. US005386232A
United States Patent [19] (111 Patent Number: 5,386,232
Golin et al. [45]1 Date of Patent: Jan. 31, 1995
[54] METHOD AND APPARATUS FOR [56] References Cited
ENCODING IMAGES USING A SPECIFIED
DATA FORMAT U.S. PATENT DOCUMENTS
4,857,992 11/1989 Richardsooowooreeemsrn. 348/391
5,220,410 6/1993 Wakeland et al. 3487391

(73]

[73]
(21]
[22]

[51]
(521

[58]

Inventors: Stuart Golin, Hillsboro; Brian
Nickerson, Aloha; Michael Keith,
Beaverton; Rohan Coelho, Hillsboro,
all of Oreg.

Assignee: Intel Corporation, Santa Clara, Calif.

Appl. No.: 78,126

Filed: Jun. 16, 1993

Int. CL6 ...t renne HO04N 11/04

US. Cl 348/391; 348/396;

348/467
Field of Search 348/391, 396, 465, 467,

348/472, 488; HO4N 11/04

304

Tttt
5432109876543210

frrertrbnrtrrrd

I_ BS_STILL_PERIOD 402
BS_8BIT 404
| BS.STILL 406
BS_STILL_NEXT 408
BS_MC_H_HALF 410
BS_MC_V_HALF 412
BS_MC_OFF 414
BS_DISPOSABLE 416

BS_BUFFER 418

5,241,382 8/1993 Paik et al. 348/391

Primary Examiner—Victor R. Kostak
Attorney, Agent, or Firm—Steve Mendelsohn; William
H. Murray

[57] ABSTRACT

A method and apparatus for encoding image data. After
encoding, the image data has an OPERATING SYS-
TEM header, a BITSTREAM header, a Y-COMPO-
NENT DATA field, a U-COMPONENT DATA field,
and a V-COMPONENT DATA field. Each of the
DATA fields has a four-byte MC VECTOR COUNT
field, an MC VECTORS field, and an ENCODED
DATA field that has interleaved binary tree codes and
region codes.

54 Claims, 13 Drawing Sheets

500

NC VECTOR COUNT 502

NC VECTORS 504

ENCODED DATA 506

5,386,232

Sheet 1 of 13

Jan. 31, 1995

U.S. Patent

8TT 9171 Vit (AN}
wouon {1 i L¥Hiod 4300030 HILSAS
AV1dSIa AV1dSIQ 40100 6ANA ONILYY§3d0
LENTS
0z1 114
f 030IA
HYIULS WIS KYRLS WY LS LENTS
11 irg 118 11 119
030IA 0301A 030IA 030IA 0301A
4300083 0IA 43000N3 v H0SS300Hd | WIS | worvuamao
IHIL-VIY-NON 0VY0LS SSYH M- | wviore UNLdYD 90TYNY 0301A
Oft 801 901 140)! 201
00T
(N4LSAS 0ddIA) T "9ld

U.S. Patent Jan. 31, 1995 ‘Sheet 2 of 13 5,386,232

FIG. 2

200

202
_\ OPERATING SYSTEM

HEADER

204 I

BITSTREAM HEADER

206 \————-

U-COMPONENT DATA

V-COMPONENT DATA

Y-COMPONENT DATA

U.S. Patent

Jan. 31, 1995 Sheet 3 of 13

FIG. 3

204

VERSION NUMBER 302
FLAGS 304

DATA SIZE 306

CB OFFSET 308
RESERVED 310
CHECKSUM 312

IMAGE HEIGHT 31 4
IMAGE WIDTH 316

Y DATA OFFSET 318

V DATA OFFSET 320

U DATA OFFSET 322

RESERVED 324

AR

ALT QUANT 326

5,386,232

U.S. Patent Jan, 31, 1995 Sheet 4 of 13 5,386,232

FIG. 4

304

[ARER IR AR I
5432109876543210

L BS_STILL_PERIOD 402
L BS_8BIT 404

| BS.STILL 406
BS_STILL_NEXT 408
BS_MC_H_HALF 410
BS_MC_V_HALF 412
BS_MC_OFF 41 4
BS_DISPOSABLE 416
BS_BUFFER 418

U.S. Patent Jan, 31, 1995 Sheet 5 of 13 5,386,232

FIG. 5

500

MC VECTOR COUNT 502

----------------- HC VECTORS 504

ENCODED DATA 506

U.S. Patent Jan, 31, 1995 Sheet 6 of 13 5,386,232

FIG. 6

WRITE BITSTREAM HEADER
FOR EACH IMAGE PLANE (Y, U, V)

SEGMENT PLANE INTO A ROUGHLY REGULAR GRID OF CELLS, USING BINARY TREE FOR EACH CELL IN PLANE

{
COMPUTE H AND V ENERGY OF CELL {** SEE BELOW)

IF (H ENERGY AND V ENERGY ARE SMALL) SELECT MODE 10
ELSE IF (V ENERGY IS SMALL) SELECT MODE 3
ELSE SELECT MODE 0

SELECT QUANTIZATION FOR CELL BASED ON ENERGY FOR EACH CELL IN PLANE
FOR EACH 4x4 BLOCK

FOR EACH OF THE 8 DYADS IN THE BLOCK
{
READ 2 PIXELS FROM IMAGE, SUBTRACT PREDICTION TO GET (X,Y)
FIND VECTOR IN VQ SET WHICH IS CLOSEST TO (X,Y)
ADD (X,Y) TO PREDICTION, CHECK OVERFLOW
IF (OVERFLOW CONDIT!ION NOT TRUE)
FIND VECTOR IN VQ SET CLOSEST TO (X,Y) AND WHICH DOES NOT CAUSE
OVERFLOW
STORE DYAD INDEX IN A TEMP ARRAY

}
FOR EACH OF THE 4 LINES IN THE BLOCK

IF THE PAIR OF DYADS ON THIS LINE FORM A QUAD
STORE QUAD INDEX IN TEMP ARRAY

ELSE
STORE 2 DYAD INDICES IN TEMP ARRAY

} .
LOOP THRU INDICES GENERATED, AND COMBINE ADJACENT 0 QUADS INTO SPECIAL
CODES (255, 254, 253)

}
** THE H AND V ENERGY OF A CELL ARE COMPUTED AS FOLLOWS:

SUM = 0
FOR EACH PIXEL IN CELL
{
DIFF = THIS PIXEL - PIXEL TO THE RIGHT
H + = DIFF*DIFF
DIFF = THIS PIXEL - PIXEL BELOW IT
V + = DIFF*DIFF

}
H = H/SIZE OF CELL
V - V/SIZE OF CELL

AFTER COMPUTING H AND V, THEY ARE COMPARED WITH ADJUSTABLE THRESHOLDS TO DECIDE WHICH
ENCODING MODE TO USE FOR A CELL.

U.S. Patent Jan. 31, 1995 Sheet 7 of 13 5,386,232

FIG. 7A

FOR EACH IMAGE PLANE (Y, U, V)
{
FIND START OF PLANE DATA USING DATAOFFSET FIELD IN HEADER
CALCULATE PLANE SIZE FROM XSIZE, YSIZE IN HEADER AND PLANE NUMBER:
IF (PLANE ==Y)
SIZE = SIZE FROM HEADER
ELSE
SIZE = (((SIZE FROM HEADER + 3} >> 2) + 3) & ~ 3

INITIALIZE CELL TO WHOLE IMAGE
WHILE (BINARY TREE NOT EXHAUSTED)
{
GET NEXT BINARY TREE 2-BIT CODE
IF (IN PRIMARY TREE)

IF (CODE =~ ~ V_SPLIT)

SPLIT CELL IN HALF WITH VERTICAL LINE, PUSH BOTH SUBCELLS ON STACK
ELSE IF (CODE == H_SPLIT)

SPLIT CELL IN HALF WITH HORIZONTAL LINE, PUSH BOTH SUBCELLS ON STACK
ELSE IF (CODE = = REL_FILL)

GET MOTION VECTOR INDEX FROM BlTSTREAM

ENTER SECONDARY TREE
ELSE IF (CODE = = ABS_FILL)

MARK THIS REGION AS INTRA, ENTER SECONDARY TREE

}
ELSE (MUST BE IN SECONDARY TREE)
{
IF (CODE = =~ V_SPLIT)
SPLIT CELL IN HALF WITH VERTICAL LINE, PUSH BOTH SUBCELLS ON STACK
ELSE IF (CODE == H_SPLIT)
SPUIT CELL IN HALF WITH HORIZONTAL LINE, PUSH BOTH SUBCELLS ON STACK
ELSE IF (CODE = ~ VQ_DATA)
POP CELL FROM STACK
READ VQ DESCRIPTOR BYTE
CALL PROCESSCELL
ELSE IF (CODE = = VQ_NULL)
POP CELL FROM STACK
READ 2-BIT NULL CODE (EITHER COPY OR SKiP)
CALL COPYCELL OR SKIPCELL

U.S. Patent Jan. 31, 1995 Sheet 8 of 13 5,386,232

FIG. 7B
COPYCELL ROUTINE:
FOR EACH PIXEL IN THE CELL
COPY PIXEL FROM THE MOTION-COMPENSATED PREVIOUS CELL {IF INTER FRAME) OR FROM PREVIOUS LINE OF
THIS FRAME (IF INTRA FRAME)
SKIPCELL ROUTINE:
MARK ALL BLOCKS IN CELL AS "SKIPPED"
RETURN

NOTE: THE PURPOSE OF MARKING BLOCKS AS SKIPPED 1S SO THAT COLOR CONVERSION AND COPY TO DISPLAY
CAN BE AVOIDED FOR THESE BLOCKS, THUS PROVIDING INCREASED EFFICIENCY.

U.S. Patent Jan. 31, 1995 Sheet 9 of 13 5,386,232

FIG. 7C
PROCESSCELL ROUTINE

PROCESSCELL IS ACTUALLY A COLLECTION OF ROUTINES, EACH OF WHICH HANDLES ONE OR MORE "MODES"
WITH WHICH CELLS CAN BE ENCODED.

