, e.g., the one that will produce the lowest start-up (buffer) delay, or the one that
will require the lowest peak transmission bit rate for the given buffer size of the device. The multiple leaky bucket
approach has been shown to provide large savings in peak rate, buffer size, delay and even quality in
encoding/decoding systems [HRD].

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 286

Annex D
 Profile and Levels

(This annex forms an integral part of this recommendation and is normative)

Profiles and levels define subsets of the syntax and semantics of this recommendation.

A profile defines constraints on the algorithms or compression features used to create a bit stream, and a level defines
additional restrictions on a given profile. The profiles in VC-9 are not hierarchical. For example, main profile is not a
subset of advanced profile, nor is it a subset. However, levels are hierarchical. Within the same profile, higher levels
generally imply higher requirements in processing speed and memory within a profile.

Encoders shall produce bit streams compliant to a given profile and level, and decoders shall decode bit streams
compliant to a given profile and level. Note that a bitstream compliant to a particular profile/level combination is also
compliant to all higher levels at the same profile. Therefore, profiles and levels are critical to ensure interoperability
between encoders, coded bit streams, and decoders.

D.1 Overview

There are three profiles in this recommendation, Simple, Main and Advanced:

• The Simple profile targets low-rate internet streaming and low-complexity applications such as mobile

communications, or playback of media in personal digital assistants. There are two levels of conformance in this
profile.

• The Main profile targets high-rate internet applications such as streaming, movie delivery via IP, HD DVD for PC
playback, or TV/VOD over IP. This profile contains three levels of conformance.

• The Advanced profile targets broadcast applications, such as digital TV or HDTV. It is the only profile that
supports interlaced content. In addition, this profile contains the required syntax elements to transmit video bit
streams compliant to this recommendation into generic systems, such as MPEG-2 Transport or Program Streams
[MPEG2]. This profile contains six levels.

Table D.1 lists all the profiles and levels, and the label associated to each of them.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 287

Profile Level Label

Low SP@LL Simple

Medium SP@ML

Low MP@LL

Medium MP@ML

Main

High MP@HL

L0 AP@L0

L1 AP@L1

L2 AP@L2

L3 AP@L3

Advanced

L4 AP@L4

Table D.1: List of profiles and levels in this recommendation.

D.2 Profiles

Table D.2 indicates the constraints on the algorithms or compression features for each of the profiles. If a compression
feature is listed in the table, it is only supported by the profiles marked with “X”. Otherwise, such feature is used in all
profiles.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 288

Compression Feature Section in spec
Simple
profile

Main
Profile

Advanced
Profile

Loop filter 8.6 X X

Dynamic resolution change 8.1.1.3, 8.3.4.2 X

Adaptive macroblock quantization
7.1.1.30,7.1.3.6,

7.1.3.7
 X X

Bidirectional (B) Frames 8.4,10.4,10.8 X X

Intensity compensation 8.3.8,10.3.7 X X

Range Reduction
7.1.1.8,8.1.1.4,

8.3.4.12
 X

Range Mapping 6.2
X

Interlace: Field coding mode 10.1, 10.3,10.4 X

Interlace: Frame coding mode 10.5,10.7,10.8 X

Syntax elements for transmission over generic
systems layer

6.1 X

Table D.2. Codec options in the Simple, Main and Advanced profile.

D.3 Levels

There are several levels for each of the profiles. Each level limits the video resolution, frame rate, HRD bit rate, HRD
buffer requirements, and the motion vector range.

As explained in Annex C, the encoder may define multiple leaky buckets in (C.4) that contain a given video bit
stream. The HRD is able to decode a bit stream operating according to any of those leaky bucket parameters, or even
according to interpolations or extrapolations of such parameters.

For a bit stream to be compliant to a given profile and level, at least one of the leaky bucket parameters in (C.4) shall
be within the limits defined by the profile and level. For progressive, the picture rate is described by the number of
frames per second. For interlace, the picture rate is described by the number of frames per second. i.e., 15Hz in
interlace refers to 15 frames/second (which is equivalent to 30 fields/second).

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 289

Profile
@Level

MB/s MB/f Examples Tools (B
frames +

loop
filter

Inter-
lace

support

Rmax Bmax MV

[H] x [V]

SP@LL 1,485 99 QCIF, 176x144

15 Hz

 96 20 [-64, 63¾] x [-32,
31¾]

SP@ML 5,940 396 QVGA, 320x240,
24 Hz; CIF,

352x288, 15 Hz

 384 77 [-64, 63¾] x [-32,
31¾]

MP@LL 7,200 396 CIF, 352x288,30Hz;
SIF 352x288, 25Hz

x 2,000 306 [-128, 127¾] x [-
64, 63¾]

