

ON2 TECHNOLOGIES, INC.

VP6 BITSTREAM &

DECODER

SPECIFICATION

August 17, 2006

Document version: 1.02

© On2 Technologies Inc 2006

On2 Technologies, Inc.
21 Corporate Drive, Suite 103
Clifton Park, NY 12065
www.on2.com

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 2

Contents

1 Introduction... 7

2 VP6 Algorithm Fundamentals .. 7

3 Nomenclature.. 8

4 Frame Types ... 9

5 Coding Profiles ... 9

6 Data Partitioning ... 10

7 Entropy Coding... 10

7.1 Contexts ... 11

7.2 Huffman Decoder... 11

7.3 BoolCoder.. 15

8 Bitstream Map... 16

9 Frame Header.. 23

10 Mode Decoding .. 27

11 Motion Vectors... 37

11.1 Decoding a Motion Vector... 38

11.2 Motion Vector Probability Updates ... 42

11.3 Prediction Loop Filtering... 44

11.4 Filtering For Fractional Pixel Motion Compensation .. 47

11.5 Support For Unrestricted Motion Vectors.. 53

12 Scan Orders .. 53

12.1 Default Scan Order .. 54

12.2 Custom Scan Order .. 55

13 DCT Coefficient Token Set and Decoding .. 56

13.1 DCT Token Huffman Tree... 60

13.2 DC Decoding ... 61

13.3 AC Decoding ... 67

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 3

13.4 Decoding Huffman EOB and DC 0 Runs .. 80

14 DC Prediction... 81

15 Inverse Quantization... 82

16 Inverse DCT Transform ... 83

17 Frame Reconstruction... 85

17.1 Intra Coded Blocks .. 86

17.2 Zero Vectors .. 86

17.3 Full Pixel Aligned Vectors... 86

17.4 Fractional Pixel Aligned Vectors... 87

18 Document Revision History ... 88

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 4

List of Tables

Table 1 Frame Header ... 23

Table 2 IntraHeader Definition ... 24

Table 3 InterHeader Definition ... 26

Table 4 Coding Modes .. 27

Table 5 Mode Availability Values for Dimension 1 of Mode Probability Vector 29

Table 6 ProbabilitySituation Table.. 30

Table 7 Bitstream Section : Mode Probability Updates .. 30

Table 8 Mode Probability Updates Section... 30

Table 9 ModeProbUpdateVector... 33

Table 10 Block Coding Mode Signaling ... 37

Table 11 Decoding a Motion Vector Component ... 39

Table 12 Probability data structures used in decoding motion vectors 39

Table 13 Motion Vector Tree Probability Coding .. 42

Table 14 Short MV Tree Node updates... 43

Table 15 Long motion vector bit probability updates ... 44

Table 16 Custom scan order bands.. 55

Table 17 Scan Order Update ... 56

Table 18 Token Set and Extrabits ... 57

Table 19 Special DCT Tokens .. 58

Table 20 DC & AC Coding Tree Node Probability Values .. 60

Table 21 DC Node Contexts Dimension 1 Index.. 61

Table 22 DC Coding Tree Plane Probability Updates... 61

Table 23 DC Coding Tree Node Updates.. 62

Table 24 DC Coding Tree Update Structure ... 62

Table 25 DC Node Plane... 63

Table 26 DC Node Contexts ... 63

Table 27 DCNodeEqs Dimension 3 .. 64

Table 28 AC Prob Plane Index.. 67

Table 29 AC Prob Prec Index... 67

Table 30 AC Prob Band Index .. 68

Table 31 Plane AC Coding Tree Probability Updates... 68

Table 32 Plane AC Coding Tree Plane Probability Updates... 68

Table 33 AC Coding Tree Band Probability Updates ... 69

Table 34 AC Coding Tree Node Probability Updates... 69

Table 35 AC Coding Tree Update... 70

Table 36 AC Huffman Prob Band Index... 73

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 5

Table 37 ZRL Band Index... 76

Table 38 ZRL Node Index... 76

Table 39 Updates to ZRL Probabibilities Band .. 77

Table 40 Updates to ZeroRunNodes ... 77

Table 41 Updates to ZeroRunNode Probability .. 78

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 6

List of Figures

Figure 1 VP6 Bitstream... 16

Figure 2 Single Stream -- Macroblock Info .. 17

Figure 3 Bool Coded – Multi-Stream Macroblock Info .. 18

Figure 4 Huffman Coded -- Multi-Stream Macroblock Info... 19

Figure 5 Coefficient Probability Updates.. 20

Figure 6 Encode Macroblock Prediction Information... 21

Figure 7 Macroblock's Coefficients .. 22

Figure 8 Block Coefficients .. 22

Figure 9 Mode Probability Update Magnitude Tree ... 33

Figure 10 Mode decoding decision tree .. 35

Figure 11 Short MV Component Magnitude Decoding Tree.. 40

Figure 12 Prediction Loop Filtering of 8x8 Block Boundaries ... 45

Figure 13 Extension of the reconstruction buffer to create UMV borders 53

Figure 14 Default zig-zag scan order ... 54

Figure 15 Binary Coding Tree for DC & AC Tokens ... 59

Figure 16 AC Zero run length binary tree ... 75

Figure 17 Huffman EOB Run Lengths.. 81

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 7

1 INTRODUCTION

This document specifies the format of the VP6 compressed video bitstream created by On2

Technologies Inc. It is accompanied by a set of C programming language source code files

that together form a fully operational reference implementation of a VP6 decoder.

VP6 is a leading edge video compression algorithm that uses motion compensated prediction,

Discrete Cosine Transform (DCT) coding of the prediction error signal and context

dependent entropy coding techniques based on Huffman and arithmetic principles. Section 2

gives a list of the main features.

Throughout the document various notational devices are used to convey meaning when

describing the format and operation of the bitstream and decoder. These are outlined in

Section 3.

Sections 4 to 6 detail various structural aspects of the bitstream and data formats. This is

followed by a description of the two entropy algorithms used in the decoder in Section 7.

The description of the bitstream begins in Section 8 with a set of diagrams that show the top-

level building blocks and their relative order. The remaining sections, 9 to17, give the

detailed low-level syntactic and semantic descriptions of all aspects of the bitstream and the

interpretation of the bitstream.

A final section provides the document revision history.

All ambiguities between the algorithm described in this document and the accompanying

reference software should be resolved in favor of the reference software.

2 VP6 ALGORITHM FUNDAMENTALS

VP6 is a leading edge video compression algorithm having the following features:

� YUV 4:2:0 image format

� Macro-block (MB) based coding (MB is 16x16 luma plus two 8x8 chroma)

� ¼ pixel accuracy motion compensated prediction

� 8x8 DCT transform

� 64-level linear quantizer

� Prediction loop filter

� Frame variable quantization level

� Scaling on output after decode

� Two entropy coding strategies: Huffman & Binary Arithmetic (BoolCoder)

� Extensive context-based entropy coding strategy

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 8

3 NOMENCLATURE

In the tables in this document that outline the bitstream format the following method has been

Similar to the definitions used in the C programming language, the following operators are

used throughout this document:

+ Addition

- Subtraction (as a binary operator) or negation (as a unary operator).

× Multiplication

÷ Division

++ Increment: e.g. x++ represents x = x + 1

-- Decrement: e.g. x++ represents x = x - 1

Sign()

Abs()

|| Logical OR

&& Logical AND

! Logical NOT

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

== Equal to

!= Not equal to

& Bitwise AND

| Bitwise OR

>> Shift right with sign extension

<< Shift left with zero fill

= Assignment operator

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 9

Tables that outline the format of the bitstream refer to the following operators to indicate how

bits are stored in the bitstream (in the ‘Type’ column):

� R(x) indicates a sequence of x-bits written directly to the bitstream as a sequence of raw

bits,

� B(x) indicates a single bit encoded using the BoolCoder with node probability x,

� b(x) indicates a sequence of x-bits encoded using the BoolCoder with a fixed node

probability of 128 for each bit,

� T indicates a multi-bit syntax element that is encoded using the BoolCoder with reference

to a specified decision tree and corresponding set of node probabilities.

These operators are also referred to in the pseudo-code segments. The BoolCoder will be

described in the Section 7.3.

4 FRAME TYPES

VP6 defines only two frame types, intra-coded and inter-coded.

Intra, or I-frames, may be reconstructed from their compressed representation with no

reference to other frames in the sequence. I-frames provide entry points into the bitstream that

do not require preceding frames to be decoded providing a method of fast random access.

Inter, prediction or P-frames, are encoded differentially with respect to a previously encoded

reference frame in the sequence. This reference frame may either be the reconstruction of the

immediately previous frame in the sequence or a stored previous frame known as the Golden

Frame, described below.

The alternative prediction, or Golden Frame, is a frame buffer that by default holds the last

decoded I-frame but it may be updated at any time. A flag in the frame header indicates to the

decoder whether or not to update the Golden Frame buffer.

To update the Golden frame the current frame is first decoded and then copied in its entirety

(including any UMV border (see Section 11.5)) into the Golden frame buffer.

It should be noted that VP6 makes no use of backward or bi-directional prediction.

Specifically, there is no equivalent to the MPEG B-frame.

5 CODING PROFILES

Certain techniques used within the codec require significant computational resources that

may not be available on low-end or even higher end processors for the very largest image

formats. In an attempt to reflect this two profiles are defined, Simple and Advanced. Each

frame header contains a flag, VpProfile, which indicates the profile that was used to code it.

In both profiles the BoolCoder is used for encoding block and macro-block coding mode

decisions and motion vectors in the first data partition.

When encoding in Simple Profile the DCT tokens are encoded in a second data partition,

indicated in the bitstream by setting the MultiStream flag in the frame header. Furthermore,

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 10

to reduce computational complexity both the prediction loop-filter and bi-cubic prediction

filter are disabled.

When using Advanced Profile the second partition is optional depending on the MultiStream

flag in the frame header. Where it is absent, all encoded data appears a single partition

encoded using the BoolCoder. The second partition may be encoded using either the Huffman

or BoolCoder entropy schemes. In addition, the use of the prediction loop-filter is optionally

enabled, depending on a flag in the frame header, and the prediction filter type may be

dynamically switched between bi-linear and bi-cubic variants.

In either profile where the second partition is present the UseHuffman flag in the frame

header signifies whether the data is encoded using the Huffman or BoolCoder entropy

schemes.

6 DATA PARTITIONING

A compressed frame is represented in the bitstream as a short header together with either one

or two further partitions output as a contiguous stream of bytes. The second partition is

optional, an encoder signals its presence or otherwise by setting the MultiStream flag as

appropriate in the frame header (see Section 9).

The two partitions may use different entropy coding methods as follows:

� Partition 1: Always encoded using the BoolCoder,

� Partition 2: Encoded with either the BoolCoder or the Huffman coder.

If the second partition is used the value Buff2Offset in the frame header gives the offset from

the start of the compressed frame buffer to the first byte of the partition.

The decision as to whether one or two data partitions are used is an encoder decision and is

indicated by the flag in the frame header.

7 ENTROPY CODING

There are two alternative entropy coding strategies, the Huffman Coder and the BoolCoder.

The Huffman coder is a very computationally efficient method that is well suited to speed

optimization and has reasonable compression performance. It is typically used in very high

data-rate scenarios on low to mid-range processors because it can handle the large volume of

tokens more efficiently than the BoolCoder.

The BoolCoder is a simplified binary arithmetic coder allowing tokens to be encoded with

fractions of a bit. It is much more efficient in terms of compression performance than the

Huffman coder, but this comes with a significantly increased computational complexity.

Both the Huffman coder and BoolCoder use binary decision trees to represent multi-bit

syntax elements. In each case the tree is traversed as a sequence of branch decisions is read

from the bitstream until a leaf node is reached. Each leaf node has an associated syntax

element.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 11

The difference between the two schemes lies in the way that a branch decision is encoded at

each node in the tree. The Huffman coder encodes a whole bit to indicate which way to

branch, 0 for left, 1 for right. However, the BoolCoder associates a probability value with

each node (referred to as the Node Probability), being the probability of taking the left (or

zero) branch. By doing so the BoolCoder can achieve sub-bit decision costs.