THE ROUTINES AVAILABLE ARE:

MODEO12 (PROCESSES MODE 0, 1, OR 2)
MODE34 (PROCESSES MODE 3 OR 4)
MODE56 (PROCESSES MODE 5 OR 6)
MODE789 (PROCESSES MODE 7, 8, OR 9)
MODE10 (PROCESSES MODE 10) -
MODE1112 (PROCESSES MODE 11 OR 12)
MODE 012
IN THIS MODE THE 8 DYADS IN EACH 4X4 BLOCK ARE ENCODED, IN THE ORDER

100

3 2

5 4

7 6

AND THERE ARE ADDITIONAL CODES THAT CAN REPRESENT MORE THAN ONE DYAD IN A SINGLE CODE.

THE ONLY DIFFERENCE BETWEEN MODES 0, 1, 2 ARE THE APPLICATION OF THE TWO VQ TABLES SPECIFIED FOR THIS
CELL. (THESE ARE SPECIFIED IN THE VQ TABLE DESCRIPTOR READ AT THE BEGINNING OF THE CELL.) MODE 0 USES
PPPP, MODE 1 USES SPSP, AND MODE 2 USES SPSS, FOR THE 4 LINES OF EACH BLOCK.

FOR EACH 4X4 BLOCK IN THE CELL (IN RASTER ORDER)

GET NEXT BYTE FROM BITSTREAM
IF (BYTE REPRESENTS A DYAD)
GET PREDICTION PIXEL PAIR, EITHER FROM PREVIOUS LINE OF THIS IMAGE (IF INTRA CODED), OR FROM
CORRESPONDING LINE OF MOTION-COMPENSATED CELL IN PREVIOUS IMAGE
ADD DYAD CORRECTION TO PREDICTION
WRITE NEW PIXELS TO THIS IMAGE
REPEAT THE ABOVE FOR 2ND DYAD ON THIS LINE

ELSE IF (BYTE REPRESENTS A QUAD)
GET 4 PIXELS FROM PREDICTIOIN, ADD 4-BYTE QUAD CORRECTOR, WRITE RESULT

ELSE IF (BYTE =~ 248)
READ ANOTHER BYTE, EXTRACT LOWER 7 BITS
IF (MSB OF BYTE = = 0)
WRITE THE 7-BIT VALUE TO ALL 16 PIXELS N THIS BLOCK
ELSE
WRITE IT TO ALL OF THIS BLOCK AND ALL OF THE NEXT BLOCK

ELSE IF (BYTE == 250)
SKIP THIS BLOCK (MARK IT AS SKIPPED, DO NOTHING MORE)

ELSE IF (BYTE = = 249)
SKIP THIS BLOCK AND THE NEXT ONE

U.S. Patent Jan, 31, 1995 Sheet 10 of 13 5,386,232

FIG. 7D

MODEO12 (CONT)

ELSE IF (BYTE =~ 255)
APPLY 0 CORRECTOR TO ALL LINES OF THIS BLOCK UP TO THE 2ND LINE

ELSE IF (BYTE = = 254)
APPLY 0 CORRECTOR TO ALL LINES OF THIS BLOCK UP TO THE 3RD LINE

ELSE IF (BYTE = = 253)
APPLY 0 CORRECTOR TO ALL REMAINING LINES OF THE BLOCK

ELSE IF (BYTE = = 252)
APPLY BYTE 253 PROCESS, THEN APPLY 0 CORRECTOR TO WHOLE NEXT BOCK

ELSE IF (BYTE = = 251)
APPLY BYTE 253 PROCESS, THEN APPLY 0 CORRECTOR TO NEXT 2 BLOCKS

MODE 34

MODES 3 AND 4 DIFFER ONLY IN THE APPLICATION OF THE VQ TABLES. MODE 3 USES P ONLY, WHEREAS MODE 4
SWITCHES BETWEEN P AND S ON ALTERNATE LINES.

THE MODE34 PROCESS IS:

DIVIDE Y SIZE OF CELL BY 2

PERFORM MODEQ12 PROCESS USING BITSTREAM DATA

DOUBLE THE Y SIZE OF THE RESULTING PIXEL ARRAY, BY INSERTING (A+B)> >1 BETWEEN EACH VERTICAL PAIR OF
PIXELS.

(NOTE: IF THE CELL IS AT THE TOP OF THE IMAGE, DON'T AVERAGE THE TOP LINE, JUST REPLICATE.)

U.S. Patent Jan. 31, 1995 Sheet 11 of 13 5,386,232

FIG. 7E

MODE 56

MODES 5 AND 6 DIFFER ONLY IN THE APPLICATION OF THE VQ TABLES. MODE 5 USES P ONLY, WHEREAS MODE 6
SWITCHES BETWEEN P AND S ON ALTERNATE LINES.

THE MODES56 PROCESS 1S:

FOR EACH 4X4 BLOCK IN THE CELL (IN RASTER ORDER)

{
FOR EACH OF THE 2ND AND 4TH LINES OF THE BLOCK

{
GET NEXT BYTE FROM BITSTREAM
IF (BYTE REPRESENTS A DYAD)
GET PREDICTION PIXEL PAIR, EITHER FROM PREVIOUS LINE OF THIS IMAGE (IF INTRA CODED), OR FROM
CORRESPONDING LINE OF MOTION-COMPENSATED CELL IN PREVIOUS IMAGE
ADD DYAD CORRECTION TO PREDICTION
WRITE NEW PIXELS TO THIS IMAGE
REPEAT THE ABOVE FOR 2ND DYAD ON THIS LINE
PREVIOUS LINE = AVERAGE OF THIS LINE AND (THIS-2)TH LINE
READ A BIT FROM BITSTREAM
IF BIT == 1)
ADD ANOTHER CORRECTOR (2 DYADS OR 1 QUAD) TO PREVIOUS LINE

ELSE IF (BYTE REPRESENTS A QUAD)
GET 4 PIXELS FROM PREDICTION, ADD 4-BYTE QUAD CORRECTOR, WRITE RESULT
PREVIOUS LINE = AVERAGE OF THIS LINE AND (THIS-2)TH LINE
READ A BIT FROM BITSTREAM
IFBIT == 1)
ADD ANOTHER CORRECTOR (2 DYADS OR 1 QUAD) TO PREVIOUS LINE

ELSE IF (BYTE == 248)
READ ANOTHER BYTE, EXTRACT LOWER 7 BITS
IF (MSB OF BYTE « = 0)
WRITE THE 7-BIT VALUE TO ALL 16 PIXELS IN THIS BLOCK
ELSE
WRITE IT TO ALL OF THIS BLOCK AND ALL OF THE NEXT BLOCK

ELSE IF (BYTE = = 250)
SKIP THIS BLOCK (MARK IT AS SKIPPED, DO NOTHING MORE)

ELSE IF (BYTE = = 249)
SKIP THIS BLOCK AND THE NEXT ONE

ELSE IF (BYTE = = 253)
APPLY 0 CORRECTOR TO ALL REMAINING LINES OF THE BLOCK

ELSE IF (BYTE =~ 252
APPLY BYTE 253 PROCESS, THEN APPLY 0 CORRECTOR TO WHOLE NEXT BLOCK

ELSE IF (BYTE ~ = 251)
APPLY BYTE 253 PROCESS, THEN APPLY 0 CORRECTOR TO NEXT 2 BLOCK
}

U.S. Patent Jan. 31, 1995 Sheet 12 of 13 5,386,232

FIG. 7F

MODE 789

THE ONLY DIFFERENCE BETWEEN MODES 7, 8, 9 ARE THE APPLICATION OF THE TWO VQ TABLES SPECIFIED FOR THIS
CELL. (THESE ARE SPECIFIED IN THE VQ TABLE DESCRIPTOR READ AT THE BEGINNING OF THE CELL) MODE 7
USES PPPP, MODE 8 USES SPSP, AND MODE 9 USES SPSS, FOR THE 4 LINES OF EACH BLOCK.

THE PROCESSING FOR THESE MODES 1S AS FOLLOWS:

FOR EACH 4X4 BLOCK IN THE CELL
{

FOR EACH 4X1 LINES IN THE CELL
§

READ 2 BITS FROM BITSTREAM

IF (BITS = = 00)
APPLY 0 QUAD TO THIS LINE

ELSE IF (BITS =~ O1)
READ DYAD INDEX FROM BITSTREAM, APPLY TO FIRST DYAD ON LINE
APPLY 0 DYAD TO 2ND DYAD ON LINE

ELSE IF (BITS =~ 10)
READ CODE FROM BITSTREAM
IF (CODE IS A DYAD)
APPLY 0 DYAD TO FIRST DYAD ON LINE,
APPLY THIS DYAD TO 2ND DYAD ON LINE
ELSE IF A QUAD
APPLY QUAD TO THIS LINE

ELSE IF (BITS == 11)
READ 2 DYADS FROM BITSTREAM, APPLY TO THIS LINE

U.S. Patent Jan. 31, 1995 Sheet 13 of 13 5,386,232

FIG. 7G

MODE 10
MODE 10 PROCESSING IS AS FOLLOWS:

FOR EACH 4X4 BLOCK IN THE CELL
{
GET BYTE FROM BITSTREAM
IF BYTE REPRESENTS A QUAD
GET 4-BYTE CORRECTOR (ABCD) FROM VQ TABLE
ELSE
GET ANOTHER BYTE FROM BITSTREAM
CONCATENATE TWO DYADS TO FORM A 4-BYTE CORRECTOR (ABCD)

IF (INTRA)

APPLY THIS PATTERN OF CORRECTORS:
0000
BBAA
0000
pbCC

ELSE (IF INTER) APPLY:
BBAA
BBAA
DDCC
DDCC

MOBDES 11, 12

MODES 11 AND 12 DIFFER ONLY IN THE APPLICATION OF THE VQ TABLES. MODE 11 USES P ONLY, WHEREAS
MODE 11 SWITCHES BETWEEN P AND S ON ALTERNATE LINES.