MP@ML 40,500 1,620 480p, 704x480,
30Hz

576p, 720x576,
25Hz

x 10,000 611 [-512, 511¾] x [-
128, 127¾]

MP@HL 245,760 8,192 1080p, 1920x1080,

25 Hz / 30 Hz

x 20,000 2,442 [-1024, 1023¾] x
[-256, 255¾]

AP@L0 11,880 396 CIF, 352x288,

25 Hz, 30 Hz

x 2,000 250 [-128, 127¾] x [-
64, 63¾]

AP@L1 48,600 1,620 525 SD, 720x480,
30Hz

625 SD, 720x576,
25 Hz

x x 10,000 1,250 [-512, 511¾] x [-
128, 127¾]

AP@L2 108,000

3,600

480p, 704x480,
60Hz

720p, 1280x720,
30Hz

x x 20,000 2,500 [-512, 511¾] x [-
128, 127¾]

AP@L3 245,760 8,192 1080i, 1920x1080,
25Hz/30Hz

1080p, 1920x1080,
25Hz/30Hz

720p, 1280x720,
50Hz/60Hz

2048x1024, 30Hz

x x 45,000 5,500 [-1024, 1023¾] x
[-256, 255¾]

AP@L4 491,520 16,384 1080p, 1920x1080,
50Hz/60Hz

2048x1536, 24 Hz

2048x2048, 30Hz

x x 135,000 16,500 [-1024, 1023¾] x
[-256, 255¾]

Table D.3 Limitations of profiles and levels. For interlace, picture rate is described in frames/second.
(Fields/second is twice that value).

MB/s Maximum number of macroblocks per second

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 290

MB/f Maximum number of macroblocks within a frame

Example Example of maximum video resolution and frame rate. Other combinations that meet the profile and level
requirements are also possible. In AP@ML, “480p/i, 30 Hz” indicates that both 480p at 30 Hz and
480i at 30 Hz (60 fields/sec) are supported.

Rmax HRD’s maximum peak transmission bit rate in units of 1,000 bits/sec.

Bmax HRD’s maximum buffer size in units of 16,384 bits

MV [H]x[Y] Motion vector range in full pixel units. [H] = horizontal, [V] = vertical.

D.4 Syntax

The Simple, Main and Advanced profiles are signaled to the decoder in the bit stream, by the syntax element Profile,
which is included in the sequence header as described in Section 6.1.1. The following codes are used to signal profiles.

 00 Simple

 01 Main

 11 Advanced

 10 Forbidden

The levels for Simple and Main profile are to be communicated to the decoder by the Transport Layer. The levels for
Advanced profile are indicated in the syntax element LEVEL, which is included in the sequence header, as described
in Section 6.1.2. The following codes are used to signal the levels in this profile:

 000 AP@L0

 001 AP@L1

 010 AP@L2

 011 AP@L3

 100 AP@L4

 101 SMPTE Reserved

 110 SMPTE Reserved

 111 SMPTE Reserved

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 291

Annex E
 Start Codes

(This annex forms an integral part of this recommendation and is normative)

An Independently Decodable Unit (IDU) of compressed video data shall begin with an identifier called Start Code
(SC). An IDU could refer to a single picture, or a group of macroblocks in a picture (also called slice), or a group of
pictures (GOP), or a sequence header.

This recommendation mandates a sequence of four bytes as the start code, which consists of an unique three-byte Start
Code Prefix (SCP), and an one byte Start Code Suffix (SCS). The SCP shall be the unique sequence of three bytes
(0x000001) . The SCS is used to identify the type of IDU that follows the start code. For example, the suffix of the
start code before a picture is different from the suffix of the start code before a slice. Start codes are always byte-
aligned.

A non-normative Encapsulation Mechanism (EM) is described to prevent emulation of the start code prefix in the
bitstream. The compressed data before encapsulation is called Raw Independently Decodable Unit (RIDU), while
Encapsulated IDU (EIDU) refers to the data after encapsulation.

Section E.1 provides an encoder-side perspective on how start code and encapsulation operates, and is informative.
Section E.2 specifies detection of start codes and EIDUs at the decoder, and is normative. Section E.3 deals with
extraction of an RIDU from an EIDU, and is also normative. Section E.4 specifies start code suffixes for various IDU
types, and is also normative.

E.1 Start-codes and Encapsulation – An encoder viewpoint (Informative)

The encapsulation of a RIDU to obtain an EIDU is described below.

Step 1: A trailing ‘1’ bit is added to the end of the RIDU. The EM now stuffs between 0 and 7 bits onto the end of the
IDU such that the IDU ends in a byte-aligned location. The value of these stuffing bits is ‘0’. As a result, at the end of
this step, the IDU is represented in an integer number of bytes, in which the last byte of the IDU cannot be a zero-
valued byte. The resulting string of bytes is called the payload bytes of the IDU.