Whereas the Huffman coder is completely specified by the binary decision tree, the

BoolCoder additionally requires the definition of a set of Node Probabilities. Node

probabilities are specified as an array of values, specified in order as the tree is traversed in

depth-first order.

Node probabilities are represented on a linear 8-bit scale: 0 represents probability 0, 255

represents probability 1. However, the value 0 is explicitly forbidden, so the valid range is as

follows:

1 <= Node Probability <= 255

7.1 Contexts

Contexts are used throughout the code as a way of reducing the amount of statistical

information that has to be encoded in to the bitstream. It reflects the fact that there is often

significant statistical correlation of coding parameters in various scenarios -- for blocks that

are spatially adjacent, for example. By using information already available at the decoder

weighting may be applied to a set of baseline probabilities to adapt them better to the current

coding environment. This results in more efficient entropy coding.

To illustrate the concept, consider the case of the MB coding mode -- there are ten

possibilities (see Table 4). By counting the occurrence of each coding mode over several clips

representing different source material encoded at various data-rates a baseline set of mode

probabilities can be established. This set may be hard-coded in to both encoder and decoder.

So, CODE_INTRA and CODE_INTER_PLUS_MV may account for 5% and 65% of the

tokens respectively, say.

However, we may also observe that if both the blocks to the left and above a particular block

are coded with mode CODE_INTRA, then the probability that this block too is coded with

mode CODE_INTRA rises to 85% and the probability of it being encoded with mode

CODE_INTER_PLUS_MV falls to only 3%. The context in this case is the coding mode of

the two adjacent blocks.

By using this conditional probability distribution, derived from a baseline distribution with

respect to a defined context, we achieve more efficient entropy coding.

7.2 Huffman Decoder

In order to decode a syntax element the Huffman decoder traverses a specified binary tree, at

each node branching to either the left or right child-node as dictated by the next bit read from

the bitstream (0 indicates left, 1 indicates right).

Traversal stops when a leaf node is encountered; each leaf node corresponds to a particular

syntax element.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 12

A Huffman tree is constructed from a set of leaf node probabilities using a standard algorithm

that is much documented. Rather than encoding leaf node probabilities, however, VP6

encodes instead a set of Node Probabilities (defined in Section 7) to be compatible with the

way the BoolCoder trees are encoded.

When Huffman coding is signaled, therefore, the decoder must translate the Node

Probabilities in to a set of leaf-node probabilities that can then be used to create the Huffman

tree. The leaf-node probability is calculated as the product of the individual node probabilities

as the tree is traversed from its root to the leaf node, with appropriate normalization.

There are two sections in the bitstream that involve such conversions, and they are outlined in

Sections 13.1 and 13.3.3.2.

7.2.1 Creating A Huffman Tree

In order to create a Huffman tree for a set of N symbols the corresponding set of symbol

probabilities is required. Let the i
th
 symbol, Si, have an associated probability Pi , specified in

the range 1-255 (see Section 7).

The first step is to sort the symbols in to ascending probability order, maintaining the relative

order of symbols having equal probabilities. This set specifies the leaf nodes of the tree.

To complete the tree the (N-1) internal nodes are created, at each step replacing the two least

probable nodes in the list with one new node that has the two least probable nodes as

children. The procedure can be summarized as follows (pseudo-code can be found at the end

of the sub-section):

• Create a new node and set its left and right children to be the least probable and

second least probable nodes in the list, respectively,

• Set the new node probability to the sum of the probability of its children, i.e.

NewNodeProb = PLeftChild + PRightChild,

• Remove the two child nodes from the sort list,

• Insert the new node in to the sort list in a position that maintains the ascending

probability order, i.e. at a position immediately before the first node with node

probability greater than or equal to its own node probability.

After this process is repeated (N-1) times the only node left in the sort list is the root node of

the Huffman tree. By traversing the tree from root to leaf node, appending a 0 for each left

and 1 for each right branch taken a codeword is generated for a symbol.

In order to decode a symbol the tree is traversed from the root, taking left or right branches

depending on whether a 0 or 1 is read from the bitstream, until a leaf node is reached. The

symbol corresponding to this leaf node is the decoded symbol.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 13

The following data structure represents a node in the tree. A leaf node is represented by a

node where Symbol is not set to -1 and the Left and Right child indices are both set to –1:

HUFF_NODE

{

 Symbol // Decoded Symbol for leaf node, -1 for internal node

 Prob // Huffman node probability

 Left // Index of Left Child in the sort list

 Right // Index of Right Child in the sort list

}

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 14

The following pseudo-code outlines the process of building a Huffman tree

from a set of symbols and their associated probabilities:

Inputs : N : Number of symbols

 S[N] : List of N symbol identifiers

 P[N] : List of N symbol probabilities

VP6_CreateHuffmanTree

{

 HUFF_NODE SortList[2N-1];

for (i=0; i<N; i++)

{

 SortList[i].Symbol = S[i]

 SortList[i].Prob = P[i]

 SortList[i].Left = -1

 SortList[i].Right = -1

}

Sort SortList into ascending probability order maintaining

relative order of nodess having equal probability

for (i=0; i<N-1; i++)

{

 L = 2*i // Least probable node

 R = L+1 // Second least probable node

 SortList[N+i].Symbol = -1 // Merged node

 SortList[N+i].Prob = SortList[L].NodeProb + SortList[R].NodeProb

 SortList[N+i].Left = L

 SortList[N+i].Right = R

Sort nodes in SortList between positions R+1 and N+i (inclusive)

in to ascending probability order maintaining relative order of

nodes having equal probability

}

// Huffman tree root node is at position 2*N-2 in SortList

}

To decode a symbol the following procedure is followed:

Input : N : Number of symbols/leaf nodes in tree

 HUFF_NODE SortList[2N-1] : VP6_CreateHuffmanTree created tree

VP6_HuffmanDecodeSymbol

{

 NextNode = 2*N-2 // Root node

 while (SortList[NextNode].Symbol == -1)

 {

 if (R(1)==0)

 NextNode = SortList[NextNode].Left

 Else

 NextNode = SortList[NextNode].Right

 }

 DecodedSymbol = SortList[NextNode].Symbol

}

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 15

7.3 BoolCoder

Based on the same principles as a binary arithmetic coder, the BoolCoder codes successive 0

or 1 decisions by continuously sub-dividing an initial unit interval in the ratio of the relative

probabilities that a 0 and 1 will occur.

Encoding multi-bit entities can be considered as traversing a binary decision tree where at

each node there is an associated probability of taking the left, or zero, branch. This

probability is referred to as the Node Probability. The probability of taking a right, or 1,

branch is therefore one minus the node probability. This concept is used extensively

throughout the code.

Node probabilities are represented on a linear 8-bit scale: 0 represents probability 0, 255

represents probability 1. However, the value 0 is explicitly forbidden, so the valid range is as

follows:

1 <= Node Probability <= 255

The BoolCoder has the following attributes:

Range -> the current range as a value from 0-255

Count -> the number of times that Range moved to less than 128

Value -> Holds up to the next 32-bits read from the bit stream

Pos -> offset of the next byte to be read from the bit stream

Before decoding may commence the BoolCoder must be initialized as follows:

� VP6_StartDecode: Initializes the bool decoder attributes:

 Range = 255

 Count = 8

 Value = First 32-bits extracted from bit stream

 Pos = 4 (4 bytes already extracted in to Value)

Thereafter, individual bits may be decoded as follows if the specific node

probability, or probability of decoding a zero, is known (Probability):

� VP6_DecodeBool: Decodes a bit given a particular node probability:

Split = 1 + (((Range-1) * Probability) >> 7)

if Value < (Split << 24)

{

 Range = Split

 Bit = 0

}

else

{

 Range = Range - Split

 Value = Value – (Split <<24)

 Bit = 1

}

After each bool decode perform the following normalization:

 While Range < 128

 {

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 16

 Range *= 2

 Value *= 2

 Count --

 if Count == 0

 {

 // Bits = extract byte from bitstream at position Pos

 Value = Value | Bits

 Pos ++

 Count = 8

 }

 }

 Return Bit

8 BITSTREAM MAP

Figure 1 VP6 Bitstream

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 17

Please refer to the following sections for more information:

• Frame Header (See Section 9).

• Mode Probability Updates (See Section 10).

• Mv Tree (See Section 11).

• Single Stream Macroblock Info (See Figure 2).

• Bool Coded MultiStream Macroblock Info (See Figure 3).

• Huffman MultiStream Macroblock Info (See Figure 4).

Figure 2 Single Stream -- Macroblock Info

Please refer to the following sections for more information:

• Coefficient probability Updates (See Figure 5).

• Next Macro Block’s Prediction Information (See Figure 6).

• Enocded Coefficients (See Figure 7).

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 18

Figure 3 Bool Coded – Multi-Stream Macroblock Info

Please refer to the following sections for more information:

• Coefficient probability Updates (See Figure 5).

• Next Macroblock’s Prediction Information (See Figure 6).

• Next Macroblock’s Boolean Encoded Coefficients (See Figure 7).

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 19

Coefficient
Probability updates

Next Macroblock
Prediction
Information

Next Macroblock
Huffman Encoded

Coefficients

Completed?

Completed?

Yes

No

No

Figure 4 Huffman Coded -- Multi-Stream Macroblock Info

Please refer to the following sections for more information:

• Coefficient probability Updates (See Figure 5).

• Next Macroblock’s Prediction Information (See Figure 6).

• Next Macroblock’s Huffman Encoded Coefficients (See Figure 7).

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 20

Y,U,V DC * 11

Node Probability

Updates

Scan Update

Bit Set

63 Coefficients

Scan Order

Updates

2 Bands * 14

Nodes Zero Run

Probability

Updates

3 Prec Cases * 2

Planes * 6 Bands *

11 Nodes Ac

Probability

Updates

No

Yes

Scan Update Bit

Figure 5 Coefficient Probability Updates

Please refer to Sections 12 & 13 for more information:

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 21

Figure 6 Encode Macroblock Prediction Information

Please refer to Sections 10 & 11 for more information:

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 22

4 Y Block

Coefficients

U Block

Coefficients

V Block

Coefficients

Figure 7 Macroblock's Coefficients

DC Token

Next AC Token

Position is 63

or Token is

EOB

Yes No

Figure 8 Block Coefficients

Please refer to Sections 12 & 13 for more information:

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 23

9 FRAME HEADER

The initial bytes of the compressed frame define a header containing the following:

Field Type Notes

FrameType R(1) 0 for I-Frame, 1 for P-Frame.

DctQMask R(6) Quantizer setting for the frame.

MultiStream R(1) 0 for One partition, 1 for two partitions.

IntraHeader || InterHeader See tables

2 & 3

If FrameType==0 : IntraHeader

If FrameType==1 : InterHeader

UseHuffman b(1) 0 for BoolCoder, 1 for Huffman Coder for 2
nd

 data

partition.

Table 1 Frame Header

FrameType. An individual frame is encoded as either as an I- or P-frame. An I-frame, or

intra-frame, is an atomic unit meaning that it can be completely decoded without reference to

any previously decoded frame. A P-frame, or inter-frame, is coded differentially with respect

to a prediction frame that is constructed from previously decoded reference frames and is not

therefore an atomic unit. Each MB in the prediction frame is formed by using Motion

Compensation, unless the MB is coded in intra-mode in which case no prediction is required.

Two reference frames are defined: the last reconstructed frame and a previously decoded

frame known as the Golden Frame.

It should be noted that VP6 makes no use of backward or bi-directional prediction.

Specifically, there is no equivalent to the MPEG B-frame.