THESE MODES CAN ONLY BE USED IN AN INTER-CODED CELL.
PROCESSING FOR MODE 11/12 1S AS FOLLOWS:

DIVIDE Y SIZE OF CELL BY 2

PERFORM MODEQ12 PROCESS USING BITSTREAM DATA, BUT JUST STORE CORRECTOR ARRAY RATHER THAN
ADDING TO PREDICTION

DOUBLE THE Y SIZE OF THE CORRECTOR ARRAY BY REPEATING EACH VALUE VERTICALLY

ADD DOUBLED CORRECTOR ARRAY TO PREDICTED CELL, WRITE RESULT TO IMAGE

5,386,232

1

METHOD AND APPARATUS FOR ENCODING
IMAGES USING A SPECIFIED DATA FORMAT

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to methods and appara-
tuses for processing digital image signals, and, in partic-
ular, to encoders for encoding digital image data.

2. Description of the Related Art

Conventional systems for playing video in a PC envi-
ronment are limited, in part, by the processing capabili-
ties of the PC processors. These limitations include low
video frame rates and small video window sizes for
display of video images. Such limitations result in low
video quality. As a result, some conventional systems
for playing video in a PC environment require addi-
tional hardware that is designed to process video data at
the rates needed to provide acceptable video quality.

It is, therefore, desirable to provide a playback video
system for displaying high-quality, full-motion digital
video images on a graphics display monitor in a per-
sonal computer (PC) environment that does not require
any additional hardware. Such a playback video system
is preferably capable of performing decoding and dis-
play functions to support playback mode. In playback
mode, the playback video system accesses encoded
video data from a mass storage device, decodes the
data, and displays the decoded data on a display moni-
tor.

It is also desirable to provide a compression video
system for generating the encoded video data that will
be decoded and displayed by the playback video sys-
tem. Such a compression video system is preferably
capable of performing capture, encoding, decoding, and
display functions to support both a compression mode
and the playback mode. In compression mode, the com-
pression video system captures and encodes video im-
ages generated by a video generator, such as a video
camera, VCR, or laser disc player. The encoded video
data may then be stored to a mass storage device, such
as a hard drive or, ultimately, a CDROM. At the same
time, the encoded video data may also be decoded and
displayed on a display monitor to monitor the compres-
sion-mode processing.

It is accordingly an object of this invention to over-
come the disadvantages and drawbacks of the known
art and to provide an encoder for a compression video
system for generating the encoded video data to be
decoded and displayed by the playback video system.

Further objects and advantages of this invention will
become apparent from the detailed description of a
preferred embodiment which follows.

SUMMARY OF THE INVENTION

The present invention comprises a method and appa-
ratus for encoding image data. Image data is received
and used to generate and transmit an OPERATING
SYSTEM header, a BITSTREAM header, a Y-COM-
PONENT DATA field, a U-COMPONENT DATA
field, and a V-COMPONENT DATA field. The Y-, U-,
and V-COMPONENT DATA fields each have a four-
byte MC VECTOR COUNT field, an MC VECTORS
field, and an ENCODED DATA field, comprising
interleaved binary tree codes and region codes.

10

20

35

45

50

55

65

2

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and advantages of the present
invention will become more fully apparent from the
following detailed description of a preferred embodi-
ment, the appended claims, and the accompanying
drawings in which:

FIG. 1 is a block diagram of a video system for dis-
playing video images in a PC environment, according
to a preferred embodiment of the present invention;

FIG. 2 depicts the syntax of the encoded video bit-
stream of the video system of FIG. I;

FIG. 3 depicts the syntax of the video bitstream
header of the video bitstream of FIG. 2;

FIG. 4 depicts the syntax of the flags field of the
video bitstream header of FIG. 3;

FIG. 5 depicts the syntax of each of the Y-, U-, and
V-component data fields of the video bitstream header
of FIG. 3;

FIG. 6 presents the pseudo-code for a preferred em-
bodiment of the real-time encoder of the video system
of FIG. 1; and

FIGS. 7a-7g present the pseudo-code for a preferred
embodiment of the decoder of the video system of FIG.
1

DESCRIPTION OF PREFERRED
EMBODIMENT(S)

Description of Video System

Referring now to FIG. 1, there is shown a block
diagram of a video system 100 for displaying video
images in a PC environment, according to a preferred
embodiment of the present invention. Video system led
is capable of performing in the compression and play-
back modes. The operations of video system 100 are
controlled by operating system 112 which communi-
cates with the other processing engines of video system
100 via system bus 120.

When video system 100 operates in compression
mode, video generator 102 of video system 100 gener-
ates analog video signals and transmits those signals to
capture processor 104. Capture processor 104 decodes
(i.e., separates) the analog video signal into three linear
components (one luminance component Y and two
chrominance components U and V), digitizes each com-
ponent, and scales the digitized data. Scaling of the
digitized data preferably includes subsampling the U
and V data to generate digitized video data in subsam-
pled YUV9 format. Those skilled in the art will under-
stand that YUV9 data has one U-component value and
one V-component value for every (4 X4) block of Y-
component values.

Real-time encoder 106 encodes (ie., compresses)
each component of the captured (i.e., unencoded or
uncompressed) YUV data separately and transmits the
encoded data as a video bitstream via system bus 120 for
storage to mass storage device 108. The syntax of the
video bitstream is described in further detail later in this
specification in conjunction with FIGS. 2-5.

The encoded data may then be optionally further
encoded by non-real-time encoder 110. If such further
encoding is selected, then non-real-time encoder 110
accesses the encoded video-bitstream data stored in
mass storage device 108, encodes the data further, and
transmits the further encoded video data back to mass
storage device 108. The output of non-real-time en-
coder 110 is further encoded video data that follows the

5,386,232

3

same video-bitstream syntax as the encoded video data
generated by real-time encoder 106.

Video system 100 also provides optional monitoring
of the compression-mode processing. If such monitor-
ing is selected, then, in addition to being stored to mass
storage device 108, the encoded video bitstream (gener-
ated by either real-time encoder 106 or non-real-time
encoder 110) is decoded (i.e., decompressed) back to
YUV format (and scaled for display) by decoder 114.
Color converter 116 then converts the decoded, scaled
YUV9 data to a display format selected for displaying
the video images on display monitor 118. The display
format is preferably selected to be either CLUTS or
RGB24 format, depending on the requirements of dis-

play monitor 118, although alternative embodiments of 15

the present invention may support additional or alterna-
tive display formats.

When video system 100 operates in the playback
mode, decoder 114 accesses video data in the encoded
video-bitstream format stored in mass storage device
108 and decodes and scales the encoded data back to
decoded YUV format. Color converter 116 then con-
verts the decoded, scaled YUV data to a selected dis-
play format for display on display monitor 118.

Those skilled in the art will understand that, depend-
ing on the modes to be supported, some of the compo-
nents of video system 100 as depicted in FIG. 1 may be
considered optional. For example, in compression
mode, decoder 114, color converter 116, and display
monitor lie are optional, if compression-mode monitor-
ing is not selected. Similarly, in playback mode, video
generator 102, capture processor 104, real-time encoder
106, and non-real-time encoder 110 are optional.

In a preferred embodiment, operating system 112is a
multi-media operating system, such as, but not limited
to, Microsoft ® Video for Windows or Apple ®
QuickTime, running on a personal computer with a
general-purpose processor, such as, but not limited to,
an Intel® x86 or Motorola® microprocessor. An
Intel ® %86 microprocessor may be an Intel ®) 386, 486,
or Pentium T™M processor. Video generator 102 may be
any source of analog video signals, such as a video
camera, VCR, or laser disc player. Capture processor
104 and real-time encoder 106 are preferably imple-
mented by a video processor such as an Intel ® i750
encoding engine on an Intel ® Smart Video Board.

25

4

pose processor. Display monitor 118 may be any suit-
able device for displaying video images and is prefera-
bly a graphics monitor such as a VGA monitor.
Those skilled in the art will understand that each of
the functional processors of video system 100 depicted
in FIG. 1 may be implemented by any other suitable
hardware/software processing engine.

Overview of Video Encoding Process

10 Video system 100 encodes each component plane of

YUV video data separately. Each component plane is
segmented into regions using binary-tree image segmen-
tation. Each region is encoded based on adaptive two-
phase vector quantization with either intraframe predic-
tion or interframe (i.e., delta) prediction. Each region
may also be encoded using motion estimation (prefera-
bly at whole-pixel increments). Each region of a com-
ponent plane may be encoded using different vector-
quantization tables and/or different motion-estimation

20 vectors from other regions of that component plane. A

region is encoded in units of (4X4) blocks in raster
order, with the Y-, U-, and V-component data prefera-
bly encoded as 7-bit values.

Every pixel in a region is predicted. If the region is an
“intra” region, then pixels are encoded based on the
difference D between vertically adjacent pixels in the
same frame, such that:

D=pixel(n,xy)--pixel(n,x,y—1),

30

where n is the frame number, x is the column number,
and y is the row number. If the region is an “inter” or
delta region, then pixels are encoded based on the dif-
ference D between corresponding pixels in successive

35 frames taking into account any motion estimation, such

that:

D=pixel(n,x,y)—pixel(n—1,x+dx,y+-dy),

40 where (dx, dy) are the components of the motion esti-

mation vector.

Each region may be encoded using up to two differ-
ent vector-quantization (VQ) tables: a primary VQ table
and a secondary VQ table. A region may be encoded in

45 any one of thirteen different encoding modes, as pres-

ented in Table 1.

TABLE I
Video Encoding Algorithm Modes
MODES
Row 0 1 2 3 4 5 6 7 8 9 10A 10B 11 12
1 P S S X X Z z T o o 0 PP P P
2 P P P P P P P T T o PP PP P P
3 P S S X X z z T o o 0 QQ Q S
4 P P S P S P S K T o QQ PP Q S

Non-real-time encoder 110 is preferably implemented in

software running on the general-purpose processor.
Mass storage device 108 may be any suitable device

for storing digital data, such as a hard drive or a CD-

The modes of Table I describe how each row of each
(4X4) block of a region is encoded. The letter “P”
denotes that the primary VQ table is used for the corre-

ROM. Those skilled in the art will understand that 60 sponding row. The letter “S” denotes that the second-

video system 100 may have more than one mass storage
device 108. For example, video system 100 may have a
hard drive for receiving encoded video-bitstream data
generated during compression mode and a CD-ROM
for storing other encoded video-bitstream data for play-
back mode.