Step 2: The three-byte start code prefix (0x000001), and the appropriate start code suffix that identifies the IDU type,
are placed at the beginning of the EIDU.

Step 3: The remainder of the EIDU is formed by processing the payload bytes of the IDU through the following
emulation prevention process. The emulation of start code prefixes in the IDU is eliminated via byte-stuffing. The
emulation prevention process is equivalent to the following operation:

1) Replace each string within the payload of 2 consecutive bytes of value 0x00 followed by a byte that contains
zero values in its six MSBs (regardless of the LSB values) with 2 bytes of value 0x00 followed by a byte equal
to 0x03 followed by a byte equal to the last byte of the original three-byte data string. This process is
illustrated in Table E-1.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 292

Table E-1: Emulation Prevention Pattern Replacement

Pattern to Replace Replacement Pattern

0x00, 0x00, 0x00 0x00, 0x00, 0x03, 0x00

0x00, 0x00, 0x01 0x00, 0x00, 0x03, 0x01

0x00, 0x00, 0x02 0x00, 0x00, 0x03, 0x02

0x00, 0x00, 0x03 0x00, 0x00, 0x03, 0x03

Step 3: The three-byte start code prefix (0x000001), and the appropriate start code suffix that identifies the IDU type,
are attached to the beginning of the IDU. The resulting payload is an encapsulated IDU.

The encoder is also allowed to insert any number of zero-valued stuffing bytes after the end of an EIDU.
Equivalently, any number of zero-valued stuffing bytes may be inserted before a start code prefix. The start code
is structured such that it may be detected by a decoder even in the presence of these zero-valued stuffing bytes. In some
transmission environments such as H.320, the encoder may use this feature to insert extra zero-valued stuffing bytes as
desired, which may enable the decoder to quickly recover the location of the start- codes even if it has lost track of the
intended alignment of the bitstream to byte boundaries. Further, these zero-valued stuffing bytes may also be useful
in splicing bitstreams, filling a constant bit-rate channel, etc. Zero-Valued Stuffing bytes prior to start codes, or at
the end of an EIDU, are not processed through the encapsulation mechanism – only RIDU data requires such
processing.

 E.2 Detection of Start codes and EIDU (Normative)
The detection of an EIDU starts with the search for the start code prefix.

E.2.1 Detection of Start Codes Starting from Byte-Aligned Positions (Normative)

In a decoder that cannot lose byte-alignment, or once byte alignment has been established, start code detection is
conducted as follows.

1. Whenever a string of two or more bytes of value 0x00 followed by a byte of value 0x01 is found, a start code
prefix detection is declared.

When 2 successive start-codes prefixes are detected, the payload bitstream between them is declared as a new EIDU.

E.2.2 Detection of Start Codes After Loss of Byte Alignment in a Decoder (Informative)

In a decoder that has lost byte-alignment (as may happen in some transmission environments), start-code prefix
detection and byte-alignment detection are conducted as follows:

Whenever a string of three or more bytes of value 0x00 is found, followed by any non-zero byte, a start code
prefix detection is declared and byte alignment is understood to be recovered such that the first non-zero bit in
the non-zero byte shall be the last bit of a byte-aligned start code.

E.3 Extraction of RIDU from EIDU (Normative)
The extraction of a raw IDU from an encapsulated IDU is described below.

Step 1: The start-code suffix is used to identify the type of IDU.

Step 2: The first step is to remove the zero-valued stuffing bytes at the end of EIDU. After this step, the last byte of the
IDU shall have a non-zero value.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 293

Step 3: The bytes used for emulation prevention are detected and removed. The process is as follows:

Whenever a string of two bytes of value 0x00 is followed by a byte equal to 0x03, the byte equal to 0x03 is
understood to be an emulation prevention byte and is discarded.

This process is illustrated in Table E-2.

Table E-2: Decoder Removal of Emulation Prevention Data

Pattern to Replace Replacement Pattern

0x00, 0x00, 0x03, 0x00 0x00, 0x00, 0x00

0x00, 0x00, 0x03, 0x01 0x00, 0x00, 0x01

0x00, 0x00, 0x03, 0x02 0x00, 0x00, 0x02

0x00, 0x00, 0x03, 0x03 0x00, 0x00, 0x03

The following byte patterns, if seen within the bitstream, represent error conditions (noting that loss of proper byte
alignment by the decoder is considered an error condition):

a) A string of two bytes of value 0x00 followed by a byte equal to 0x02 indicates error condition.
b) A string of three or more bytes of value 0x00, if not followed by a byte of 0x01, is an error condition

(note that if two or more bytes equal to zero are followed by a byte of value 0x01 and byte alignment
has not been lost, detection of a subsequent start code is declared).

c) A string of two bytes of value 0x00, followed by a byte of value 0x03, followed by a byte which is not
one of 0x00, 0x01, or 0x02, or 0x03.