DctQMask. VP6 uses a 64 level linear quantizer, the particular quantizer level for a frame

being specified as a 6-bit index, DctQMask, into a table that specifies the corresponding bin-

width. The value 63 represents the most accurate quantizer level, 0 represents the least

accurate. Intermediate values are specified to give very roughly linear changes in data rate.

MultiStream. The MultiStream flag indicates whether the bitstream is split between one (0)

or two (1) partitions. The bitstream may optionally be split between two partitions, in

addition to the frame header. The first partition contains coding mode information and motion

vectors, the second partition contains the tokenized, quantized, DCT coded prediction error

information.

UseHuffman. When using two bitstream partitions (MultiStream set to 1) the second

partition may optionally use Huffman (1) rather than Boolean Coding (0) techniques. This

can help to reduce the computational load in both encoder and decoder at high data rates on

low to medium power processors.

Field Type Notes

Vp3VersionNo R(5) Version of encoder used to encode frame.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 24

VpProfile R(2) 0 Simple, 3 Advanced (1 and 2 undefined)

(Reserved) R(1) Currently unused; always 0

Buff2Offset R(16) Offset to 2
nd

 partition. If (MultiStream == 1) ||

(SIMPLE_PROFILE == 1).

VFragments b(8) Number of rows of 8x8 blocks in un-scaled decoded

image.

HFragments b(8) Number of cols of 8x8 blocks in un-scaled decoded

image.

OutputVFragments b(8) Number of rows of 8x8 blocks in scaled output image.

OutputHFragments b(8) Number of cols of 8x8 blocks in scaled output image.

ScalingMode b(2) Mode to use for scaling decoded image.

AutoSelectPMFlag b(1) ADVANCED _PROFILE (VpProfile == 3) only:

0 Prediction filter type is fixed and will be specified,

1 Auto-select bi-cubic or bi-linear prediction filter.

PredictionFilterVarThresh b(5) If AutoSelectPMFlag == 1 only:

Threshold on prediction filter variance.

PredictionFilterMvSizeThresh b(3) If AutoSelectPMFlag == 1 only:

Threshold on MV size to use prediction filter for.

BiCubicOrBiLinearFiltFlag b(1) If AutoSelectPMFlag == 0 only:

0 Use Bi-linear prediction filter,

1 Use Bi-Cubic prediction filter.

PredictionFilterAlpha b(4) Vp3VersionNo == 8 (VP6.2) only:

Selector to choose bicubic filter

coefficients

Table 2 IntraHeader Definition

Vp3VersionNo. Identifies the bitstream as being compliant with a particular VPx decoder

format. The values 6,7, and 8 represent VP6.0, VP6.1, and VP6.2 bitsreams, respectively. The

decoder should check this field to ensure that it can decode the bitstream.

VpProfile. Two coding profiles are currently defined, SIMPLE and ADVANCED, each

specifying the use of a set of coding tools.

Reserved. This bit has no meaning when decoding the bitstream. It remains for historical

reasons, and must be consumed during decoding.

Buff2Offset. Specifies the offset of the second bitstream partition from the start of the frame

buffer in bytes. Only present if MultiStream flag indicates that two bitstream partitions are

being used.

VFragments. The vertical coded height of the frame in 8x8 block units. If image is 240

pixels high, VFragments will be 30.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 25

HFragments. The horizontal coded width of the frame in 8x8 block units. If image is 320

pixels wide, HFragments will be 40.

OutputVFragments. The vertical decoded height of the frame as it should be scaled on

output in 8x8 block units. See definition of ScalingMode below.

OutputHFragments. The horizontal decoded width of the frame as it should be scaled on

output in 8x8 block units. See definition of ScalingMode below.

ScalingMode. Internally a frame may be encoded at a different resolution to the eventual size

that it is presented on output from the decoder. There are four ways to scale the frame on

output MAINTAIN_ASPECT_RATIO, SCALE_TO_FIT, CENTER, OTHER.

AutoSelectPMFlag. Indicates what filter type will be used to generate interpolated sub-pixel

motion compensated prediction blocks; Bi-linear and Bi-cubic filters are defined. Value 0

indicates that filter type is fixed and will be specified in field BiCubicOrBiLinearFiltFlag.

Value 1 turns on automatic selection of filter type using the two thresholds

PredictionFilterVarThresh and PredictionFilterMvSizeThresh. Present only if frame coded

using Advanced Profile.

PredictionFilterVarThresh. Variance threshold at or above which the bi-cubic motion-

compensated interpolation filter will be used, otherwise bi-linear filter is used. Value 0

indicates that the bi-cubic filter will always be used. Present only if AutoSelectPMFlag is 1.

PredictionFilterMvSizeThresh. Used to set largest MV magnitude at which the bi-cubic

filter is used, otherwise bi-linear filter is used. Largest MV component, in whole pixel units,

for use of bi-cubic filter is (1 << (PredictionFilterMvSizeThresh – 1)). Present only if

AutoSelectPMFlag is 1.

BiCubicOrBiLinearFiltFlag. Selects specific filter type for producing interpolated sub-pixel

motion compensated prediction blocks. Present only if AutoSelectPMFlag is 0.

PredictionFilterAlpha. Specifies the index into the BicubicFilterSet table to use when

retrieving filter coeffiecients. In general, these coeffiecents control the sharpness of the filter.

Present only if Vp3VersionNo == 8 (VP6.2 bitstreams only)

Field Type Notes

Buff2Offset R(16) Offset to 2
nd

 partition. If (MultiStream == 1) ||

(SIMPLE_PROFILE == 1).

RefreshGoldenFrame b(1) 0 Do not update the Golden Frame with this frame,

1 Decoded frame should become new Golden Frame.

UseLoopFilter b(1) ADVANCED_PROFILE only:

0 Disable the loop-filter, 1 Enable the loop-filter.

LoopFilterSelector b(1) UseLoopFilter==1 only:

0 Basic loop filter, 1 De-ringing loop-filter (see

below).

AutoSelectPMFlag b(1) If Vp3VersionNo == 8 (VP6.2)

and ADVANCED _PROFILE (VpProfile == 3) only:

0 Prediction filter type is fixed and will be specified,

1 Auto-select bi-cubic or bi-linear prediction filter.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 26

PredictionFilterVarThresh b(5) If Vp3VersionNo == 8 (VP6.2)

and AutoSelectPMFlag == 1 only:

Threshold on prediction filter variance.

PredictionFilterMvSizeThresh b(3) If Vp3VersionNo == 8 (VP6.2)

and AutoSelectPMFlag == 1 only:

Threshold on MV size to use prediction filter for.

BiCubicOrBiLinearFiltFlag b(1) If Vp3VersionNo == 8 (VP6.2)

and AutoSelectPMFlag == 0 only:

0 Use Bi-linear prediction filter,

1 Use Bi-Cubic prediction filter.

PredictionFilterAlpha b(4) Vp3VersionNo == 8 (VP6.2) only:

Selector to choose bicubic filter

coefficients

Table 3 InterHeader Definition

Buff2Offset. Specifies the offset of the second bitstream partition from the start of the frame

buffer in bytes. Only present if MultiStream flag indicates that two bitstream partitions are

being used.

RefreshGoldenFrame. Flag indicating whether the current frame, once fully decoded,

should be used to update the alternative prediction frame known as the Golden Frame. If set

to 1 the decoded frame becomes the new Golden Frame. Otherwise the existing Golden

Frame persists.

UseLoopFilter. Flags whether the loop-filter should be used for this frame. Present only if

frame coded using Advanced Profile.

LoopFilterSelector. Selects which loop filter to use for this frame, 0 indicates use of a basic

de-blocking filter, 1 indicates use of a more complex de-blocking & de-ringing filter. Present

only if UseLoopFilter set to 1.

Note: Although supported by the bitstream the de-ringing version of the loop-filter is NOT

currently defined in the VP6 decoder specification. Therefore, at the current time it is

mandated that where the loop-filter is used the field LoopFilterSelector must be set to the

value 0.

AutoSelectPMFlag. Indicates what filter type will be used to generate interpolated sub-pixel

motion compensated prediction blocks; Bi-linear and Bi-cubic filters are defined. Value 0

indicates that filter type is fixed and will be specified in field BiCubicOrBiLinearFiltFlag.

Value 1 turns on automatic selection of filter type using the two thresholds

PredictionFilterVarThresh and PredictionFilterMvSizeThresh. Present only if frame coded

using Advanced Profile. Present only in VP6.2 bitstreams (Vp3VersionNo == 8).

PredictionFilterVarThresh. Variance threshold at or above which the bi-cubic motion-

compensated interpolation filter will be used, otherwise bi-linear filter is used. Value 0

indicates that the bi-cubic filter will always be used. Present only if AutoSelectPMFlag is 1.

Present only in VP6.2 bitstreams (Vp3VersionNo == 8).

PredictionFilterMvSizeThresh. Used to set largest MV magnitude at which the bi-cubic

filter is used, otherwise bi-linear filter is used. Largest MV component, in whole pixel units,

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 27

for use of bi-cubic filter is (1 << (PredictionFilterMvSizeThresh – 1)). Present only if

AutoSelectPMFlag is 1. Present only in VP6.2 bitstreams (Vp3VersionNo == 8).

BiCubicOrBiLinearFiltFlag. Selects specific filter type for producing interpolated sub-pixel

motion compensated prediction blocks. Present only if AutoSelectPMFlag is 0. Present only

in VP6.2 bitstreams (Vp3VersionNo == 8).

PredictionFilterAlpha. Specifies the index into the BicubicFilterSet table to use when

retrieving filter coeffiecients. In general, these coeffiecents control the sharpness of the filter.

Present only if Vp3VersionNo == 8 (VP6.2 bitstreams only).

10 MODE DECODING

For I-frames each MB is implicitly encoded in intra-mode so no signaling of mode is

required.

For P-frames, each MB in the frame has an associated Coding Mode indicating to the decoder

the method by which the MB prediction, if any, is constructed. VP6 defines ten possible

coding modes.

Coding Mode Prediction Frame MV

CODE_INTER_NO_MV Previous frame reconstruction. Fixed: (0,0).

CODE_INTRA None. None.

CODE_INTER_PLUS_MV Previous frame reconstruction. Newly calculated MV.

CODE_INTER_NEAREST_MV Previous frame reconstruction. Same MV as Nearest

block.

CODE_INTER_NEAR_MV Previous frame reconstruction. Same MV as Near block.

CODE_USING_GOLDEN Golden Frame. Fixed: (0,0).

CODE_GOLDEN_MV Golden Frame. Newly calculated MV.

CODE_INTER_FOURMV Previous frame reconstruction. Each of the four luma-

blocks has associated MV.

CODE_GOLD_NEAREST_MV Golden Frame. Same MV as Nearest

block.

CODE_GOLD_NEAR_MV Golden Frame. Same MV as Near block.

Table 4 Coding Modes

CODE_INTRA mode uses no prediction, each of its six blocks is forward DCT encoded after

the fixed value 128 is subtracted from each sample value (this improves DCT accuracy).

The nine remaining modes use motion compensation to derive a prediction for the MB. Two

parameters specify the best match for a MB (or block for mode CODE_INTER_FOURMV),

a motion vector and an indication of which reference frame the vector refers to (either the

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 28

previous reconstructed frame or the Golden frame). The motion vector is specified in ¼ pixel

units (i.e. ¼ sample precision for luma and
1
/8 sample precision for chroma).

The maximum magnitude of a MV component is 31 ¾ whole pixels (127 in units of ¼ pixel).

If a MB has coding mode CODE_INTER_FOURMV then each of its four Y-blocks will be

coded independently, each having an associated coding mode from a reduced set that

excludes intra or any of the Golden Frame modes. In this case the motion vector for the two

chroma blocks is computed by averaging the four Y vectors (rounding away from zero).