Decoder 114 and color converter 116 are preferably
implemented in software running on the general-pur-

ary VQ table is used. The letter “X” denotes that no
corrections are applied and that the pixel values are
generated by interpolation. The letter “Z” denotes that
interpolation is performed, and, if the next two-bit code

65 has a value of “1” then an “S” correction is performed

The letter “7” denotes that a “P” correction is applied
with 2-bit codes to represent 0 dyads and 0 quads. The
letter “o” denotes that an “S” correction is applied

5,386,232

5

with two-bit codes to represent 0 dyads and 0 quads.
For example, in mode 1, the first and third rows of each
(4x4) block of the region are encoded using the sec-
ondary VQ table, while the second and fourth rows are
encoded using the primary VQ table.

Mode 10A applies to “intra” cells and mode 10B
applies to “inter” cells. In mode 10A, the zero corrector
is applied to the first and third rows, a corrector from
the primary VQ table is applied twice horizontally to
the second row, and a different corrector from the pri-
mary VQ table is applied twice horizontally to the
fourth row. In mode 10B, a corrector from the primary
VQ table is applied twice horizontally and twice verti-
cally to the first and second rows, and a different cor-
rector from the primary VQ table is applied twice hori-
zontally and twice vertically to the third and fourth
rows. In mode 11, a corrector from the primary VQ
table is applied twice vertically to the first and second
rows, and a different corrector from the primary VQ
table is applied twice vertically to the third and fourth
rows. In mode 12, a corrector from the primary VQ
table is applied twice vertically to the first and second
rows, and a different corrector from the secondary VQ
table is applied twice vertically to the third and fourth
TOWS.

Pixels in each (4X4) block are encoded in (2X1)
dyads in the following order:

10
32
54
76

There are 256 different byte codes for encoding the
dyads. 256 byte codes fall into the following six catego-
ries:

(1) apply dyad N;

(2) apply two dyads (i.e., a quad);

(3) apply 4, 6, or 8 consecutive zero-valued dyads;

(4) apply zero-valued dyads to n blocks;

(5) skip n blocks; and

(6) apply absolute value to whole block (i.e., “mono-

tone™).

The following is the assembler language inner loop
for modes 0, 1, or 2 of Table I:

mov dl,gs:[ebp-+K]
mov eax,es:[edx*4+4C]

get next data byte
get VQ delta

add eax,[esi+M*PITCH] add to prediction

jns quadN speedup common case
mov dl,jrpidx[edx] select action for

jmp jmptableN[edx] arbitrary case

quadN:

mov [edi+D*PITCH],eax

store 4 pixels
{repeat the above in unrolled loop}

The results of encoding each block of each region of
each component plane of each frame of video data are
organized according the video bitstream syntax, which
is described in the next section.

Referring now to FIG. 6, there is presented the pseu-
do-code for a preferred embodiment of real-time en-
coder 106 of video system 100 of FIG. 1. The pseudo-
code is preferably implemented in assembly language on
a general-purpose microprocessor or special-purpose
video processor. In order to meet the constraints of
real-time encoding, real-time encoder 106 preferably
does not use all the features of the bitstream syntax of
video system 100. Those skilled in the art will under-

10

15

20

25

30

35

45

50

55

60

65

6

stand that non-real-time encoder 114 preferably uses
more features of the bitstream syntax to produce more
highly compressed bitstreams, for example, by using
motion estimation to determine the optimum predicted
cell for inter cells. Real-time encoder 106 preferably
uses only intra cells. The “overflow condition” referred
to in the pseudo-code of FIG. 6 tests whether both
resulting 7-bit pixel values are strictly between the val-
ues 8 and 120, when adding a dyad corrector to a pre-
diction.

Referring now to FIGS. 7a-7g, there is presented the
pseudo-code for a preferred embodiment of decoder
114 of video system 100 of FIG. 1. The pseudo-code is
preferably implemented in assembly language on a gen-
eral-purpose processor or any processor capable of
real-time decoding. All pixels in all three component
planes (i.e, Y, V, and U) are preferably 7-bit values with
Y constrained to be within 8 and 120.

Description of Video Bitstream Syntax

Referring now to FIG. 2, there is shown a representa-
tion of a preferred syntax of the encoded video bit-
stream 200 corresponding to one frame of video data.
Video bitstream 200 is generated by real-time encoder
106 and non-real-time encoder 110, and is decoded by
decoder 114 of video system 100 of FIG. 1. Each frame
of video data in video bitstream 200 includes OPERAT-
ING SYSTEM header 202, VIDEO BITSTREAM
header 204, U-COMPONENT DATA field 206, V-
COMPONENT DATA field 208, and Y-COMPO-
NENT DATA field 210.

Multi-media operating systems typically support sev-
eral types of encoding/decoding processes. OPERAT-
ING SYSTEM header 202 of the video bitstream 200
informs operating system 112 of video system 100 that
the video bitstream 200 is to be decoded using the de-
coding process implemented by decoder 114 of video
system 100 of FIG. 1. In general, OPERATING SYS-
TEM header 202 contains information required by the
particular multi-media operating system of video system
100.

Referring now to FIG. 3, there is shown a representa-
tion of a preferred syntax of VIDEO BITSTREAM
header 204 of video bitstream 200 of FIG. 2. VIDEO
BITSTREAM header 204 is a forty-eight-byte field.

VERSION NUMBER 302 of VIDEO BIT-
STREAM header 204 is a two-byte integer field that
identifies the decoding process version number used to
create the current data frame. VERSION NUMBER
302 preferably has a decimal value of 32.

Referring now to FIG. 4, there is shown a representa-
tion of a preferred syntax of FLAGS 304 of VIDEO
BITSTREAM header 204 of FIG. 3. FLAGS 304 is a
two-byte unsigned field.

BSSTILLPERIOD 402 is bit 0 (the least significant
bit (LSB)) of FLAGS 304. BSSTILLPERIOD 402
denotes whether the current frame is a periodic still
frame (i.e., a periodic key frame). If BSSTILLPERIOD
402 is 1, then the current frame is a periodic still frame.

BS8BIT 404 is bit 1 of FLAGS 304 and denotes
whether the YUV-component data uses 8 bits or 7 bits.
If BSS8BIT 404 is 0, then the YUV-component data uses
only 7 bits. In a preferred embodiment, the YUV-com-
ponent data uses only 7 bits.

BSSTILL 406 is bit 2 of FLAGS 304 and denotes
whether the current frame is a still frame (i.e., any type

5,386,232

7
of key frame). If BSSTILL 406 is 1, then the current
frame is a still frame.

BSSTILLNEXT 408 is bit 3 of FLAGS 304 and
denotes whether the next frame is a still frame. If
BSSTILLNEXT 408 is 1, then the next frame is a still
frame.

BSMCHHALF 410 is bit 4 of FLAGS 304 and de-
notes whether the horizontal components of the motion
compensation vectors for the current frame are in
whole-pixel or half-pixel increments. In a preferred
embodiment, the motion compensation vectors are in
whole-pixel increments. A value of 0 for
BSMCHHALF 410 indicates whole-pixel increments.

BSMCVHALF 412 is bit 5 of FLAGS 304 and de-
notes whether the vertical components of the motion
compensation vectors for the current frame are in
whole-pixel or half-pixel increments. In a preferred
embodiment, the motion compensation vectors are in
whole-pixel increments. A value of 0 for
BSMCVHALF 410 indicates whole-pixel increments.

BSMCOFF 414 is bit 6 of FLAGS 304 and denotes
whether only the null motion compensation vector is
used throughout the current frame. A value of 1 for
BSMCOFF 414 indicates that only the null motion
compensation vector is used.

Bit 7 of FLAGS 304 is reserved.

BSDISPOSABLE 416 is bit 8 of FLAGS 304 and
denotes whether the current frame is disposable. A
value of 1 for BSDISPOSABLE 416 indicates that the
current frame is disposable.

BSBUFFER 418 is bit 9 of FLAGS 304 and denotes
to which of two possible buffers to store the data for the
current frame. It also therefore denotes which buffer
contains the data for the previous frame (i.e., the other
buffer), when the current frame is a delta frame. A value
of 0 for BSBUFFER 418 indicates that the current
frame is to be stored to buffer 0; a value of 1 indicates
buffer 1.

The unassigned bits of FLAGS 304 (i.e., bits 7 and
10-15) are reserved for future use and are set to zero.

Referring again to FIG. 3, DATA SIZE 306 of
VIDEO BITSTREAM header 204 is a four-byte inte-
ger field that indicates the total number of bits in the
encoded image. This value preferably includes the bit-
stream header information.

CB OFFSET 308 is a one-byte integer field that indi-
cates a byte offset to apply to the addressed vector
quantization (VQ) tables. Video system 100 preferably
provides a vector set containing more than 16 different
vector quantization tables that may be used during en-
coding. In a preferred embodiment, VQ tables 0
through 15 are designated to real-time encoder 106 and
VQ tables 16 through 31 are designated to non-real-time
encoder 110. In that preferred embodiment, when real-
time encoder 106 generates a video bitstream, CB OFF-
SET 308 is set to a value of 0. When non-real-time
encoder 110 generates a video bitstream, CB OFFSET
308 is set to a value of 16. For decoding of a particular
video bitstream, decoder 114 adds CB OFFSET 308 to
the VQ table pointers contained in ALT QUANT 326
to address the appropriate VQ tables.

RESERVED 310 is a one-byte reserved field.