Step 4: In the last byte of the IDU, the last non-zero bit is identified, and that non-zero bit, and all the zero bits that
follow, are discarded. The result is a raw IDU.

E.4 Start-code Suffixes for IDU Types (Normative)
The start code suffixes for various IDU types are presented in Table E-3.

Table E-3 Start Code Suffixes for Various IDU Types

Start-code Suffix IDU Type

0x0F Sequence Header

0x0E Entry-point Header

0x0D Frame

0x0C Field

0x0B Slice

0x1F Sequence Level User Data

0x1E Entry-point Level User Data

0x1D Frame Level User Data

0x1C Field Level User Data

0x1B Slice Level User Data

0x0A End-of-Sequence

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 294

0x00 SMPTE Reserved

0x01-0x09 SMPTE Reserved

0x10-0x1A SMPTE Reserved

0x20-0x7F SMPTE Reserved

0x80-0xFF Forbidden

SequenceHeader IDU type is sent to identify IDUs which carry sequence header. See Section 6.1 for more details on
sequence headers.

Entry-point Header IDU type is sent to identify IDUs which carry entry-point header. See Section 6.2 for more details
on entry-point header.

Picture IDU type is sent to identify IDUs which contain the picture header, and the picture data.

Field IDU type is sent to identify IDUs which contain the second field of a picture that is coded as two separate fields.

Slice IDU type is sent to identify IDUs which carry the slice data and the slice header. See Section 7.1.2 for more
details on slices and slice header.

Sequence, Entry-point, Frame, Field, and Slice Level User data IDU types are used to transmit any user defined data
asscociated with the Sequence, Entry-point, Frame, Field, and Slice respectively. See Annex F for more details.

 “End-of-sequence” is an optional IDU type which indicates that the current sequence has ended, and no further data
will be transmitted for this sequence. Note that the transmission of an “end-of-sequence” is not mandatory, and the
end of a sequence may be inferred from the header of the next sequence.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 295

Annex F
 User data

(This annex forms an integral part of this recommendation and is normative)

A VC-9 bitstream may convey user data as independent data units. The syntax of the user data IDUs is specified in this
annex. The User Data IDUs will be identified by the corresponding start codes. There are 5 values for user data start
codes, which identify if the user-data belongs to the sequence, entry-point, frame, field or slice. These user-data start
codes are defined in Annex E.

The User Data syntax elements are inserted in the video bit stream headers as follows:

User_data_parameters() Descriptor

{

 User_data_identifier FLC-32

 for(n=1; n <= end_of_idu-1; n++)

 {

 User_data[n] FLC-8

 }

 Flushing_byte 0x80

User_data_identifier is a fixed-length syntax element that identifies the type of user data. This syntax element is
encoded using 32 bits.

User_data is an array of 8-bit fixed length syntax elements that represent the user data.

Flushing_byte is an 8-bit field set to the constant value ‘0x80’.

Closed Captions and auxiliary user data, if any, should be transmitted in User Data IDUs. It is important to emphasize
that the user data shall be accounted for in the HRD buffer model. Note that user data is part of the meta-data, and
does not affect the decoding of the bitstream. Modulo HRD effects, the insertion and removal of user-data to and from
any compliant bit-stream does not affect the decoding of the bitstream, and b) compliant decoders presented the same
bit-stream with, and without any user-data, shall produce the same decoded video output.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 296

Annex G
 Bitstream Entry Points and Start-Codes

(This annex forms an integral part of this recommendation and is normative)

The VC-9 syntax allows the insertion of start codes and related headers. There are 11 distinct start code values: One
value for each of the following start codes: Sequence start code, entry start code, frame start code, field start code, slice
start code, end-of-sequence start code and 5 values for user data start codes. Each start code is a 32-bit field. For user
data, the value of the start code defines the scope of the user data.

The presence of start codes in a VC-9 bitstream shall obey the rules and guidelines mentioned below.

Conventions

The Figures below reference VC-9 bitstream constructs defined as follows:

SEQ_SC Sequence Start Code

SEQ_HDR Sequence Header

ENTRY_SC Entry Point Start Code

ENTRY_HDR Entry Point Header

FRM_SC Frame Start Code

FRM_DAT Frame Data (includes a Frame Header)

FLD_SC Field Start Code

FLD1_DAT Field 1 Data (includes a Frame Header)

FLD2_DAT Field 2 Data (includes a Field Header)

SLC_HDR Slide Header

SLC_DAT Slice Data bytes (may include a Frame Header or a Field Header depending on location)

UD_SC User Data Start Code

UD_DAT User Data bytes

Sequence start code

A sequence start code (value 0x0000010F) shall always be followed immediately by a sequence header. A sequence
header shall always be followed by a user data start code or an entry point start code or a frame start code. The type of
the first frame or first two fields following a sequence start code and a sequence header shall always be either I - if
picture coding type is set to Progressive or Frame Interlace - or I and P, or P and I, or I and I - if the picture coding
type is set to Field Interlace.