In certain circumstances it is much more efficient to specify that a MB has the same MV as

one of its nearest neighbors, rather than coding a new MV. For this reason VP6 defines the

concept of the Nearest Motion Vector and Near Motion Vector, as the first 2 non (0,0)

MVs encountered when traversing, in order, a list of the twelve spatially nearest decoded

macroblock neighbors (the list is described by offsets from the present macroblock defined in

the array NearMacroblocks below), that are encoded with reference to the same prediction

frame as the current block. If no such blocks exist in the list then Nearest and Near MVs are

undefined.

So, for example, the coding mode CODE_GOLD_NEAREST_MV implies that the MV for

the current MB should be set to the same vector as that specified for the Nearest block that

used the Golden Frame prediction frame.

In the following table the pairs of data values refer to {row, column} offsets in MacroBlock

units:

NearMacroBlocks[12] =

{

 { -1, 0 },

 { 0, -1 },

 { -1, -1 },

 { -1, 1 },

 { -2, 0 },

 { 0, -2 },

 { -1, -2 },

 { -2, -1 },

 { -2, 1 },

 { -1, 2 },

 { -2, -2 },

 { -2, 2 }

}

The BoolCoder is used to decode coding modes using a two dimensional contextual table as

follows:

probXmitted [3][20]

This table should be maintained by the decoder. It contains probabilities that any of the 10

modes will be the next mode decoded in the bitstream given the following situations:

The first dimension of this probXmitted array is indexed by contextual information

regarding whether or not all of the modes are available for use as follows:

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 29

Index When to Use

0 Nearest & Near MVs both exist for this macroblock

1 Nearest but no Near MV exists for this macroblock

2 Neither Nearest nor Near MVs exist for this macroblock

Table 5 Mode Availability Values for Dimension 1 of Mode Probability Vector

The second dimension defines probabilities for each mode as follows:

Index Probability That We Get

0 CODE_INTER_NO_MV given the prior mode was CODE_INTER_NO_MV

1 CODE_INTER_NO_MV given the prior mode was not CODE_INTER_NO_MV

2 CODE_INTRA given the prior mode was CODE_INTRA

3 CODE_INTRA given the prior mode was not CODE_INTRA

4 CODE_INTER_PLUS_MV given the prior mode was CODE_INTER_PLUS_MV

5 CODE_INTER_PLUS_MV given the prior mode was not CODE_INTER_PLUS_MV

6 CODE_INTER_NEAREST_MV given the prior mode was

CODE_INTER_NEAREST_MV

7 CODE_INTER_NEAREST_MV given the prior mode was not

CODE_INTER_NEAREST_MV

8 CODE_INTER_NEAR_MV given the prior mode was CODE_INTER_NEAR_MV

9 CODE_INTER_NEAR_MV given the prior mode was not CODE_INTER_NEAR_MV

10 CODE_USING_GOLDEN given the prior mode was CODE_USING_GOLDEN

11 CODE_USING_GOLDEN given the prior mode was not CODE_USING_GOLDEN

12 CODE_GOLDEN_MV given the prior mode was CODE_GOLDEN_MV

13 CODE_GOLDEN_MV given the prior mode was not CODE_GOLDEN_MV

14 CODE_INTER_FOURMV given the prior mode was CODE_INTER_FOURMV

15 CODE_INTER_FOURMV given the prior mode was not CODE_INTER_FOURMV

16 CODE_GOLD_NEAREST_MV given the prior mode was

CODE_GOLD_NEAREST_MV

17 CODE_GOLD_NEAREST_MV given the prior mode was not

CODE_GOLD_NEAREST_MV

18 CODE_GOLD_NEAR_MV given the prior mode was CODE_GOLD_NEAR_MV

19 CODE_GOLD_NEAR_MV given the prior mode was not CODE_GOLD_NEAR_MV

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 30

Table 6 ProbabilitySituation Table

At each I-frame the set of context dependent probabilities, probXmitted is initialized to a

default set specified as:

VP6_BaselineXmittedProbs[3][20] =

{

 { 42, 69, 2, 1, 7, 1, 42, 44, 22, 6,

 3, 1, 2, 0, 5, 1, 1, 0, 0, 0}

 { 8,229, 1, 1, 8, 0, 0, 0, 0, 0,

 2, 1, 1, 0, 0, 0, 1, 1, 0, 0}

 { 35,122, 1, 1, 6, 1, 34, 46, 0, 0,

 2, 1, 1, 0, 1, 0, 1, 1, 0, 0}

}

For P-frames probXmitted values persist from the previously decoded frame.

A mechanism for updating each entry of this table (for either I or P frames) is embedded in

the bitstream as follows:

Field

Mode Probability Update Section for MBs When Nearest & Near MVs both exist

Mode Probability Update Section for MBs When Nearest but no Near MV exists

Mode Probability Update Section for MBs When Neither Nearest nor Near MVs exist

Table 7 Bitstream Section : Mode Probability Updates

Field Type Notes

SetNewBaselineProbs B(174) Set new baseline probabilities flag.

WhichVector b(4) Vector to set. Present only if SetNewBaselineProbs

is 1.

VectorUpdatesPresentFlag B(254) Updates to baseline probabilities follow flag.

ModeProbUpdateVector See Table 9. 20 sets of probability updates (one for each entry in

ProbabilitySituation). Only present if

VectorUpdatesPresentFlag is 1.

Table 8 Mode Probability Updates Section

SetNewBaselineProbs. A flag indicating whether the baseline mode probabilities held in

probXmitted should be reset to one of 16 pre-defined sets taken from the array

VP6_ModeVq.

WhichVector. Specifies which one of 16 sets of baseline probabilities from array

VP6_ModeVq to copy into probXmitted for the appropriate ModeAvailability. Present only if

SetNewBaselineProbs is 1.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 31

VectorUpdatesPresentFlag. Indicates whether updates to the baseline probabilities follow.

ModeProbUpdateVector. 20 sets of probability updates (one for each entry in

ProbabilitySituation). Only present if Vector UpdatesPresentFlag is 1.)

Note: VP6_modeVq is a 3 dimensional index the first dimension is the ModeAvailability

(Nearest & Near MVs both exist , Nearest but no Near MV exists , Neither Nearest nor Near

MV exists). WhichVector is an index into the second dimension of this array. The 20

element vector specified by whichVector is copied into the probXmitted table for the

appropriate ModeAvailability.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 32

VP6_ModeVq[3][16][20] =

{

 {

 { 9, 15, 32, 25, 7, 19, 9, 21, 1, 12, 14, 12, 3, 18, 14, 23, 3, 10, 0, 4},

 { 48, 39, 1, 2, 11, 27, 29, 44, 7, 27, 1, 4, 0, 3, 1, 6, 1, 2, 0, 0},

 { 21, 32, 1, 2, 4, 10, 32, 43, 6, 23, 2, 3, 1, 19, 1, 6, 12, 21, 0, 7},

 { 69, 83, 0, 0, 0, 2, 10, 29, 3, 12, 0, 1, 0, 3, 0, 3, 2, 2, 0, 0},

 { 11, 20, 1, 4, 18, 36, 43, 48, 13, 35, 0, 2, 0, 5, 3, 12, 1, 2, 0, 0},

 { 70, 44, 0, 1, 2, 10, 37, 46, 8, 26, 0, 2, 0, 2, 0, 2, 0, 1, 0, 0},

 { 8, 15, 0, 1, 8, 21, 74, 53, 22, 42, 0, 1, 0, 2, 0, 3, 1, 2, 0, 0},

 {141, 42, 0, 0, 1, 4, 11, 24, 1, 11, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0},

 { 8, 19, 4, 10, 24, 45, 21, 37, 9, 29, 0, 3, 1, 7, 11, 25, 0, 2, 0, 1},

 { 46, 42, 0, 1, 2, 10, 54, 51, 10, 30, 0, 2, 0, 2, 0, 1, 0, 1, 0, 0},

 { 28, 32, 0, 0, 3, 10, 75, 51, 14, 33, 0, 1, 0, 2, 0, 1, 1, 2, 0, 0},

 {100, 46, 0, 1, 3, 9, 21, 37, 5, 20, 0, 1, 0, 2, 1, 2, 0, 1, 0, 0},

 { 27, 29, 0, 1, 9, 25, 53, 51, 12, 34, 0, 1, 0, 3, 1, 5, 0, 2, 0, 0},

 { 80, 38, 0, 0, 1, 4, 69, 33, 5, 16, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0},

 { 16, 20, 0, 0, 2, 8,104, 49, 15, 33, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0},

 {194, 16, 0, 0, 1, 1, 1, 9, 1, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0}

 },

 {

 { 41, 22, 1, 0, 1, 31, 0, 0, 0, 0, 0, 1, 1, 7, 0, 1, 98, 25, 4, 10},

 {123, 37, 6, 4, 1, 27, 0, 0, 0, 0, 5, 8, 1, 7, 0, 1, 12, 10, 0, 2},

 { 26, 14, 14, 12, 0, 24, 0, 0, 0, 0, 55, 17, 1, 9, 0, 36, 5, 7, 1, 3},

 {209, 5, 0, 0, 0, 27, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0},

 { 2, 5, 4, 5, 0,121, 0, 0, 0, 0, 0, 3, 2, 4, 1, 4, 2, 2, 0, 1},

 {175, 5, 0, 1, 0, 48, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0},

 { 83, 5, 2, 3, 0,102, 0, 0, 0, 0, 1, 3, 0, 2, 0, 1, 0, 0, 0, 0},

 {233, 6, 0, 0, 0, 8, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0},

 { 34, 16,112, 21, 1, 28, 0, 0, 0, 0, 6, 8, 1, 7, 0, 3, 2, 5, 0, 2},

 {159, 35, 2, 2, 0, 25, 0, 0, 0, 0, 3, 6, 0, 5, 0, 1, 4, 4, 0, 1},

 { 75, 39, 5, 7, 2, 48, 0, 0, 0, 0, 3, 11, 2, 16, 1, 4, 7, 10, 0, 2},

 {212, 21, 0, 1, 0, 9, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 2, 2, 0, 0},

 { 4, 2, 0, 0, 0,172, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 0},

 {187, 22, 1, 1, 0, 17, 0, 0, 0, 0, 3, 6, 0, 4, 0, 1, 4, 4, 0, 1},

 {133, 6, 1, 2, 1, 70, 0, 0, 0, 0, 0, 2, 0, 4, 0, 3, 1, 1, 0, 0},

 {251, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

 } ,

 {

 { 2, 3, 2, 3, 0, 2, 0, 2, 0, 0, 11, 4, 1, 4, 0, 2, 3, 2, 0, 4},

 { 49, 46, 3, 4, 7, 31, 42, 41, 0, 0, 2, 6, 1, 7, 1, 4, 2, 4, 0, 1},

 { 26, 25, 1, 1, 2, 10, 67, 39, 0, 0, 1, 1, 0, 14, 0, 2, 31, 26, 1, 6},

 {103, 46, 1, 2, 2, 10, 33, 42, 0, 0, 1, 4, 0, 3, 0, 1, 1, 3, 0, 0},

 { 14, 31, 9, 13, 14, 54, 22, 29, 0, 0, 2, 6, 4, 18, 6, 13, 1, 5, 0, 1},

 { 85, 39, 0, 0, 1, 9, 69, 40, 0, 0, 0, 1, 0, 3, 0, 1, 2, 3, 0, 0},

 { 31, 28, 0, 0, 3, 14,130, 34, 0, 0, 0, 1, 0, 3, 0, 1, 3, 3, 0, 1},

 {171, 25, 0, 0, 1, 5, 25, 21, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0},

 { 17, 21, 68, 29, 6, 15, 13, 22, 0, 0, 6, 12, 3, 14, 4, 10, 1, 7, 0, 3},

 { 51, 39, 0, 1, 2, 12, 91, 44, 0, 0, 0, 2, 0, 3, 0, 1, 2, 3, 0, 1},

 { 81, 25, 0, 0, 2, 9,106, 26, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0},

 {140, 37, 0, 1, 1, 8, 24, 33, 0, 0, 1, 2, 0, 2, 0, 1, 1, 2, 0, 0},

 { 14, 23, 1, 3, 11, 53, 90, 31, 0, 0, 0, 3, 1, 5, 2, 6, 1, 2, 0, 0},

 {123, 29, 0, 0, 1, 7, 57, 30, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0},

 { 13, 14, 0, 0, 4, 20,175, 20, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0},

 {202, 23, 0, 0, 1, 3, 2, 9, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0}

 }

}

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 33

Field Type Notes

Ten Sets of:

UpdateFlag B(205) 0 No update, 1 Update Follows for this value.