CHECKSUM 312 is a two-byte unsigned field that
provides a checksum value for the Y, U, and V planes.
The value of CHECKSUM 312 is preferably generated
by the encoder to be equal to the “exclusive OR” or
“XOR” over all pairs of pixels in the three component

5

—

5

20

25

40

55

60

65

8
planes of the decoded image. CHECKSUM 312 is pref-
erably used only during debugging of video system 100.

IMAGE HEIGHT 314 is a two-byte integer field
that indicates the number of pixels in each column of the
Y-component plane.

IMAGE WIDTH 316 is a two-byte integer field that
indicates the number of pixels in each row of the Y-
component plane. v

Y DATA OFFSET 318 is a four-byte integer field
that indicates the offset in number of bytes from the
start of the bitstream header to the beginning of the
Y-COMPONENT DATA field 210.

V DATA OFFSET 320 is a four-byte integer field
that indicates the offset in number of bytes from the
start of the bitstream header to the beginning of the
V-COMPONENT DATA field 208.

U DATA OFFSET 322 is a four-byte integer field
that indicates the offset in number of bytes from the
start of the bitstreamn header to the beginning of the
U-COMPONENT DATA field 206.

RESERVED 324 is a four-byte reserved field.

ALT QUANT 326 is a sixteen-byte integer field, each
byte of which indicates a pair of VQ tables that may be
used in decoding the current frame. The high-order bits
of each byte denote the “primary” VQ table, while the
low-order bits denote the “secondary” VQ table.

Referring now to FIG. 5, there is shown a representa-
tion of DATA field 500, where DATA field 500 is a
preferred syntax of each of U-, V-, and Y-COMPO-
NENT DATA fields 206, 208, and 210 of video bit-
stream 200 of FIG. 2.

MC VECTOR COUNT 502 of DATA field 500 is
four-byte integer field that denotes the number of differ-
ent motion compensation (MC) vectors that were used
to encode (and therefore that are to be used to decode)
the current component data plane.

MC VECTORS 504 is a variable-length field that
contains the motion compensation vectors used to en-
code (and to be used to decode) the current component
data plane. There are as many entries in MC VEC-
TORS 504 as the value of MC VECTOR COUNT 502.
Each entry in MC VECTORS 504 is a two-byte signed
MC vector field. The first byte read in the bitstream
corresponds to the vertical component and the second
byte read in the bitstream corresponds to the horizontal
component of a motion compensation vector. When the
motion compensation vectors are in whole-pixel incre-
ments, component values are the signed byte values.
When the motion compensation vectors are in half-pixel
increments, component values are the signed byte val-
ues divided by two. If the value of MC VECTOR
COUNT 502 is zero, then there are no entries in MC
VECTORS 504. MC VECTORS 504 may contain up
to 256 two-byte MC vector fields.

ENCODED DATA 506 contains unsigned byte data
that encodes the current component data plane. EN-
CODED DATA 506 comprises two-bit binary tree
codes and eight-bit region codes. The binary tree codes
indicate the segmentation of the current component
data plane into regions for encoding. The region codes
tell decoder 114 how to decode the encoded pixel data
for the current region of a component data plane. EN-
CODED DATA 506, like MC VECTORS 504, is a
variable-length field.

The two-bit binary tree codes are packed four to a
byte. These binary-tree-code bytes are then interieaved
with the eight-bit region codes. There are three differ-

5,386,232

9
ent types of binary tree codes: MC-PHASE tree codes,
VQ-PHASE tree codes, and NULL tree codes.

Decoding of an encoded bitstream involves two dif-
ferent phases: a motion-compensation phase and a vec-
tor-quantization phase. MC-PHASE tree codes apply
during the motion-compensation phase and VQ-
PHASE and NULL tree codes apply during the vector-
quantization phase. The sequence of tree codes depends
on the segmentation and encoding of the component
plane.

A value of 0 for an MC-PHASE tree code implies a
horizontal split, which means that the current region of
the component data field is segmented horizontally into
top and bottom halves.

A value of 1 for an MC-PHASE tree code implies a
vertical split, which means that the current region of the
component data field is segmented vertically into left
and right halves.

A value of 2 for an MC-PHASE tree code means that
the current region of the component data field is en-
coded like a key frame.

A value of 3 for an MC-PHASE tree code means that
the current region of the component data field is en-
coded like a delta frame. In this case, motion compensa-
tion is performed relative to the previous frame. Such
motion compensation is known as “inter-frame” com-
pensation. In this case, the next byte in ENCODED
DATA 506 of DATA. field 500 of FIG. 1 contains the
index for the appropriate motion compensation vector
as tabulated in MC VECTORS 504 of DATA field 500
of FIG. 1.

After receiving an MC-PHASE tree code with a
value of either 2 or 3, the vector-quantization phase of
decoding is entered and the next two-bit binary tree
code will be a VQ-PHASE tree code. A value of 0 for
a VQ-PHASE tree code implies a horizontal split,
which means that the current region of the component
data field is segmented horizontally into top and bottom
halves.

A value of 1 for a VQ-PHASE tree code implies a
vertical split, which means that the current region of the
component data field is segmented vertically into left
and right halves. :

A value of 3 for a VQ-PHASE tree code indicates
that the next byte in ENCODED DATA 506 of DATA
field 500 of FIG. 1 defines the corrector mode (the
upper four bits) and the vector quantization table (the
lower four bits) used to decode the current region of the
component data field.

A value of 2 for a VQ-PHASE tree code indicates
that the next two-bit binary tree code is a NULL tree
code.

A value of 0 for a NULL tree code indicates that the
corresponding region from the previous frame is to be
copied into the current region of the current frame.

A value of 1 for a NULL tree code indicates that the
data in the current region is to be left as it is.

The values of 2 and 3 for a NULL tree code are
reserved.

Interleaved the binary-tree-code bytes in EN-
CODED DATA 506 for a region of the current compo-
nent data plane are the region codes for that region. The
region codes consist of a variable number of one-byte
codes that describe how the pixels for the current re-
gion were encoded (and therefore how they are to be
decoded).

The first byte of the set of region codes for a particu-
lar region contains, among other information, the re-

5

10

15

20

25

35

45

50

55

65

10

gion mode (i.e., the mode of Table I used to encode the
current region). The rest of the bytes in the set of region
codes are the byte codes (i.e., the encoded pixels for the
current region).

Those skilled in the art will understand that encoded
video data, encoded using the syntax of video bitstream
200, may be further encoded and transmitted as “further
encoded” video data that is also encoded in the syntax
of video bitstream 200. Non-real-time encoder 110 of
video system 100 performs such further encoding on
encoded video data generated by real-time encoder 106.

Those skilled in the art will also understand that alter-
native embodiments of the present invention may be
based on multi-media operating systems other than Mi-
crosoft ® Video for Windows and Apple ® Quick-
Time and/or in PC environments based on processors
other than Intel ®) x86 or Motorola ®) microprocessors.
It will also be understood by those skilled in the art that
the present invention may be used to convert data cor-
responding to images other than video images.

It will be further understood that various changes in
the details, materials, and arrangements of the parts
which have been described and illustrated in order to
explain the nature of this invention may be made by
those skilled in the art without departing from the prin-
ciple and scope of the invention as expressed in the
following claims.

What is claimed is:

1. A method for encoding image data, comprising the
steps of:

(a) receiving said image data;

(b) generating an OPERATING SYSTEM header

for said image data;

(c) generating a BITSTREAM header in accordance

with said image data;

(d) generating at least one image component data

field in accordance with said image data; and

(e) transmitting said OPERATING SYSTEM

header, said BITSTREAM header, and said at least
one image component data field, wherein step (d)
comprises the steps of:
(1) generating a Y-COMPONENT DATA field in
accordance with said image data;
(2) generating a U-COMPONENT DATA field in
accordance with said image data; and
(3) generating a V-COMPONENT DATA field in
accordance with said image data, wherein:
step (d) (1) comprises the steps of:
(A) generating a Y-component four-byte MC
VECTOR COUNT field;
(B) generating a Y-component MC VECTORS
field; and
(C) generating a Y-component ENCODED
DATA field, comprising interleaved binary
tree codes and region codings;
step (d) (2) comprises the steps of:
(A) generating a U-component four-byte MC
VECTOR COUNT field;
(B) generating a U-component MC VECTORS
field; and
(O generating a U-component ENCODED
DATA field, comprising interleaved binary
tree codes and region codes; and
step (d) (3) comprises the steps of:
(A) generating a V-component four-byte MC
VECTOR COUNT field;
(B) generating a V-component MC VECTORS
field; and

5,386,232

11
(C) generating a V-component ENCODED
DATA field, comprising interleaved binary
tree codes and region codes.

2. The method of claim 1, wherein step (c) comprises
the steps of:

(1) generating a two-byte unsigned FLAGS field;

(2) generating a four-byte integer DATA SIZE
field;

(3) generating a one-byte integer CB OFFSET
field;

(4) generating a two-byte integer IMAGE
HEIGHT field;

(5) generating a two-byte integer IMAGE
WIDTH field;

(e) generating a four-byte integer Y DATA OFF-
SET field;

(7) generating a four-byte integer U DATA OFF-
SET field;

(8) generating a four-byte integer V DATA OFF-
SET field; and

(9) generating a sixteen-byte integer ALT QUANT
field.

3. The method of claim 2, wherein step (¢) (1) com-
prises the steps of:

(A) generating a BSSTILLPERIOD bit;
(B) generating a BSSTILL bit;

(C) generating a BSSTILLNEXT bit;

(D) generating a BSMCOFF bit;

(E) generating a BSDISPOSABLE bit; and
(F) generating a BSBUFFER bit.

4. The method of claim 2, wherein step (c) (9) com-
prises the step of generating one or more one-byte pairs
of vector-quantization table numbers, wherein the high-
order bits of each byte correspond to a primary vector-
quantization table and the low-order bits of each byte
correspond to a secondary vector-quantization table.