A sequence start code and a sequence header may be inserted at regular or irregular intervals in the VC-9 bitstream.
Therefore, a VC-9 encoder may adopt various policies to govern the insertion of sequence start codes and associated
headers in a VC-9 bitstream.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 297

End—of-Sequence start code

“End-of-sequence” is an optional IDU type which indicates that the current sequence has ended, and no further data
will be transmitted for this sequence. Note that the transmission of an “end-of-sequence” is not mandatory, and the
end of a sequence may be inferred from the header of the next sequence. However, certain applications may benefit
from the flexibility of explicitly indicating the end-of-sequence using this start-code. No data follows this start-code.
Its value is 0x0000000A.

Entry point start code

An entry point start code (value 0x0000010E) shall always be followed immediately by an entry point header. In a VC-
9 bitstream, any entry point start code shall always be located after the last byte of a video frame and before the
beginning of the next video frame. If there is a need to insert an entry point header or an entry point start code and an
entry point header where there is already a sequence header between two consecutive video frames, the entry point
header code or the entry point start code and the entry point header shall always follow the sequence header. An entry
point header shall always be followed by a user data start code or a frame start code.

An entry point start code and an entry point header may be inserted at regular or irregular intervals in the VC-9
bitstream. Therefore, a VC-9 encoder may adopt various policies to govern the insertion of entry point start codes and
associated headers in a VC-9 bitstream. Insertion of any entry point start code and associated header shall always be
done to signal a valid entry point in the VC-9 bitstream, meaning that the video frames and video fields shall satisfy
one of the conditions listed below (depending on the type of picture).

The purpose of the entry point start code is to signal the presence of special locations in a VC-9 bitstream where there
is no dependency on past decoded video fields or frames to decode the video frame following immediately the entry
point start code and header. The conditions for achieving this are listed below. These conditions depend on the type of
the first frames/fields past the entry point. The type of the first frame or first two fields following an entry point start
code and an entry point header shall always be either I - if picture coding type is set to Progressive or Frame Interlace -
or I and P, or P and I, or I and I - if the picture coding type is set to Field Interlace.

Case of I frame in Progressive mode

Figure G.1 below illustrates how an entry point start code and an entry point header may be present before an I frame
when the Picture Coding Type (FCM field) is set to ‘0’ (Progressive mode).

Since the frame is intra-coded no additional condition is needed to make this I frame a valid entry point in a VC-9
bitstream. The entry point applies to the I frame that follows the entry point start code and header but it does not apply
to any B frames data or B fields data that follow that I frame in the bitstream and for which the presentation time
comes earlier than the presentation time for that I frame.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 298

SEQ_SC ENTRY_HDRSEQ_HDR FRM_DAT

I frame

FCM value is 0

….. …..ENTRY_SC FRM_SC

FIGURE G.1
Entry Point Signaled before an I frame (Progressive Picture Coding)

Case of I/P frame in Field Interlace mode

Figure G.2 below illustrates how an entry point start code and header may be present before an I/P frame when the
Picture Coding Type (FCM field) is set to ‘10’ (Field Interlace mode).

Since the frame is made of an I field followed by a P field, the following conditions shall be met to make this I/P frame
a valid entry point in a VC-9 bitstream:

• The value of the “numref” field in the Field header of the P field of the entry I/P frame shall be ‘0’
• The value of the “reffield” field in the Field header of the P field of the entry I/P frame shall be ‘0’

These conditions ensure that the P field is only predicted from the I field and therefore there is not dependency on
frames or fields before the entry point.

The entry point applies to the I/P frame that follows the entry point start code and header but it does not apply to any
B frames data or B field data that follow that I/P frame in the bitstream and for which the presentation time comes
earlier than the presentation time for that I/P frame.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 299

ENTRY_HDR FLD2_DAT

P fieldI field

FLD_SC

FCM value is 10

ENTRY_SC FRM_SC FLD1_DAT

FIGURE G.2
Entry Point Signaled before an I/P frame (Field Interlace Picture Coding)

Case of P/I frame in Field Interlace mode

Figure G.3 below illustrates how an entry point start code and header may be present before an P/I frame when the
Picture Coding Type (FCM field) is set to ‘10’ (Field Interlace mode).

Since the frame is made of a P field followed by an I field, the following conditions shall be met to make this P/I frame
a valid entry point in a VC-9 bitstream:

• Following the entry I field, a P/P frame (Field interlace mode) shall be present in the bitstream before any
occurrence of P frames (progressive or frame interlaced modes).