Sign B(128) Update sign: 0 Positive, 1 Negative (only if UpdateFlag

set to 1)

Difference T Update magnitude – Tree coded. (only if UpdateFlag

set to 1)

Table 9 ModeProbUpdateVector

UpdateFlag. Flag indicating whether there follows an update for this probability value where

the mode being coded is the same as the last mode coded.

Sign. The sign of the change encoded for this probability value. 0 indicates positive, 1

indicates negative change in probability value.

Difference. Magnitude of the change for this probability value, coded using the BoolCoder

with respect to the tree shown in Figure 9.

Figure 9 Mode Probability Update Magnitude Tree

171

199

140

125

104

83

 (0..127)x4

 4 8

 12

 16

 24 20

Node Probability

Decoded Value

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 34

To decode a sign and difference the following steps are performed:

if sign == 1

 Sign == -1

else

 Sign = 1

if(B(171))

 return (sign * 4) * (1 + B(83))

else

{

 if(!B(199))

 {

 if(B(140))

 return sign * 12

 if(B(125))

 return sign * 16

 if(B(104))

 return sign * 20

 return sign * 24

 }

 else

 {

 diff = VP6_bitread(&pbi->br,7)

 return sign * diff * 4

 }

}

Note: The encoder only sends update probabilities if it determines that they will produce an

overall reduction in data-rate, taking into account the overhead cost of sending the update

values themselves.

The table probXmitted [3][20] is then used to construct an array of decision trees that are

used for decoding modes:

This decision tree is represented as a three dimensional array and has the following

dimensions:

ModeDecisionTree[3][10][9].

The first dimension represents the ModeAvailability for the macroblock we are about to

decode. The Second Dimension represents the last prior coded mode and the third dimension

represents the probability in the decision tree below at each of 9 numbered nodes described in

the decision tree shown in figure 2.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 35

Figure 10 Mode decoding decision tree

To convert the table probXmitted [3][20] into ModeDecisionTree[3][10][9] the following

steps are performed:

for (i=0; i<10; i++)

{

 unsigned int C[MAX_MODES]

 unsigned int total

 // set up the probabilities for each tree

 for(k=0;k<MODETYPES;k++)

 total=0;

 for (j=0; j<10; j++)

 if (i == j)

 C[j]=0

 else

 C[j]=100*probXmitted[k][j*2+1]

 total+=C[j]

 probModeSame[k][i] = 255 - 255 * probXmitted[k][i*2]

 / (1 +probXmitted[k][i*2+1] + probXmitted[k][i*2])

 // each branch is basically calculated via

 // summing all possibilities at that branch.

 ModeDecisionTree[k][i][0]= 1 + 255 *

 (C[CODE_INTER_NO_MV]+ C[CODE_INTER_PLUS_MV]+

 C[CODE_INTER_NEAREST_MV]+ C[CODE_INTER_NEAR_MV]) /

0

1 2

5 6 3 4

Inter

+

Nearest

Intra 4MV 7 8 Inter

+

Near

Golden

+

(0,0)

Golden

+

MV

Golden

+

Nearest

Golden

+

Near

Same

As

Last

Same

As

Last

Inter

+

(0,0)

Inter

+

MV

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 36

 (1 + total);

 ModeDecisionTree[k][i][1]= 1 + 255 *

 (C[CODE_INTER_NO_MV]+ C[CODE_INTER_PLUS_MV]) /

 (1 + C[CODE_INTER_NO_MV]+ C[CODE_INTER_PLUS_MV]+

 C[CODE_INTER_NEAREST_MV]+ C[CODE_INTER_NEAR_MV])

 ModeDecisionTree[k][i][2]= 1 + 255 *

 (C[CODE_INTRA]+ C[CODE_INTER_FOURMV]) /

 (1 + C[CODE_INTRA]+ C[CODE_INTER_FOURMV]+

 C[CODE_USING_GOLDEN]+C[CODE_GOLDEN_MV]+

 C[CODE_GOLD_NEAREST_MV]+ C[CODE_GOLD_NEAR_MV])

 ModeDecisionTree[k][i][3]= 1 + 255 *

 (C[CODE_INTER_NO_MV]) /

 (1 +C[CODE_INTER_NO_MV]+ C[CODE_INTER_PLUS_MV])

 ModeDecisionTree[k][i][4]= 1 + 255 *

 (C[CODE_INTER_NEAREST_MV]) /

 (1 + C[CODE_INTER_NEAREST_MV]+ C[CODE_INTER_NEAR_MV])

 ModeDecisionTree[k][i][5]= 1 + 255 *

 (C[CODE_INTRA]) /

 (1 + C[CODE_INTRA]+ C[CODE_INTER_FOURMV])

 ModeDecisionTree[k][i][6]= 1 + 255 *

 (C[CODE_USING_GOLDEN] + C[CODE_GOLDEN_MV]) /

 (1 +C[CODE_USING_GOLDEN]+ C[CODE_GOLDEN_MV]+

 C[CODE_GOLD_NEAREST_MV]+ C[CODE_GOLD_NEAR_MV])

 ModeDecisionTree[k][i][7]= 1 + 255 *

 (C[CODE_USING_GOLDEN]) /

 (1 + C[CODE_USING_GOLDEN]+ C[CODE_GOLDEN_MV])

 ModeDecisionTree[k][i][8]= 1 + 255 *

 (C[CODE_GOLD_NEAREST_MV]) /

 (1 + C[CODE_GOLD_NEAREST_MV]+ C[CODE_GOLD_NEAR_MV])

 }

 }

}

The function VP6_DecodeMode decodes the coding mode for a MB by traversing the

decision tree defined in Figure 10. At the root node the decision made is whether the mode is

the same as that of the last coded MB. Thereafter -- if not the same as the last MB -- at each

node the decision to go down the left or right path is dictated by the next bit read from the

bitstream by the BoolCoder. The node probabilities are stored in an array, the node number in

the figure indicating the index at which the value for that node can be found.

This process is described using the following steps:

if (B((probModeSame[type][lastmode]))

mode = lastmode;

else

 *Stats = ModeDecisionTree[type][lastmode]

if (B((Stats[0]))

 if (B((Stats[2]))

 if (B((Stats[6]))

 if(B(Stats[8]))

 mode = CODE_GOLD_NEAR_MV

 else

 mode = CODE_GOLD_NEAREST_MV

 else

 if(B(Stats[7])

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 37

 mode = CODE_GOLDEN_MV

 else

 mode = CODE_USING_GOLDEN

 else

 mode = CODE_INTRA;

 if (B((Stats[5]))

 mode = CODE_INTER_FOURMV;

 else

 if (B((Stats[1]))

 If (B((Stats[4])

 Mode = CODE_INTER_NEAR_MV

 else

 mode = CODE_INTER_NEAREST_MV

 else

 if (B((Stats[3]))

 mode = CODE_INTER_PLUS_MV

 else

 mode = CODE_INTER_NO_MV

 return mode;

In the case where the MB is coded using mode CODE_INTER_FOURMV the specific

coding mode for each of the four blocks comes from a reduced set of four modes. In this case

the mode is coded as a fixed two bit codeword using the BoolCoder and a probability of 128

for each bit. The codewords are as follows:

Block Coding Mode Code

CODE_INTER_NO_MV 00

CODE_INTER_PLUS_MV 01

CODE_INTER_NEAREST_MV 10

CODE_INTER_NEAR_MV 11

Table 10 Block Coding Mode Signaling

11 MOTION VECTORS

VP6 supports ten MacroBlock coding modes (see Section 10) of which three are used for

explicitly coding “new” motion vectors:

• CODE_INTER_PLUS_MV : A new motion vector is coded with reference to the

previous frame reconstruction.

• CODE_GOLDEN_MV : A new motion vector is coded with reference to the Golden

frame reconstruction

• CODE_INTER_FOURMV : A different mode may to be specified for each of the

luma blocks from a subset of those available at the MacroBlock level (see Table 10).

Each block coded with mode CODE_INTER_PLUS_MV will have its own explicitly

coded motion vector.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 38

A further six modes use implicit motion vectors

• CODE_INTER_NO_MV : Use the motion vector (0,0) applied to the previous frame

reconstruction.

• CODE_INTER_NEAREST_MV : Use the motion vector from a previously coded

nearest MacroBlock applied to the previous frame reconstruction.

• CODE_INTER_NEAR_MV :: Use the motion vector from a previously coded near

MacroBlock applied to the previous frame reconstruction

• CODE_USING_GOLDEN : Use the motion vector (0,0) applied to the Golden frame

reconstruction.

• CODE_GOLD_NEAREST_MV: Use the motion vector from a previously coded

nearest MacroBlock applied to the Golden frame reconstruction.

• CODE_GOLD_NEAR_MV: Use the motion vector from a previously coded near

MacroBlock applied to the Golden frame reconstruction.

A definition of nearest and near MacroBlocks and details of how these are derived can be

found in Section 10.

New motion vectors are coded differentially with respect to the motion vector of the nearest

MacroBlock that uses the same reference frame (either the previous frame reconstruction or

the Golden frame), if such a MacroBlock exists and it is either immediately to the left of or

immediately above the current MacroBlock. Otherwise, new motion vectors are coded

absolutely (this can be thought of as differential coded with respect to the vector (0,0)).

11.1 Decoding a Motion Vector

Each new motion vector comprises an x-component and a y-component. Each of these is

categorized as either a short vector or a long vector.

• A short vector is defined as a vector with a length that is less than 8 in ¼ pixel units.

• A long vector is defined as a vector with a length that is greater than or equal to 8

and less than or equal to 127 in ¼ pixel units.

Different entropy strategies are used for coding short vectors and long vectors.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 39

When decoding a motion vector the X component is decoded first followed by the Y

component. The process of decoding a vector component is defined in the following table.

Field Type Notes

IsVectorShort B(x)

ShortVector T Only present if (IsVectorShort == 1)

LongVector 7*B(x) Only present if (If IsVectorShort == 0)

LongVectorBit3 B(x) Only present if (IsVectorShort == 0) and if any of bits 4 to

7 are non-zero.

ReadSignBit B(x)

Table 11 Decoding a Motion Vector Component

IsVectorShort. A flag that defines whether the vector is a long vector or a short vector.

ShortVector. Only present if the vector is a short vector (IsVectorShort == 1). The short

vector is decoded by traversing a BoolCoded tree (see Figure 11)

LongVector. Only present if (IsVectorShort == 0). Bits 0 to 7 of a long vector (excluding bit

3) are read in the following order: 0,1,2,7,6,5,4.

LongVectorBit3: Only present if (IsVectorShort == 0) and at least one of bits 4 to 7 was

non-zero. Bit 3 is implicitly set to 1 if bits 4 to 7 are all zero as we already know that this is

not a short vector (i.e. its magnitude is >= 8).

ReadSignBit: The sign bit for the vector. If the sign bit is 1 then negate the vector (vector = -

vector).

For the purposes of description the following table defines data structures that are used to

hold the probability values that are used when decoding motion vector components.