5. The method of claim 1, wherein step (a) comprises
the step of receiving said image data in an unencoded
format.

6. The method of claim 5, wherein step (a) comprises
the step of receiving said image data in YUVS format.

7. The method of claim 1, wherein step (a) comprises
the step of receiving said image data in an encoded
format.

8. The method of claim 7, wherein step (a) comprises
the step of receiving said image data comprising a re-
ceived input OPERATING SYSTEM header, a re-
ceived BITSTREAM header, a received Y-COMPO-
NENT DATA field, a received U-COMPONENT
DATA field, and a received V-COMPONENT DATA
field.

9. A method for encoding image data, comprising the
steps of:

(a) receiving said image data;

(b) generating an OPERATING SYSTEM header

for said image data;

(c) generating a BITSTREAM header in accordance
with said image data, wherein step (c) comprises
the steps of:

(1) generating a two-byte unsigned FLAGS field,
wherein step (c) (1) comprises the steps of:
(A) generating a BSSTILLPERIOD bit;
(B) generating a BSSTILL bit;
(O) generating a BSSTILLNEXT bit;
(D) generating a BSMCOFTF bit;
(E) generating a BSDISPOSABLE bit; and
(F) generating a BSBUFFER bit;

10

15

20

25

30

35

45

50

55

60

65

12

(2) generating a four-byte integer DATA SIZE
field;

(3) generating a one-byte integer CB OFFSET
field;

(4) generating a two-byte
HEIGHT field;

(5) generating a two-byte integer IMAGE
WIDTH field;

(6) generating a four-byte integer Y DATA. OFF-
SET field;

(7) generating a four-byte integer U DATA. OFF-
SET field;

(8) generating a four-byte integer V DATA OFF-
SET field; and

(9) generating a sixteen-byte integer ALT QUANT
field, wherein step (c) (9) comprises the step of
generating one or more one-byte pairs of vector-
quantization table numbers, wherein the high-
order bits of each byte correspond to a primary
vector-quantization table and the low-order bits
of each byte correspond to a secondary vector-
quantization table;

(d) generating a Y-COMPONENT DATA field in
accordance with said image data, wherein step (d)
comprises the steps of:

(1) generating a Y-component four-byte MC VEC-
TOR COUNT field;

(2) generating a Y-component MC VECTORS
field; and

(3) generating a Y-component ENCODED
DATA field, comprising interleaved binary tree
codes and region codes;

(e) generating a U-COMPONENT DATA field in
accordance with said image data, wherein step (e)
comprises the steps of:

(1) generating a U-component four-byte MC VEC-
TOR COUNT field;

(2) generating a U-component MC VECTORS
field; and

(3) generating a U-component ENCODED
DATA field, comprising interleaved binary tree
codes and region codes;

(f) generating a V-COMPONENT DATA field in
accordance with said image data, wherein step (f)
comprises the steps of:

(1) generating a V-component four-byte MC VEC-
TOR COUNT field;

(2) generating a V-component MC VECTORS
field; and

(3) generating a V-component ENCODED
DATA field, comprising interleaved binary tree
codes and region codes; and

(g) transmitting said OPERATING SYSTEM
header, said BITSTREAM header, said Y-COM-
PONENT DATA field, said U-COMPONENT
DATA field, and said V-COMPONENT DATA
field.

10. The method of claim 9, wherein step (a) comprises
the step of receiving said image data in unencoded
YUV format.

11. The method of claim 9, wherein step (2) comprises
the step of receiving said image data comprising a re-
ceived input OPERATING SYSTEM header, a re-
ceived BITSTREAM header, a received Y-COMPO-
NENT DATA field, a received U-COMPONENT
DATA field, and a received V-COMPONENT DATA
field.

integer IMAGE

5,386,232

13

12. An apparatus for encoding image data, compris-

ing:

(a) means for receiving said image data;

(b) means for generating an OPERATING SYSTEM
header for said image data; 5

(c) means for generating a BITSTREAM header in
accordance with said image data;

(d) means for generating at least one image compo-
nent data field in accordance with said image data;
and

(e) means for transmlttmg said OPERATING SYS-
TEM header, said BITSTREAM header, and said
at least one image component data field, wherein
means (d) comprises:

(1) means for generating a Y- COMPONENT
DATA field in accordance with said image data;
(2) means for generating a U-COMPONENT
DATA field in accordance with said image data;
and
(3) means for generating a V-COMPONENT
DATA field in accordance with said image data,
wherein:
means (d) (1) comprises:
(A) means for generating a Y-component four-
byte MC VECTOR COUNT field;
(B) means for generating a Y-component MC
VECTORS field; and
(O) means for generating a Y-component EN-
CODED DATA field, comprising interleaved
binary tree codes and region codes;
means (d) (2) comprises:
(A) means for generating a U-component four-
byte MC VECTOR COUNT field;
(B) means for generating a U-component MC
VECTORS field; and
(C) means for generating a U-component EN-
CODED DATA field, comprising interleaved
binary tree codes and region codes; and
means (d) (3) comprises:
(A) means for generating a V-component four-
byte MC VECTOR COUNT field;
(B) means for generating a V-component MC
VECTORS field; and
(C) means for generating a V-component EN-
CODED DATA field, comprising interleaved
binary tree codes and region codes.

13. The apparatus of claim 12, wherein means (c)

comprises:

(1) means for generating a two-byte unsigned
FLAGS field;

(2) means for generating a tour-byte integer DATA
SIZE field;

(3) means for generating a one-byte integer CB OFF-
SET field;

(4) means for generating a two-byte integer IMAGE
HEIGHT field;

(5) means for generating a two-byte integer IMAGE
WIDTH field;

(6) means for generating a four-byte integer Y DATA
OFFSET field; _ 60

(7) means for generating a four-byte integer U
DATA OFFSET field;

(8) means for generating a four-byte integer V
DATA OFFSET field; and

(9) means for generating a sixteen-byte integer ALT 65
QUANT field.

14. The apparatus of claim 13, wherein means (c) (1)

comprises:

10

20

25

30

40

45

50

55

14

(A) means for generating a BSSTILLPERIOD
bit;

(B) means for generating a BSSTILL bit;

" (C) means for generating a BSSTILLNEXT bit;

(D) means for generating a BSMCOFF bit;

(E) means for generating a BSDISPOSABLE
bit; and

(F) means for generating a BSBUFFER bit.

15. The apparatus of claim 13, wherein means (c) (9)
comprises means for generating one or more one-byte
pairs of vector-quantization table numbers, wherein the
high-order bits of each byte correspond to a primary
vector-quantization table and the low-order bits of each
byte correspond to a secondary vector-quantization
table.

16. The apparatus of claim 12, wherein means (a)
comprises means for receiving said image data in an
unencoded format.

17. The apparatus of claim 16, wherein means (a)
comprises means for receiving said image data in YUV9
format.

18. The apparatus of claim 12, wherein means (a)
comprises means for receiving said image data in an
encoded format.

19. The apparatus of claim 18, wherein means (a)
comprises means for receiving said image data compris-
ing a received input OPERATING SYSTEM header, a
received BITSTREAM header, a received Y-COMPO-
NENT DATA field, a received U-COMPONENT
DATA field, and a received V-COMPONENT DATA
field.

20. An apparatus for encoding image data, compris-
ing:

(a) means for receiving said image data;

(b) means for generating an OPERATING SYSTEM

header for said image data;

(c) means for generating a BITSTREAM header in

accordance with said image data, wherein means

(c) comprises:

(1) means for generating a two-byte unsigned
FLAGS field, wherein means (c) (1) comprises:
(A) means for generating a BSSTILLPERIOD

bit;
(B) means for generatmg a BSSTILL bit;
(C) means for generating a BSSTILLNEXT bit;
-(D) means for generating a BSMCOFF bit;
(E) means for generating a BSDISPOSABLE
bit; and
(F) means for generating a BSBUFFER bit;

(2) means for generating a four-byte integer
DATA SIZE field;

(3) means for generating a one-byte integer CB
OFFSET field;

(4) means for generating a two-byte integer
IMAGE HEIGHT field;

(5) means for generating a two-byte integer
IMAGE WIDTH field;

(6) means for generating a four-byte integer Y
DATA OFFSET field;

(7) means for generating a four-byte integer U
DATA OFFSET field;

(8) means for generating a four-byte integer V
DATA OFFSET field; and

(9) means for generating a sixteen-byte integer
ALT QUANT field, wherein means (c)(9) com-
prises means for generating one or more one-
byte pairs of vector-quantization table numbers,
wherein the high-order bits of each byte corre-

5,386,232

15

spond to a primary vector-quantization table and
the low-order bits of each byte correspond to a
secondary vector-quantization table;

(d) means for generating a Y-COMPONENT DATA
field in accordance with said image data, wherein
means {(d) comprises:

(1) means for generating a Y-component four-byte
MC VECTOR COUNT field;

(2) means for generating 2 Y-component MC VEC-
TORS field; and

(3) means for generating a Y-component EN-
CODED DATA field, comprising interleaved
binary tree codes and region codes;

(e) means for generating a U-COMPONENT DATA
field in accordance with said image data, wherein
means (e) comprises:

(1) means for generating a U-component four-byte
MC VECTOR COUNT field;

(2) means for generating a U-component MC
VECTORS field; and

(3) means for generating a U-component EN-
CODED DATA field, comprising interleaved
binary tree codes and region codes;

(f) means for generating a V-COMPONENT DATA
field in accordance with said image data, wherein
means (f) comprises:

(1) means for generating a V-component four-byte
MC VECTOR COUNT field;

(2) means for generating a V-component MC
VECTORS field; and

(3) means for generating a V-component EN-
CODED DATA field, comprising interleaved
binary tree codes and region codes; and

(g) means for transmitting said OPERATING SYS-
TEM header, said BITSTREAM header, said Y-
COMPONENT DATA field, said U-COMPO-
NENT DATA field, and said V-COMPONENT
DATA field.

21. The apparatus of claim 20, wherein means (a)
comprises means for receiving said image data in unen-
coded YUV9Y format.