• The value of the “numref” field in the Field header of the first P field following the entry P/I frame shall be
‘0’

• The value of the “reffield” field in the Field header of the first P field following the entry P/I frame shall be
‘0’

• Any B frames following the entry P/I frame in the bitstream and for which the presentation time comes later
than the presentation times for that entry P/I frame shall not be encoded as depending on the P/I frame.

• The first (in temporal order) B field of any B/B frames following the entry P/I frame in the bitstream and for
which the presentation time comes later than the presentation times of that P/I frame shall not be encoded as
depending on the P field of the entry P/I frame.

These conditions ensure that the next P/P frame, B frame and B/B frames in the bitstream are only predicted from the
entry I field and not the P field that immediately precedes it. Note also that it is impossible to have a valid entry point
if there is a P frame that has been predicted from the P/I frame since this creates a dependency on the P field of the
entry P/I frame.

The entry point applies to the I field that follows the entry point start code and header but it does not apply to any B
frames data that follow that I field in the bitstream and for which the presentation time is earlier than the presentation
time for that I field. Furthermore, the entry point does not apply to the P field data located between the entry point start
code and the following I field.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 300

ENTRY_HDR FLD2_DAT

I fieldP field

FLD_SC

FCM value is 10

ENTRY_SC FRM_SC FLD1_DAT

FIGURE G.3
Entry Point Signaled before an P/I frame (Field Interlace Picture Coding)

Case of I/I frame in Field Interlace mode

Figure G.4 below illustrates how an entry point start code and header may be present before an I/I frame when the
Picture Coding Type (FCM field) is set to ‘10’ (Field Interlace mode). The Figure does not shows a sequence start code
and a sequence header before the entry point start code but it may be the case that such structures precede the entry
start code.

Since the frame is made of two I fields, no additional condition is needed to make this I/I frame a valid entry point in a
VC-9 bitstream.

The entry point applies to the I/I frame that follows the entry point start code and header but it does not apply to any
B frames data or B field data that follow that I/I frame in the bitstream and for which the presentation times come
earlier than the presentation times for that I/I frame.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 301

ENTRY_HDR FLD2_DAT

I fieldI field

FLD_SC

FCM value is 10

ENTRY_SC FRM_SC FLD1_DAT

FIGURE G.4
Entry Point Signaled before an I/I frame (Field Interlace Picture Coding)

Case of I frame in Frame Interlace mode

Figure G.5 below illustrates how an entry point start code and header may be present before an I frame when the
Picture Coding Type (FCM field) is set to ‘11’ (Frame Interlace mode).

Since the frame is intra-coded no additional condition is needed to make this I frame a valid entry point in a VC-9
bitstream. The entry point applies to the I frame that follows the entry point start code and header but it does not
apply to any B frames data or B fields data that follow that I frame in the bitstream and for which the presentation
time come earlier than the presentation time for that I frame.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 302

SEQ_SC ENTRY_HDRSEQ_HDR FRM_DAT

I frame

FCM value is 11

….. …..ENTRY_SC FRM_SC

FIGURE G.5
Entry Point Signaled before an I frame (Frame Interlace Coding)

Frame Start Code

A frame start code (value 0x0000010D) shall always be followed immediately by a frame header. In a VC-9 bitstream,
any frame start code shall always be located after the last byte of a video frame and before the beginning of the next
frame. In the case of the Progressive or Frame Interlace mode, a frame start code shall signal the beginning of a new
video frame. In the case of the Field Interlace mode, a frame start code shall signal the beginning of a sequence of two
independently coded video fields.

Field Start Code

A field start code (value 0x0000010C) shall always be followed immediately by a field header. The field start code
shall only be used for Field Interlaced frames and shall only be used to signal the beginning of the second field of the
frame. The use of field start codes is optional in Field Interlace frames. The use of field start codes is forbidden in any
frames encoded according to a Progressive or a Frame Interlace mode.

Slice Start Code

A slice start code (value 0x0000010B) shall always be followed immediately by a slice header. The slice start code
shall be used to signal the beginning of a video slice.

User Data Start Code

A user data start code shall always be followed by a user data header. The user data header is a 4-byte field identifying
the contents of the user data that follows the header. The last user data byte of a user data structure (byte with value
‘0x80’) shall always be followed by a sequence start code or an entry point start code or a frame start code or a field
start code or a slice start code or another user data start code (including any possible padding bytes between them).

User data is typically used to carry closed caption data, bar data and metadata like the Active Format Description
defined by DVB and ATSC.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 303

User data may be present at various locations in a VC-9 bitstream. Although the value of any user data start code also
specifies its scope (either sequence-level, entry point-level, frame-level, field-level, or slice-level user data), its location
in a VC-9 bitstream shall follow the rules described below. The user data structure at any level may be duplicated as
many time as is needed meaning that a user start code and the its user data bytes may be followed immediately by
another user start code and its user data bytes having the same scope.