Data Structure Notes

IsMvShortProbs[2] Stores the probabilities used to decode IsVectorShort for the x and

y components. (x=0, y=1)

ShortMvProbs[2][7] Stores the tree node probabilities used to decode short motion vector

components for x and y. (x=0, y=1 in first index)

MvSizeProbs[2][8] Stores the probabilities needed to decode long motion vector

components for x and y. (x=0, y=1 in first index)

MvSignProbs[2] Stores the probabilities used to decode the sign bit for the x and y

components. (x=0, y=1)

Table 12 Probability data structures used in decoding motion vectors

The default values for the data structures defined in Table 12 are as follows. Note that the

first index in each table specifies x or y where x=0 and y =1;

Default_IsMvShortProbs[2] = { 162, 164 } // x,y

Default_ShortMvProbs [2][7] =

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 40

{

 { 225, 146, 172, 147, 214, 39, 156 }, // x

 { 204, 170, 119, 235, 140, 230, 228 } // y

}

Default_MvSizeProbs [2][8]=

{

 { 247, 210, 135, 68, 138, 220, 239, 246 }, // x

 { 244, 184, 201, 44, 173, 221, 239, 253 } // y

}

Default_MvSignProbs[2] = { 128, 128 } // x,y

Figure 11 illustrates the BoolCoder tree used to decode short motion vectors. The node

probabilities are defined in ShortMvProbs.

Figure 11 Short MV Component Magnitude Decoding Tree

>3

>1 >5

>4 >6 >0 >2

0 1 2 3 4 5 6 7

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 41

The following Pseudo code segment is provided to further clarify the process of decoding the

X and Y motion vector components.

// Loop twice. Once for the X vector (i = 0) and

// once for the Y (i = 1)

For (i == 0; i < 2; i++)

{

 Vector = 0

 // Is the vector a short motion vector

 If (B(IsMvShortProbs[i]))

 {

 // Traverse the short vector tree

 If (B(ShortMvProbs[i][0]))

 {

 Vector += (1 << 2)

 If (B(ShortMvProbs[i][4]))

 {

 Vector += (1 << 1)

 Vector += B(ShortMvProbs[i][6])

 }

 Else

 Vector += B(ShortMvProbs[i][5])

 }

 Else

 {

 If (B(ShortMvProbs[i][1]))

 {

 Vector += (1 << 1)

 Vector += B(ShortMvProbs[i][3])

 }

 Else

 Vector = B(ShortMvProbs[i][2])

 }

 }

 Else

 {

 // Read bit 0,1,2, 7, 6, 5, 4 of the Long vector

 Vector[i] = B(MvSizeProbs[i][0])

 Vector[i] += B(MvSizeProbs[i][1]) << 1

 Vector[i] += B(MvSizeProbs[i][2]) << 2

 Vector[i] += B(MvSizeProbs[i][7]) << 7

 Vector[i] += B(MvSizeProbs[i][6]) << 6

 Vector[i] += B(MvSizeProbs[i][5]) << 5

 Vector[i] += B(MvSizeProbs[i][4]) << 4

 // Note : Bit 3 is implicit if none of

 // the higher order bits are

 if (Vector[i] & 0xF0)

 Vector[i] += B(MvSizeProbs[i][3]) << 3

 else

 Vector[i] += 0x08

 }

 SignBit = B(MvSignProbs[i])

 If (SignBit)

 Vector[i] = -Vector[i]

}

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 42

11.2 Motion Vector Probability Updates

Vp6 allows per frame updates to the probability values used to decode motion vector

components. For inter frames updates are applied in respect of the probability values used in

the previous frame. However, when an intra frame is decoded all the probability values must

all be reset to their defaults.

The following tables define how these updates are decoded. In all cases the updates are 7 bit

numbers. To convert these numbers to valid probabilities they must be modified as follows.

NewProbability = DecodedValue << 1

If (NewProbability == 0)

 NewProbability = 1

Field Type Notes

XShortVecProbUpdateFlag B(x)

XshortVecProbability b(7) Only present if (XShortVecProbUpdateFlag == 1)

XsignProbUpdateFlag B(x)

XsignProbability b(7) Only present if (XsignProbUpdateFlag == 1)

YshortVecProbUpdateFlag B(x)

YshortVecProbability b(7) Only present if (YShortVecProbUpdateFlag == 1)

YsignProbUpdateFlag B(x)

YsignProbability b(7) Only present if (YsignProbUpdateFlag == 1)

ShortVecXTreeNodeProbs See Table 14

ShortVecYTreeNodeProbs See Table 14

LongVecXBitProbs See Table 15

LongVecYBitProbs See Table 15

Table 13 Motion Vector Tree Probability Coding

XShortVecProbUpdateFlag. A flag indicating whether an update to the x entry of

IsMvShortProbs follows.

XShortVecProbability. A new entry for x in IsMvShortProbs.

XSignProbUpdateFlag. Flag indicating whether an update to the x entry of MvSignProbs

follows.

XSignProbability. A new entry for x in MvSignProbs.

YShortVecProbUpdateFlag. A flag indicating whether an update to the y entry of

IsMvShortProbs follows.

YShortVecProbability. A new entry for y in IsMvShortProbs.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 43

YSignProbUpdateFlag. Flag indicating whether an update to the y entry of MvSignProbs

follows.

YSignProbability. A new entry for y in MvSignProbs.

ShortVecXTreeNodeProbs. Set of seven new node probabilities for decoding the x-

component magnitude of a short MV (see Figure 11 and Table 14).

ShortVecYTreeNodeProbs. Set of seven new node probabilities for decoding the y-

component magnitude of a short MV (see Figure 11 and Table 14).

LongVecXTreeNodeProbs. Set of probabilities that each of the eight bits of the magnitude

of the x-component of a long MV is zero (see Table 15).

LongVecYTreeNodeProbs. Set of probabilities that each of the eight bits of the magnitude

of the y-component of a long MV is zero (see Table 15).

The following constant data structures define the probabilities used to decode BoolCoded bits

in Table 13.

UpdateIsMvShortProbabilities[2] = { 237, 231 } // x, y

UpdateMvSignProbabilities[2] = { 246, 243 } // x, y

Field Type Notes

Seven Sets of: 0 to 6

NodeProbFollows B(x)

NodeTreeNodeProb b(7) Present only if (NodeProbFollows == 1).

Table 14 Short MV Tree Node updates

NodeProbFollows. Flag indicating whether an update follows to the ‘nth’ entry in

ShortMvProbs for the current motion vector component (x or y).

NewTreeNodeProb. The updated entry in ShortMvProbs for the current moition vector

component (x or y). See note on converting 7bit values to 8 bit probabilities at the top of this

section.

The following constant data structure defines the probabilities used to decode the BoolCoded

bits in Table 14.

UpdateShortVectorNodeProbabilities[2][7] =

{

 {253, 253, 254, 254, 254, 254, 254}, // x

 {245, 253, 254, 254, 254, 254, 254} // y

}

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 44

Field Type Notes

Eight Sets of: Bit order (0, 1, 2, 7, 6, 5, 4, 3):

BitProbFollows B(x) Flag indicating whether new bit probability for

component follows.

BitProb b(7) New value for the bit probability. Present only if

BitProbFollows is 1.

Table 15 Long motion vector bit probability updates

BitProbFollows. Flag indicating whether an update follows to the ‘nth’ entry in

MvSizeProbs for the current motion vector component (x or y).

BitProb. The updated entry in MvSizeProbs for the current motion vector component (x or

y). See note on converting 7bit values to 8 bit probabilities at the top of this section.

The following constant data structure defines the probabilities used to decode BitProbFollows

in Table 15.

UpdateLongVectorBitProbabilities[2][8]

{

 {254, 254, 254, 254, 254, 250, 250, 252}, // x

 {254, 254, 254, 254, 254, 251, 251, 254} // y

}

11.3 Prediction Loop Filtering

Whilst VP6 does not have a traditional reconstruction buffer loop filter, it does support

filtering of the pixels adjacent to 8x8 block boundaries in the prediction frame (previous

frame or golden frame reconstruction as appropriate), as part of the process for creating a

prediction block for non-zero motion vectors. As with traditional loop filters this helps to

reduce blocking artifacts, but the filtering is not carried out in place within the reconstruction

buffer. Rather, the output is copied into a separate temporary buffer. This is done before any

filtering required for fractional pixel motion compensation (see Section 11.4).

The prediction Loop filter is disabled in Simple Profile (see Section 5). In other profiles it is

enabled if the UseLoopFilter flag in the frame header is set to 1 (see Section 9).

If the prediction block defined by a motion vector straddles an 8x8 block boundary in the

prediction frame then a de-blocking and/or de-ringing filter is applied to the pixels adjacent to

the boundary to reduce any discontinuities (see Figure 12).

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 45

Figure 12 Prediction Loop Filtering of 8x8 Block Boundaries

A maximum of two boundaries are filtered, one vertical and one horizontal. The following

pseudo code illustrates how these boundaries are selected.

{

 // mx and mv are the x and y motion vector components for this block

 mVx

 mVy

 BoundaryX

 BoundaryY

 // Calculate full pixel aligned vectors for x and y

 // MvShift is 2 for Y and 3 for UV

 if(mx > 0)

 mVx = (mx >> MvShift)

 else

 mVx = -((-mx) >> MvShift)

 if(my > 0)

 mVy = (my >> pbi->mbi.MvShift)

 else

 mVy = -((-my) >> pbi->mbi.MvShift)

Reconstruction

Motion Estimated
Predictor Block

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 46

 // calculate block border position for x

 BoundaryX = (8 – (mVx & 7))&7

 // calculate block border position for y

 BoundaryY = (8 - (mVy & 7))&7

}

The values of BoundaryX and BoundaryY are the offsets in x and y of the edges that should

be filtered from the top left hand corner of the 8x8 region pointed to by the whole pixel

aligned vectors mVx and mVy.

Two filter options are defined:

� A deringing filter: has de-blocking & de-ringing characteristics (This option is not

currently supported by the decoder (see Table 3)

� A deblocking filter: has only de-blocking characteristic.

The deblocking loop filter comprises a 4-tap filter (1, -3, 3, -1) and a quantizer dependant

bounding function applied across the horizontal and vertical block boundaries as illustrated

by the following pseudo code. The limit values used by the bounding function are defined in

a table indexed by the current quantizer level (see DctQMask in Table 1).

// Quantizer level dependent limit values

PredictionLoopFilterLimitValues [64] =

{

 30, 25, 20, 20, 15, 15, 14, 14,

 13, 13, 12, 12, 11, 11, 10, 10,

 9, 9, 8, 8, 7, 7, 7, 7,

 6, 6, 6, 6, 5, 5, 5, 5,

 4, 4, 4, 4, 3, 3, 3, 3,

 2, 2, 2, 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2,

 1, 1, 1, 1, 1, 1, 1, 1

}

// Function to clamp values to the integer range 0 to 255

Clamp0To255(Input)

{

 If (Input < 0)

 Return 0

 Else if (Input > 255)

 Return 255

 Else

 Return Input

}

// Function to convert a signed value to an absolute value

abs (SignedVal)

{

 if (SignedVal < 0)

 return –SignedVal

 else

 return SignedVal

}

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 47

// Prediction loop filter bounding function

Bound (FLimit, FiltVal)

{

if (abs(FiltVal) < (2 * Flimit))

{

 if (FiltVal < 0)

 Result = -1 * (Flimit - abs(-FiltVal - Flimit))

 else

 Result = (Flimit - abs(FiltVal - Flimit))

}

else

 Result = 0

return Result

}

PredictionLoopFilterFunction(Srcptr, Step, CurrentQuantizerIndex)

{

// Setup the filter limit value based upon the current

// frame’s quantizer level “DctQMask” (see in Table 1)

FLimit = LoopFilterLimitValues[CurrentQuantizerIndex]

For each point along the block edge to be filtered.

{

FiltVal = (Srcptr [- (2 * Step)] -

 (Srcptr [-Step] * 3) +

 (Srcptr [0] * 3) -

 Srcptr [Step] + 4) >> 3

FiltVal = Bound (FLimit, FiltVal)

 Srcptr [-1] = Clamp0To255(Src[-1] + FiltVal)

 Srcptr [0] = Clamp0To255([Src[0] - FiltVal])

Srcptr += Pitch

}

}

Step is the distance between consecutive samples. For vertical block boundaries the value of

Step is 1.