22. The apparatus of claim 20, wherein means (a)
comprises means for receiving said image data compris-
ing a received input OPERATING SYSTEM header, a
received BITSTREAM header, a received Y-COMPO-
NENT DATA field, a received U-COMPONENT
DATA field, and a received V-COMPONENT DATA
field.

23. A method for encoding image data, comprising
the steps of:

(2) receiving said image data;

(b) generating an OPERATING SYSTEM header

for said image data;

(c) generating a BITSTREAM header in accordance
with said image data;

(d) generating at least one image component data
field in accordance with said image data; and

(e) transmitting said OPERATING SYSTEM
header, said BITSTREAM header, and said at least
one image component data field, wherein step (c)
comprises the steps of:

(1) generating a two-byte unsigned FLAGS field;

(2) generating a four-byte integer DATA SIZE
field;

(3) generating a one-byte integer CB OFFSET
field;

(4) generating a two-byte
HEIGHT field;

integer IMAGE

15

20

25

30

35

40

45

50

55

60

65

16

(5) generating a two-byte
WIDTH field;

(6) generating a four-byte integer Y DATA OFF-
SET field;

(7) generating a four-byte integer U DATA OFF-
SET field;

(8) generating a four-byte integer V DATA OFF-
SET field; and

(9) generating a sixteen-byte integer ALT QUANT
field.

24. The method of claim 23, wherein step (d) com-
prises the steps of:

(1) generating a Y-COMPONENT DATA. field in
accordance with said image data;

(2) generating a U-COMPONENT DATA field in
accordance with said image data; and

(3) generating a V-COMPONENT DATA field in
accordance with said image data.

25. The method of claim 24, wherein step (d) (1)
comprises the steps of:

(A) generating a Y-component four-byte MC
VECTOR COUNT field;

(B) generating a Y-component MC VECTORS
field; and

(C) generating a -Y-component ENCODED
DATA field, comprising interleaved binary
tree codes and region codes;

step (d) (2) comprises the steps of:

(A) generating a U-component four-byte MC
VECTOR COUNT field;

(B) generating a U-component MC VECTORS
field; and

(O generating a U-component ENCODED
DATA field, comprising interleaved binary
tree codes and region codes; and

step (d) (3) comprises the steps of:

(A) generating a V-component four-byte MC
VECTOR COUNT field;

(B) generating a V-component MC VECTORS
field; and

(C) generating a V-component ENCODED
DATA field, comprising interleaved binary
tree codes and region codes.

26. The method of claim 23, wherein step (c) (1)
comprises the steps of:

(A) generating a BSSTILLPERIOD bit;
(B) generating a BSSTILL bit;

(C) generating a BSSTILLNEXT bit;

(D) generating a BSMCOFF bit;

(E) generating a BSDISPOSABLE bit; and
(F) generating a BSBUFFER bit.

27. The method of claim 27, wherein step (c) (9)
comprises the step of generating one or more one-byte
pairs of vector-quantization table numbers, wherein the
high-order bits of each byte correspond to a primary
vector-quantization table and the low-order bits of each
byte correspond to a secondary vector-quantization
table.

28. The method of claim 23, wherein step (a) com-
prises the step of receiving said image data in an unen-
coded format.

29. The method of claim 28, wherein step (a) com-
prises the step of receiving said image data in YUV9
format.

30. The method of claim 23, wherein step (a) com-
prises the step of receiving said image data in an en-
coded format.

integer IMAGE

5,386,232

17
31. The method of claim 30, wherein step (a) com-
prises the step of receiving said image data comprising
a received input OPERATING SYSTEM header, a
received BITSTREAM header, a received Y-COMPO-
NENT DATA field, a received U-COMPONENT
DATA field, and a received V-COMPONENT DATA
field.
32. A method for encoding image data, comprising
the steps of:
(a) receiving said image data;
(b) generating an OPERATING SYSTEM header
for said image data;
(c) generating a BITSTREAM header in accordance
with said image data;
(d) generating at least one image component data
field in accordance with said image data; and
(e) transmitting said OPERATING SYSTEM
header, said BITSTREAM header, and said at least
one image component data field, wherein step (a)
comprises the step of receiving said image data in
an unencoded format.
33. The method of claim 32, wherein step (d) com-
prises the steps of:
(1) generating a Y-COMPONENT DATA field in
accordance with said image data;
(2) generating a U-COMPONENT DATA field in
accordance with said image data; and
(3) generating a V-COMPONENT DATA field in
accordance with said image data.
34. The method of claim 33, wherein step (d) (1)
comprises the steps of:
(A) generating a Y-component four-byte MC
VECTOR COUNT field;
(B) generating a Y-component MC VECTORS
field; and
(C) generating a Y-component ENCODED
DATA field, comprising interleaved binary
tree codes and region codes;
step (d) (2) comprises the steps of:
(A) generating a U-component four-byte MC
VECTOR COUNT field;
(B) generating a U-component MC VECTORS
field; and
(C) generating a U-component ENCODED
DATA field, comprising interleaved binary
tree codes and region codes; and
step (d) (3) comprises the steps of:
(A) generating a V-component four-byte MC
VECTOR COUNT field;
(B) generating a V-component MC VECTORS
field; and
(C) generating a V-component ENCODED
DATA field, comprising interleaved binary
tree codes and region codes.
35. The method of claim 32, wherein step (¢) com-
prises the steps of:
(1) generating a two-byte unsigned FLAGS field;
(2) generating a four-byte integer DATA SIZE
field;
(3) generating a one-byte integer CB OFFSET
field;
(4) generating a two-byte integer IMAGE
HEIGHT field;
(5) generating a two-byte
WIDTH field;
(6) generating a four-byte integer Y DATA OFF-
SET field;

integer IMAGE

w

10

15

20

25

30

35

40

45

50

55

60

65

18
(7) generating a four-byte integer U DATA OFF-
SET field;
(8) generating a four-byte integer V DATA OFF-
SET field; and
(9) generating a sixteen-byte integer ALT QUANT
field.

36. The method of claim 35, wherein step (c) (1)
comprises the steps of:

(A) generating a BSSTILLPERIOD bit;
(B) generating a BSSTILL bit;

(C) generating a BSSTILLNEXT bit;

(D) generating a BSMCOFF bit;

(E) generating a BSDISPOSABLE bit; and
(F) generating a BSBUFFER bit.

37. The method of claim 35, wherein step (c) (9)
comprises the step of generating one or more one-byte
pairs of vector-quantization table numbers, wherein the
high-order hits of each byte correspond to a primary
vector-quantization table and the low-order bits of each
byte correspond to a secondary vector-quantization
table.

38. The method of claim 32, wherein step (a) com-.
prises the step of receiving said image data in YUV9
format.

39. An apparatus for encoding image data, compris-
ing:

(a) means for receiving said image data;

(b) means for generating an OPERATING SYSTEM

header for said image data;

(c) means for generating a BITSTREAM header in
accordance with said image data;

(d) means for generating at least one image compo-
nent data field in accordance with said image data;
and

(e) means for transmitting said OPERATING SYS-
TEM header, said BITSTREAM header, and said
at least one image component data field, wherein
means (c) comprises:

(1) means for generating a two-byte unsigned
FLAGS field;

(2) means for generating a four-byte integer
DATA SIZE field;

(3) means for generating a one-byte integer CB
OFFSET field;

(4) means for generating a two-byte integer
IMAGE HEIGHT field;

(5) means for generating a two-byte integer
IMAGE WIDTH field;

(6) means for generating a four-byte integer Y
DATA OFFSET field;

(7) means for generating
DATA OFFSET field;

(8) means for generating a four-byte integer V
DATA OFFSET field; and

(9) means for generating a sixteen-byte integer
ALT QUANT field.

40. The apparatus. of claim 39, wherein means (d)
comprises:

(1) means for generating a Y-COMPONENT
DATA field in accordance with said image data;

(2) means for generating a U-COMPONENT
DATA field in accordance with said image data;
and

(3) means for generating a V-COMPONENT
DATA field in accordance with said image data.

41. The apparatus of claim 40, wherein means (d) (1)
comprises:

a four-byte integer U

5,386,232

19
(A) means for generating a Y-component four-
byte MC VECTOR COUNT field;
(B) means for generating a Y-component MC
VECTORS field; and
(O) means for generating a Y-component EN-
CODED DATA field, comprising interleaved
binary tree codes and region codes;
means (d) (2) comprises:
(A) means for generating a U-component four-
byte MC VECTOR COUNT field;
(B) means for generating a U-component MC
VECTORS field; and
(C) means for generating a U-component EN-
CODED DATA field, comprising interleaved
binary tree codes and region codes; and
means (d) (3) comprises:
(A) means for generating a V-component four-
byte MC VECTOR COUNT field;
(B) means for generating a V-component MC
VECTORS field; and
(O) means for generating a V-component EN-
CODED DATA field, comprising interleaved
binary tree codes and region codes.

42. The apparatus of claim 39, wherein means (c) (1)
comprises:

(A) means for generating a BSSTILLPERIOD
bit;

(B) means for generating a BSSTILL bit;

(O) means for generating a BSSTILLNEXT bit;

(D) means for generating a BSMCOFF bit;

(E) means for generating a BSDISPOSABLE
bit; and

(F) means for generating a BSBUFFER bit.

43. The apparatus of claim 49, wherein means (c) (9)
comprises means for generating one or more one-byte
pairs of vector-quantization table numbers, wherein the
high-order bits of each byte correspond to a primary
vector-quantization table and the low-order bits of each
byte correspond to a secondary vector-quantization
table.

44. The apparatus of claim 39, wherein means (a)
comprises means for receiving said image data in an
unencoded format.

45. The apparatus of claim 44, wherein means (a)
comprises means for receiving said image data in YUV9
format.

46. The apparatus of claim 39, wherein means (a)
comprises means for receiving said image data in an
encoded format.

47. The apparatus of claim 46, wherein means (a)
comprises means for receiving said image data compris-
ing a received input OPERATING SYSTEM header, 2
received BITSTREAM header, a received Y-COMPO-
NENT DATA field, a received U-COMPONENT
DATA field, and a received V-COMPONENT DATA
field.