Sequence-level user data

Figure G.6 below shows sequence-level user data. As a general rule, sequence-level user data shall be located in the
bitstream after the sequence header and immediately before the start code signaling the beginning of the next
Independently Decodable Unit (IDU). Flushing bits and padding bytes may precede the first byte of the user data start
code. Padding bytes may precede the first byte of the start code immediately following the last user data byte (that is,
the flushing byte of value 0x80).

In Figure G.6, the top bitstream illustrates the case where the next IDU is an entry point start code followed by an
entry point header while the bottom bitstream illustrates the case where the next IDU is a frame start code followed by
frame data (including a frame header).

Sequence-level user data shall be applicable to the entire sequence, that is until an end sequence code or an another
sequence start code is encountered in the bitstream.

FIGURE G.6
Sequence-level User Data

SEQ_HDR ENTRY_HDRUD_SC UD_DAT ENTRY_SCSEQ_SC FRM_SC

SEQ_HDR UD_SC UD_DATSEQ_SC FRM_SC

FRM_DAT

FRM_DAT

Entry Point-level user data

Figure G.7 below shows entry point-level user data. As a general rule, entry point-level user data shall be located in
the bitstream after the entry point-level header and immediately before the start code signaling the beginning of the
start code for the next Independently Decoded Unit (IDU) – that is the start code signaling the next frame, the next
entry point or the next sequence. Flushing bits and padding bytes may precede the first byte of the user data start code.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 304

Padding bytes may precede the first byte of the start code immediately following the last user data byte (that is, the
flushing byte of value 0x80).

Entry Point-level user data shall be applicable to the sequence of video frames in the VC-9 bitstream until another
entry point start code or a sequence start code is encountered.

FIGURE G.7
Entry Point-level User Data

SEQ_HDR ENTRY_HDR UD_SC UD_DATENTRY_SCSEQ_SC FRM_SC FRM_DAT

Frame-level User Data

Figure G.8 below shows frame-level user data. Flushing bits and padding bytes may precede the first byte of the user
data start code. Padding bytes may precede the first byte of the start code immediately following the last user data byte
(that is, the flushing byte of value 0x80).

In the case of repeated fields (as the result of the RFF field set to ‘1’) or in the case of repeated frame (as the result of
RPTFRM being set to a non-zero value), the number of user data IDUs shall always be a multiple of the number of
displayed fields/frames. An equal number of user data IDUs shall be then assigned to each field/frame; The user data
IDUs shall be placed in the bitstream in the order of the field/frame to which they are assigned. Some of the user data
IDUs may be empty.

The top two bitstreams in Figure G.8 consider the cases of progressive and frame interlace coded pictures. The top
bitstream illustrates the case where slice start codes are not used. In this case, the frame-level user data shall appear at
the end of the picture data and immediately before the start code for the next frame or the next entry point or the next
sequence. The second bitstream illustrates the case where slice start codes are used. In this case, frame-level user data
shall appear immediately before the start code signaling the second slice within the frame.

The bottom two bitstreams in Figure G.8 consider the cases of field interlace coded pictures. The third bitstream
illustrates the case where slice start codes are not used. In this case, the frame-level user data shall appear at the end of
the first field data and immediately before the start code for the second field. The fourth bitstream illustrates the case
where slice start codes are used. In this case, frame-level user data shall appear immediately before the start code
signaling the second slice within the first field.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 305

Frame-level user data shall be applicable to the frame until another frame start code, or an entry point start code, or a
sequence start code is encountered in the bitstream.

FIGURE G.8
Frame-level User Data

FRM_DAT FRM_DATUD_SC UD_DAT FRM_SCFRM_SC

FRM_SCUD_SC UD_DAT SLC_SCFRM_SC SLC_DAT FRM_DATSLC_DAT

FRM_SCUD_SC UD_DAT FLD_SCFRM_SC FLD2_DAT FLD1_DATFLD1_DAT

FLD_SCUD_SC UD_DAT SLC_SC SLC_SCFRM_SC SLC_DAT SLC_DATSLC_DAT SLC_DAT

Field-level user data

Figure G.9 below shows field-level user data. Field-level user data shall only be allowed in frames that have encoded
as Field Interlace frames. Field-level user data shall not be used in frames encoded as progressive or frame interlace
frames. Flushing bits and padding bytes may precede the first byte of the user data start code. Padding bytes may
precede the first byte of the start code immediately following the last user data byte (that is, the flushing byte of value
0x80).