11.4 Filtering For Fractional Pixel Motion Compensation

VP6 supports the use of fractional pixel motion compensation. This requires the use of

interpolation to determine sample values at non whole-pixel locations.

Interpolation is achieved by means of filters applied to create interpolated values at ¼ sample

precision in luma and
1
/8 sample precision in chroma.

Two types of filtering are supported:

• Bilinear Filtering: Using 2 tap filters (see Section 11.4.1).

• Bicubic Filtering: Using 4 tap filters (see Section 11.4.2).

In “Simple Profile” Bicubic filtering is not allowed, so Bilinear filtering is used in all cases

where fraction pixel predictors are required.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 48

In Advanced Profile the decoder uses criteria specified by the encoder in the frame header

(see Table 2) to select at the block level between bicubic and bilinear filtering.

AutoSelectPMFlag . Where this flag is set to 0 the decoder must use Bilinear or bicubic

filtering exclusively as specified by the BiCubicOrBilinearFiltFlag. Where this flag is set to

1 the filter choice is defined by the prediction block variance and motion vector size.

PredictionFilterMvSizeThresh. This field specifies a motion vector size threshold. Where

the magnitude of either the x or the y component of a vector is greater than the threshold

value the decoder must use the Bilinear filtering method. The field value is converted to a

threshold in ¼ pixel units as follows.

// has a non zero threshold been specified

if (PredictionFilterMvSizeThresh > 0)

{

 FilterMvSizeThresh = (1 << (FilterMvSizeThresh - 1)) << 2

}

// No motion vector length restriction

Else

 FilterMvSizeThresh = ((MAX_MV_EXTENT >> 1) + 1) << 2

PredictionFilterVarThresh. This field is used to specify a prediction block variance

threshold that is used to select between bilinear and bicubic filtering. The threshold is only

tested in cases where bicubic filtering is allowed and the magnitude of both the x and the y

motion vector components is less than the size threshold specified above. A value of zero for

this field indicates that the decoder should not apply a variance threshold test and should use

the bicubic filtering method. In cases where this field is non-zero, bicubic filtering is used if

the measured variance of the prediction block is greater than a threshold number computed as

follows:-

FilterVarThresh = (PredictionFilterMvSizeThresh << 5)

The variance test is applied before filtering to create a fractional pixel prediction block, hence

the prediction block variance is calculated using an 8x8 whole sample aligned region of the

appropriate reconstruction buffer (either the previous frame or golden frame). The whole

sample aligned vectors used to define the top left hand corner of this region are calculated as

follows:-

// Mvshift is 2 for luma blocks and 3 for chroma blocks

WholeSampleAlignedX = (MvX >> MvShift)

WholeSampleAlignedY = (MvY >> MvShift)

For performance reasons the variance calculation does not consider all the points in the

prediction block. Rather it computes the variance based upon 16 sample points (every other

sample in every other row) as illustrated in the following pseudo code.

Var16Point (DataPtr, Stride)

{

 DiffPtr = DataPtr

 XSum = 0

 XXSum = 0

for (i=0; i<4; i+=2)

{

// Examine alternate pixel locations.

XSum += DiffPtr[0]

XXSum += DiffPtr[0] * DiffPtr[0]

XSum += DiffPtr[2]

XXSum += DiffPtr[2] * DiffPtr[2]

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 49

XSum += DiffPtr[4]

XXSum += DiffPtr[4] * DiffPtr[4]

XSum += DiffPtr[6]

XXSum += DiffPtr[6] * DiffPtr[6]

// Step to next row of block.

DiffPtr += (Stride << 1)

}

// Compute population variance as mis-match metric.

return (((XXSum<<4) - XSum*XSum)) >> 8

}

Stride is the distance between corresponding samples in consecutive rows.

It is important to note that the reconstruction buffer must not be filtered in place. The results

of the filtering process must be written to a separate buffer.

11.4.1 Bilinear Filtering

The following 1-D filter taps are used for bilinear filtering to ¼ sample precision in luma.

BilinearLumaFilters[4][2] =

{

 { 128, 0 }, // Full sample aligned

 { 96, 32 }, // 1/4

 { 64, 64 }, // 1/2

 { 32, 96 }, // 3/4

}

The following 1-D filter taps are used for bilinear filtering to
1
/8 sample precision in chroma.

BilinearChromaFilters[8][2] =

{

 { 128, 0 }, // Full sample aligned

 { 112, 16 }, // 1/8

 { 96, 32 }, // 1/4

 { 80, 48 }, // 3/8

 { 64, 64 }, // 1/2

 { 48, 80 }, // 5/8

 { 32, 96 }, // 3/4

 { 16, 112 } // 7/8

}

In cases where the motion vector has a fractional component in both x and y, an intermediate

result is calculated by applying the filter in the x direction (horizontally). This intermediate

result used as input to a second pass which filters in the y direction (vertically) to produce the

final 2-d filtered output.

The results of the filtering process for each point are calculated as follows:

// PixelStep Is the distance between consecutive samples.

// This is 1 when filtering in x

// When filtering in y it is the buffer stride (line length)

OutputVal = (SrcPtr[0] * Filter[0]) + (SrcPtr[PixelStep] * Filter[1]) + 64

OutputVal >>= 7

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 50

11.4.2 Bicubic Filtering

Bicubic filter taps are calculated for 16 values of alpha from -0.25 to -1.00. For each value of

alpha, there are 8 sets of coefficients corresponding to 1/8 pel offsets from 0 to 7/8. These

values are only used in VP6.2 bitstreams. The 17th entry in the table is used for VP6.1

bitstreams.

 BicubicFilterSet[17][8][4] =

 { { 0, 128, 0, 0 }, // Full sample aligned, A ~= -0.25

 { -3, 122, 9, 0 }, // 1/8

 { -4, 109, 24, -1 }, // 1/4

 { -5, 91, 45, -3 }, // 3/8

 { -4, 68, 68, -4 }, // 1/2

 { -3, 45, 91, -5 }, // 5/8

 { -1, 24, 109, -4 }, // 3/4

 { 0, 9, 122, -3 }, // 7/8

 },

 { { 0, 128, 0, 0 }, // A ~= -0.30

 { -4, 124, 9, -1 },

 { -5, 110, 25, -2 },

 { -6, 91, 46, -3 },

 { -5, 69, 69, -5 },

 { -3, 46, 91, -6 },

 { -2, 25, 110, -5 },

 { -1, 9, 124, -4 },

 },

 { { 0, 128, 0, 0 }, // A ~= -0.35

 { -4, 123, 10, -1 },

 { -6, 110, 26, -2 },

 { -7, 92, 47, -4 },

 { -6, 70, 70, -6 },

 { -4, 47, 92, -7 },

 { -2, 26, 110, -6 },

 { -1, 10, 123, -4 },

 },

 { { 0, 128, 0, 0 }, // A ~= -0.40

 { -5, 124, 10, -1 },

 { -7, 110, 27, -2 },

 { -7, 91, 48, -4 },

 { -6, 70, 70, -6 },

 { -4, 48, 92, -8 },

 { -2, 27, 110, -7 },

 { -1, 10, 124, -5 },

 },

 { { 0, 128, 0, 0 }, // A ~= -0.45

 { -6, 124, 11, -1 },

 { -8, 111, 28, -3 },

 { -8, 92, 49, -5 },

 { -7, 71, 71, -7 },

 { -5, 49, 92, -8 },

 { -3, 28, 111, -8 },

 { -1, 11, 124, -6 },

 },

 { { 0, 128, 0, 0 }, // A ~= -0.50

 { -6, 123, 12, -1 },

 { -9, 111, 29, -3 },

 { -9, 93, 50, -6 },

 { -8, 72, 72, -8 },

 { -6, 50, 93, -9 },

 { -3, 29, 111, -9 },

 { -1, 12, 123, -6 },

 },

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 51

 { { 0, 128, 0, 0 }, // A ~= -0.55

 { -7, 124, 12, -1 },

 {-10, 111, 30, -3 },

 {-10, 93, 51, -6 },

 { -9, 73, 73, -9 },

 { -6, 51, 93, -10 },

 { -3, 30, 111, -10 },

 { -1, 12, 124, -7 },

 },

 { { 0, 128, 0, 0 }, // A ~= -0.60

 { -7, 123, 13, -1 },

 {-11, 112, 31, -4 },

 {-11, 94, 52, -7 },

 {-10, 74, 74, -10 },

 { -7, 52, 94, -11 },

 { -4, 31, 112, -11 },

 { -1, 13, 123, -7 },

 },

 { { 0, 128, 0, 0 }, // A ~= -0.65

 { -8, 124, 13, -1 },

 {-12, 112, 32, -4 },

 {-12, 94, 53, -7 },

 {-10, 74, 74, -10 },

 { -7, 53, 94, -12 },

 { -4, 32, 112, -12 },

 { -1, 13, 124, -8 },

 },

 { { 0, 128, 0, 0 }, // A ~= -0.70

 { -9, 124, 14, -1 },

 {-13, 112, 33, -4 },

 {-13, 95, 54, -8 },

 {-11, 75, 75, -11 },

 { -8, 54, 95, -13 },

 { -4, 33, 112, -13 },

 { -1, 14, 124, -9 },

 },

 { { 0, 128, 0, 0 }, // A ~= -0.75

 { -9, 123, 15, -1 },

 {-14, 113, 34, -5 },

 {-14, 95, 55, -8 },

 {-12, 76, 76, -12 },

 { -8, 55, 95, -14 },

 { -5, 34, 112, -13 },

 { -1, 15, 123, -9 },

 },

 { { 0, 128, 0, 0 }, // A ~= -0.80

 {-10, 124, 15, -1 },

 {-14, 113, 34, -5 },

 {-15, 96, 56, -9 },

 {-13, 77, 77, -13 },

 { -9, 56, 96, -15 },

 { -5, 34, 113, -14 },

 { -1, 15, 124, -10 },

 },

 { { 0, 128, 0, 0 }, // A ~= -0.85

 {-10, 123, 16, -1 },

 {-15, 113, 35, -5 },

 {-16, 98, 56, -10 },

 {-14, 78, 78, -14 },

 {-10, 56, 98, -16 },

 { -5, 35, 113, -15 },

 { -1, 16, 123, -10 },

 },

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 52

 { { 0, 128, 0, 0 }, // A ~= -0.90

 {-11, 124, 17, -2 },

 {-16, 113, 36, -5 },

 {-17, 98, 57, -10 },

 {-14, 78, 78, -14 },

 {-10, 57, 98, -17 },

 { -5, 36, 113, -16 },

 { -2, 17, 124, -11 },

 },

 { { 0, 128, 0, 0 }, // A ~= -0.95

 {-12, 125, 17, -2 },

 {-17, 114, 37, -6 },

 {-18, 99, 58, -11 },

 {-15, 79, 79, -15 },

 {-11, 58, 99, -18 },

 { -6, 37, 114, -17 },

 { -2, 17, 125, -12 },

 },

 { { 0, 128, 0, 0 }, // A ~= -1.00

 {-12, 124, 18, -2 },

 {-18, 114, 38, -6 },

 {-19, 99, 59, -11 },

 {-16, 80, 80, -16 },

 {-11, 59, 99, -19 },

 { -6, 38, 114, -18 },

 { -2, 18, 124, -12 },

 },

 {

 { 0, 128, 0, 0 }, // Coefficients for VP6.1 bitstreams

 { -4, 118, 16, -2 },

 { -7, 106, 34, -5 },

 { -8, 90, 53, -7 },

 { -8, 72, 72, -8 },

 { -7, 53, 90, -8 },

 { -5, 34, 106, -7 },

 { -2, 16, 118, -4 }

 }

}

In cases where the motion vector has a fractional component in both x and y, an intermediate

result is calculated by applying the filter in the x direction (horizontally). This intermediate

result used as input to a second pass which filters in the y direction (vertically) to produce the

final 2-d filtered output.