48. An apparatus for encoding image data, compris-
ing:

(2) means for receiving said image data;

5

15

20

25

30

35

40

45

50

55

20
at least one image component data field, wherein
means (a) comprises means for receiving said image
data in an unencoded format.
49. The apparatus of claim 48, wherein means (d)
comprises:
(1) means for generating a Y-COMPONENT
DATA field in accordance with said image data;
(2) means for generating a U-COMPONENT
DATA field in accordance with said image data;
and
(3) means for generating a V-COMPONENT
DATA field in accordance with said image data.
50. The apparatus of claim 49, wherein means (d) (1)
comprises:
(A) means for generating a Y-component four-
byte MC VECTOR COUNT fielg;
(B) means for generating a Y-component MC
VECTORS field; and
(O) means for generating a Y-component EN-
CODED DATA field, comprising interleaved
binary tree codes and region codes;
means (d) (2) comprises:
(A) means for generating a U-component four-
byte MC VECTOR COUNT field;
(B) means for generating a U-component MC
VECTORS field; and
(©) means for generating a U-component EN-
CODED DATA field, comprising interleaved
binary tree codes and region codes; and
means (d) (3) comprises:
(A) means for generating a V-component four-
byte MC VECTOR COUNT field;
(B) means for generating a V-component MC
VECTORS field; and
(O) means for generating a V-component EN-
CODED DATA field, comprising interleaved
binary tree codes and region codes.
51. The apparatus of claim 48, wherein means (c)
comprises:
(1) means for generating a two-byte unsigned
FLAGS field;
(2) means for generating a four-byte integer
DATA SIZE field;
(3) means for generating 2 one-byte integer CB
OFFSET field;
(4) means for generating a two-byte integer
IMAGE HEIGHT field;
(5) means for generating a two-byte integer
IMAGE WIDTH field;
(6) means for generating a four-byte integer Y
DATA OFFSET field;
(7) means for generating
DATA OFFSET field;
(8) means for generating a four-byte integer V
DATA OFFSET field; and
(9) means for generating a sixteen-byte integer
ALT QUANT field.
52. The apparatus of claim 51, wherein means (c) (1)

a four-byte integer U

(b) means for generating an OPERATING SYSTEM 60 comprises:

header for said image data;

(c) means for generating a BITSTREAM header in
accordance with said image data;

(d) means for generating at least one image compo-
nent data field in accordance with said image data;
and

(e) means for transmitting said OPERATING SYS-
TEM header, said BITSTREAM header, and said

65

(A) means for generating a BSSTILLPERIOD
bit;

(B) means for generating 2 BSSTILL bit;

(C) means for generating a BSSTILLNEXT bit;

(D) means for generating a BSMCOFTF bit;

(E) means for generating a BSDISPOSABLE
bit; and

(F) means for generating a BSBUFFER bit.

5,386,232

21
53. The apparatus of claim 51, wherein means (c) (9)
comprises means for generatiﬁg one or more one-byte
pairs of vector-quantization table numbers, wherein the
high-order bits of each byte correspond to a primary
vector-quantization table and the low-order bits of each

15

20

25

30

35

45

50

55

65

22
byte correspond to a secondary vector-quantization
table.
54. The apparatus of claim 48, wherein means (a)
comprises means for receiving said image data in YUV9

format.
* * * * *

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

Page 1 of 5
PATENTNO. : 5,386,232
DATED : January 31, 1995
INVENTOR(S) : Stuart Golin, Brian Nickerson, Michael Keith,

and Rohan Coelho.

1t is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown beiow:

Column 10, line 55, delete "codings" and insert therefor =—--codes--.
Column 11, linme 15, delete "(e)" and insert therefor —=-(6)~--.

Column 11, line 25, delete "BSSTILLPERIOD" and insert therefor
——BS__STILL_PERIOD—- .

Column 11, line 26, delete "BSSTILL" and insert therefor --BS_STILL--.

Column 11, line 27, delete "BSSTILLNEXT" and insert therefor
——BS__STILL_NEXT—— .

Column 11, line 28, delete "BSMCOFF" and insert therefor -—-BS_MC _OFF--.

Column 11, line 29, delete "BSDISPOSABLE" and insert therefor
—-BS__DISPOSABLE—— .

Column 11, line 30, delete "BSBUFFER" and insert therefor --BS_BUFFER--.

Column 11, 1line 63, delete "BSSTILLPERIOD" and insert therefor.
——BS_STILL_PERIOD—— .

Column 11, line 64, delete "BSSTILL" and insert therefor --BS STILL--.

Column 11, line 65, delete "BSSTILLNEXT" and insert therefor
--BS_STILL NEXT--.

Column 11, line 66, delete "BSMCOFF" and insert therefor --BS_MC_OFF--.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

Page 2 of 5
DATED : January 31, 1995
INVENTOR(S) : Stuart Golin, Brian Nickerson, Michael Keith,

and Rohan Coelho.

It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

Column 11, line 67, delete "BSDISPOSABLE" and insert therefor
—-BS_DI SPOSABLE--.

Column 11, line 68, delete "BSBUFFER" and insert therefor --BS_BUFFER--.

Column 14, line 1, delete "BSSTILLPERIOD" and insert therefor
--BS_STILL PERIOD--.

Column 14, line 3, delete "BSSTILL" and insert therefor --BS STILL--.

Column 14, line 4, delete "“BSSTILLNEXT" and insert therefor
-—BS_STILL_NEXT—— .

Column 14, line 5, delete "BSMCOFF" and insert therefor -—-BS_MC OFF--.

Column 14, line 6, delete "BSDISPOSABLE" and insert therefor
——BS_DISPOSABLE—— .

Column 14, line 8, delete "BSBUFFER" and imnsert therefor --BS BUFFER--.

Column 14, line 42, delete "BSSTILLPERIOD" and insert therefor
--BS_STILL PERIOD--.

Column 14, line 44, delete "BSSTILL"™ and insert therefor --BS_ STILL--.

Column 14, line 45, delete "BSSTILLNEXT" and insert therefor
--BS_STILL NEXT--.

Column 14, line 46, delete "BSMCOFF" and insert therefor —-BS MC OFF--.

Column 14, line 47, delete "BSDISPOSABLE" and insert therefor
——BS__DISPOSABLE—— R

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

Page 3 of 5
PATENT NO. : 5,386,232
DATED : January 31, 1995
INVENTOR(S) :

Stuart Golin, Brian Nickerson, Michael Keith

and Rohan Coelho.
It is certified that error appears in the above-indentified patent and that said Letters Patent is hereby

corrected as shown below:
Column 14, line 49, delete

Column 16, line 47, delete
——BS_STILL PERIOD--.

Column 16, line 48, delete

Column 16, line 49, delete
~-BS STILL NEXT--.

Column 16, line 50, delete

Column 16, line 51, delete
—--BS DISPOSABLE--.

Column 16, line 52, delete

Column 16, line 53, delete

"BSBUFFER" and insert therefor --BS BUFFER--.

"BSSTILLPERIOD" and insert therefor

"BSSTILL" and insert therefor --BS STILL--.

"BSSTILLNEXT" and insert therefor

"BSMCOFF" and insert therefor --BS MC OFF-—-.

"BSDISPOSABLE" and insert therefor

"BSBUFFER" and insert therefor --BS BUFFER~--.

"27" and insert therefor =-=23--.

Column 18, line 9, delete "BSSTILLPERIOD" and insert therefor

—-BS_STILL PERIOD--.
Column 18, line 10, delete

Column 18, line 11, delete
—~BS_STILL NEXT--.

Column 18, line 12, delete

Column 18, line 13, delete
—--BS DISPOSABLE~--.

"BSSTILL" and insert therefor --BS STILL--.

"BSSTILLNEXT" and insert therefor

"BSMCOFF" and insert therefor --BS MC OFF--.

"BSDISPOSABLE" and insert therefor

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. 5,386,232
DATED January 31,
INVENTOR(S) :

Page 4 of 5

1995

Stuart Golin, Brian Nickerson, Michael.-Keith -

and Rohan Coelho.) . .
it is certified that error appears in the above-indentified patent and thai said Letters Patent is hereby

corrected as shown below:

Column 18, line 14, delete

"BSBUFFER" and insert therefor —-BS_BUFFER~-.

" Column 19, lines 26, delete "BSSTILLPERIOD" and insert therefor

--BS_STILL PERIOD--.
Column 19, line 28, delete

Column 19, line 29, delete
--BS_STILL NEXT--.

Column 19, line 30, delete

Column 19, line 31, delete
——BS_DISPOSABLE--.

Column 19, line 33, delete
. Columm 19, line 34, delete

Column 20, line 61, delete
—--BS_STILL PERIOD--.

Column 20, line 63, delete

Column 20, line 64, delete
--BS_STILL NEXT--.

Column 20, line 65, delete

Column 20, line 66, delete
--BS_DISPOSABLE~-.

"BSSTILL" and insert therefor --BS_STILL--.

"BSSTILLNEXT" and insert therefor

"BSMCOFF" and insert therefor --BS_MC_OFF--.

"BSDISPOSABLE" and insert therefor

"BSBUFFER" and insert therefor -—BS BUFFER--.
49" and insert therefor ——39-—-—.

"BSSTILLPERIOD" and insert therefor

"BSSTILL" and insert therefor ~-BS_STILL--.

"BSSTILLNEXT" and insert therefor

"BSMCOFF" and insert therefor --BS_MC_OFF--.

"BSDISPOSABLE" and insert therefor

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. : 5,386,232 Page 5 of ‘5
DATED : January 31, 1995
INVENTOR(S) :

Stuart Golin, Brian Nickerson, Michael Keith
and Rohan Coelho.

It is certified that error appears.in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

Column 20, line 68, delete "BSBUFFER" and insert therefor --BS BUFFER--.

Signed and Sealed this
Fleventh Day of July, 1995

Avtest: 6««(Z’;/me\

BRUCE LEHMAN

Attesting Officer Commissioner of Patents and Trademarks