In Figure Y9, the top two bitstreams consider the case where slice start codes are not used. The top bitstream shows
the situation where there is no frame-level user data. In this case, the field-level user data shall appear at the end of the
field data and before the start code for the second field or the next frame or the next entry point or the next sequence.
The second bitstream shows the situation where frame-level user data is also present. In this case, field-level user data
for the first field shall appear before any frame-level user data. The value of the frame-level and field-level start code
are distinct so the scope of the user data is unambiguous.

The bitstream at the bottom of the Figure illustrates the case where slice start codes are used. The third bitstream
shows the situation where there is no frame-level user data. In this case, field-level user data shall appear before the
start code of the second slice within the field. The fourth bistream shows the situation where frame-level user data is
also present. In this case, field-level user data for the first field shall appear before any frame-level user data.

Field-level user data shall be applicable to the field until another field start code or a frame start code or an entry point
start code or a sequence start code is encountered in the bitstream.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 306

FLD_SC

FIGURE G.9
Field-level User Data

UD_SC UD_DAT

UD_SC UD_DAT

SLC_SC

SLC_SC

FLD_SC FLD2_DATFRM_SC UD_SC UD_DAT UD_SC UD_DAT FRM_SCFLD1_DAT FLD1_DAT

FRM_SC SLC_DAT

SLC_DAT

SLC_DAT

SLC_DAT

FLD_SC FLD2_DATFRM_SC UD_SC UD_DAT

UD_SC UD_DAT FRM_SC

FLD1_DAT

FLD1_DAT

UD_SC UD_DAT

Field 1-level
User data

Frame-level
User data

FLD_SC

UD_SC UD_DAT

UD_SC UD_DAT

SLC_SC

SLC_SC

FRM_SC SLC_DAT

SLC_DAT

SLC_DAT

SLC_DAT

UD_SC UD_DAT

Field 1-level
User data

Frame-level
User data

Slice-level user data

Figure G.10 below shows slice-level user data. For the sake of simplicity, the figure assumes that the field is made of
two distinct slices but it should not be implied that this is a constraint in the design. Flushing bits and padding bytes
may precede the first byte of the user data start code. Padding bytes may precede the first byte of the start code
immediately following the last user data byte (that is, the flushing byte of value 0x80).

In Figure G.10, the top two bitstreams illustrate the case of user data associated with the first slice in the picture – here
a field, but the same concept applies for a frame. The top bitstream shows the situation where there is no field-level or
frame-level user data. In this case, the slice-level user data shall appear at the end of the first slice data and before the
start code for the second slice. The second bitstream shows the situation where both field-level and frame-level user
data are also present. In this case, slice-level user data for the first slice shall appear before any field-level user data.
The value of the frame-level, field-level and slice start codes are distinct so the scope of the user data is unambiguous.

The third bistream at the bottom illustrates the case of slice-level user data associated with the second slice in the
picture – here a field, but the same concept applies to a frame. In this case, the slice-level user data shall appear
immediately before the start code for the next IDU – here a frame but it could be another slice-level user start code or a
slice start code, a field start code or a frame start code.

slice-level user data shall be applicable to the slice until another slice start code, a field start code, a frame start code,
an entry point start code or a sequence start code is encountered in the bitstream.

Committee Draft: Video Codec VC-9

 Private SMPTE Committee Document: Not for Publication 307

FRM_SC

FIGURE G.10
Slice-level User Data

UD_SC UD_BYT SLC_SCSLC_DAT SLC_DAT

FLD_SC UD_SC UD_BYT SLC_SCSLC_DAT SLC_DAT

UD_SC UD_BYTSLC_DAT SLC_DATSLC_SC

FLD_SC FRM_SCUD_SC UD_BYTSLC_DAT SLC_DATSLC_SC

FRM_SC

FRM_SC

FRM_SC

UD_SC UD_BYT SLC_SCSLC_DAT SLC_DAT

FLD_SC UD_SC UD_BYT SLC_SCSLC_DAT SLC_DAT

FRM_SC UD_SC UD_BYT UD_SC UD_BYT

UD_SC UD_BYT

Slice1-level
user data

Field1-level
user data

Frame-level
user data

Slice1-level
user data

Field 2-level
user data

Start code usage rules

Immediate (one after another of the same kind) duplication of sequence, entry point, frame, field or slice start code and
header shall not be allowed. User data start codes and user bytes may be duplicated an arbitrary amount of time and at
any level. Use of sequence, entry point, frame, field and slice start codes is optional. Many considerations may drive
the use of start code. For example, entry start points may be used for facilitating receiver tuning or implementation of
trick modes or splicing.

To facilitate implementation of trick modes, the following additional constraint shall be observed:
• If a sequence start code or an entry point start code is present in the bitstream immediately before the header

of a frame of type “P/I” (field interlace mode), then a field start code shall be present between the last data
byte of the first “P” field and the field header of the second “I” field.