The results of the filtering process for each point are calculated as follows:

// PixelStep Is the distance between consecutive samples.

// This is 1 when filtering in x

// When filtering in y it is the buffer stride (line length)

OutputVal = (SrcPtr[-PixelStep] * Filter[0]) +

 (SrcPtr[0] * Filter[1]) +

 (SrcPtr[PixelStep] * Filter[2]) +

 (SrcPtr[2 * PixelStep] * Filter[3]) + 64

OutputVal >>= 7

// Clip the result the output range 0 to 255.

If (OutputVal < 0)

 OutputVal = 0

Else if (OutputVal > 255)

 OutputVal = 255

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 53

11.5 Support For Unrestricted Motion Vectors

VP6 support the concept of unrestricted motion vectors (UMV). That is, it is legal for a

vector to point to a prediction block that extends beyond the borders of the image. To support

this feature and the playback scaling features of the codec (see Section 2) the reconstruction

buffers are extended by 48 sample points in all directions:-

The buffers are extended by duplicating the edge values 48 times. This is done first in x

(horizontally) and then in the y (vertically).

Figure 13 Extension of the reconstruction buffer to create UMV borders

12 SCAN ORDERS

Scan re-ordering refers to the process of changing the order in which the coefficients of a

DCT transformed block are coded in an attempt to group the non-zero coefficients together at

the beginning of the list.

If we number the 64 coefficients of the 8x8 transformed block in raster order such that

coefficients 0 and 63 are the DC and highest order AC coefficients, respectively, then the

scan re-ordering is specified by a 64 element array which gives the new ordering. In the

bitstream coefficients appear in the modified order, so at the decoder they have to be re-

arranged back to raster order before inverse quantization and IDCT.

Original image

Unrestricted motion vector borders

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 54

12.1 Default Scan Order

The default scan order is the standard zig-zag order shown in Figure 14.

Figure 14 Default zig-zag scan order

The decoder uses the following table to convert back to raster order before applying the

inverse quantizer and IDCT.

default_dequant_table[64] =

{

 0, 1, 8, 16, 9, 2, 3, 10,

 17, 24, 32, 25, 18, 11, 4, 5,

 12, 19, 26, 33, 40, 48, 41, 34,

 27, 20, 13, 6, 7, 14, 21, 28,

 35, 42, 49, 56, 57, 50, 43, 36,

 29, 22, 15, 23, 30, 37, 44, 51,

 58, 59, 52, 45, 38, 31, 39, 46,

 53, 60, 61, 54, 47, 55, 62, 63

 0 1 2 3 4 5 6 7

 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 55

}

12.2 Custom Scan Order

In addition to the default scan orders specified above VP6 supports the use of per frame

custom scan orders. The use of custom scan orders is an encoder decision and is signaled to

the decoder using the ScanOrderUpdateFlag (see Table 17).

If ScanOrderUpdateFlag indicates that there is no custom scan-order for a frame, the scan

order must be reset to the default.

For intra-coded frames the scan order is first set to the appropriate default. This default is

then updated using delta information encoded in the bitstream. For inter-coded frames deltas

are applied to the custom scan order used in the previous frame rather than to the one of the

default scan orders.

In all scan orders the first DCT coefficient is always the DC coefficient.

All references below to specific AC coefficients refer to their position in the standard zig-zag

scan order as shown in Figure 14. For example AC2 would refer to the second AC coefficient

in ziz-zag order that corresponds to coefficient 8 in the original raster order.

Custom scan order updates are read as part of the functional block “Coefficient Probability

Updates” (see Figure 2-Figure 5).

The 63 AC positions (numbered 1 to 63) in the modified scan order are split into 16 bands as

follows:

Band Number Positions

0 1

1 2 to 4

2 5 to 10

3 11 to 12

4 13 to 15

5 16 to 19

6 20 to 21

7 22 to 26

8 27 to 28

9 29 to 34

10 35 to 36

11 37 to 42

12 43 to 48

13 49 to 53

14 54 to 57

15 58 to 63

Table 16 Custom scan order bands

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 56

To specify a custom scan order, each AC coefficient (in zig zag order) is assigned to one of

the above bands. Within each band the coefficients are then sorted into ascending order based

upon the original zig-zag scan order.

For example, if AC7 and AC21 are labeled as belonging to band 3, then AC7 will be assigned

position 11 and AC21 position 12 in the modified scan order.

The following table describes the way custom scan order deltas are coded in the bitstream.

Field Type Notes

ScanOrderUpdateFlag b(1) Indicates whether scan-order update

follows.

63 Sets of:

CoeffBandUpdateFlag B(x) Flag indicating whether the

coefficient’s band has changed

NewCoeffBand b(4) The new band for the coefficient.

Table 17 Scan Order Update

ScanOrderUpdateFlag. Indicates whether or not a set of scan-order updates follow: (1) yes

(0) no.

CoeffBandUpdateFlag. A flag indicating whether or not a coefficient’s band has been

updated: (1) yes (0) no. Present only if ScanOrderUpdateFlag is 1.

NewCoeffBand. 4-bit band specifier for the coefficient. Present only if both

ScanOrderUpdateFlag and CoeffBandUpdateFlag are 1.

The following table gives the probabilities used for decoding CoeffBandUpdateFlag for

each of the AC coefficients in standard zig-zag order.

CoeffBandUpdateFlagProbs[64] =

{

 NA, 132, 132, 159, 153, 151, 161, 170,

 164, 162, 136, 110, 103, 114, 129, 118,

 124, 125, 132, 136, 114, 110, 142, 135,

 134, 123, 143, 126, 153, 183, 166, 161,

 171, 180, 179, 164, 203, 218, 225, 217,

 215, 206, 203, 217, 229, 241, 248, 243,

 253, 255, 253, 255, 255, 255, 255, 255,

 255, 255, 255, 255, 255, 255, 255, 255

}

The first entry in the table is a dummy entry for the DC coefficient. This always appears at

the start of the scan order and is never updated in the bitstream.

13 DCT COEFFICIENT TOKEN SET AND DECODING

Quantized DCT coefficients have a range of twelve bits plus sign (-2048, 2047) and are

represented by the following set of twelve tokens:

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 57

Ind
ex

Token Min Max #Extra
Bits
(incl.
sign)

Arithmetic Encoding the
Extra Bits

0 ZERO_TOKEN 0 0
*

1 ONE_TOKEN 1 1 1 B(128)

2 TWO_TOKEN 2 2 1 B(128)

3 THREE_TOKEN 3 3 1 B(128)

4 FOUR_TOKEN 4 4 1 B(128)

5 DCT_VAL_CATEGORY1 5 6 2 B(159), B(128)

6 DCT_VAL_CATEGORY2 7 10 3 B(165), B(145), B(128)

7 DCT_VAL_CATEGORY3 11 18 4 B(173), B(148), B(140), B(128)

8 DCT_VAL_CATEGORY4 19 34 5 B(176), B(155), B(140), B(135),

B(128)

9 DCT_VAL_CATEGORY5 35 66 6 B(180), B(157), B(141), B(134),

B(130), B(128)

10 DCT_VAL_CATEGORY6 67 2114 12 B(254), B(254), B(243), B(230),

B(196), B(177), B(153), B(140),

B(133), B(129), B(128)

11 DCT_EOB_TOKEN N/A N/A
**

Table 18 Token Set and Extrabits

For each token the min-value represents the smallest value that can be encoded using that

token and the number of extra-bits reflects the range of values that the token can represent,

with the most significant bit of the magnitude sent first followed in turn by each subsequent

less significant bit. The last extrabit encoded is always the sign bit. In the arithmetic encoding

the extra bits are each encoded with differing probabilities as specified by the final column in

table 1. In Huffman encodings these bits are just pumped on to the bitstream.

For example, the token DCT_VAL_CATEGORY3 represents the eight numbers whose

magnitude is in the range (11,18) inclusive. This requires three bits for magnitude, plus one to

indicate sign giving a total of four extra-bits. The value –17 has the four extra-bits

represented by the Hex value 0xD (sign is LSB, magnitude coded as 17-11=6), so is encoded

by the token DCT_VAL_CATEGORY3 followed by the four bits 0xD.

In addition two tokens listed above are sometimes used to decode more than a single

coefficient. The table below describes these uses.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 58

Token Situation Description

ZERO_TOKEN DC when arithmetic

Encoded

The current coefficient has a 0 value.

ZERO_TOKEN DC when Huffman

Encoded

The current coefficient has a 0 value.

Extra bits specify the a run of additional

blocks
*
 within the same plane that also

have a 0 in the DC position.

ZERO_TOKEN AC The current coefficient has a 0 value.

The extrabits specify the number of

subsequent coefficients (following the

same scan order) within the block that

are also 0. (see figure x)

EOB_TOKEN DC Not allowed!

EOB_TOKEN In first AC Coefficient

when Huffman Encoded

Every AC coefficient in the current block

is 0.

Extra bits specify the a run of additional

blocks within the same plane that also

have a 0 for every AC coefficient. (see

figure x)

EOB_TOKEN Anywhere but the first

AC Coefficient when

Huffman Encoded

The current coefficient has a 0 value and

the rest of the coefficients within the

same block in the current scanorder are

also 0.

EOB_TOKEN Any AC coefficient

when Arithmetic

Encoded

The current coefficient has a 0 value and

the rest of the coefficients within the

same block in the current scanorder are

also 0.

Table 19 Special DCT Tokens

*
Blocks are encoded in raster order within a macroblock, and then macroblocks are encoded

in raster order within a video image. Subsequent blocks in Y are ordered as follows:

0 1 4 5

2 3 6 7

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 59

In the arithmetic encoder these tokens can be decoded from the bitstream using a fixed binary

tree (figure 4). The probabilities at each node in the tree are determined contextually

(discussed later in this section) and are stored in tables that are kept by the decoder and may

be updated on a frame by frame basis.

 ZERO_CONTEXT_NODE

EOB_CONTEXT_NODE ONE_CONTEXT_NODE

LOW_VALUE_CONTEXT_NODE

HIGH_LOW_CONTEXT_NODE TWO_CONTEXT_NODE

THREE_CONTEXT_NODE CAT_3_4_CONTEXT_NODE

CAT_5_CONTEXT_NODE

CAT_1_CONTEXT_NODE

CAT_3_CONTEXT_NODE

EOB 0 1

2

3 4 CAT1 CAT2

CAT3 CAT4 CAT5 CAT6

Figure 15 Binary Coding Tree for DC & AC Tokens

The probabilities of taking the left branch (0) at each of these labeled nodes are

stored in the as a single dimensional vector with 11 entries indexed as follows:

Index Node Name

0 ZERO_CONTEXT_NODE

1 EOB_CONTEXT_NODE

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 60

2 ONE_CONTEXT_NODE

3 LOW_VAL_CONTEXT_NODE

4 TWO_CONTEXT_NODE

5 THREE_CONTEXT_NODE

6 HIGH_LOW_CONTEXT_NODE

7 CAT_ONE_CONTEXT_NODE

8 CAT_THREEFOUR_CONTEXT_NODE

9 CAT_THREE_CONTEXT_NODE

10 CAT_FIVE_CONTEXT_NODE

Table 20 DC & AC Coding Tree Node Probability Values

13.1 DCT Token Huffman Tree

In Figure 15 Binary Coding Tree for DC & AC Tokens a tree is specified for decoding DCT

coefficient tokens. This tree along with a set of probabilities which correspond to the

probabilities of taking the 0 branch at each node in the tree is converted to a set of Huffman

probabilities as follows:

Input: NodeProb[] : Set of 11 Node Probabilities.

Output: HuffProb[] : Set of 12 Huffman Probabilities.

DCTTokenBoolTreeToHuffProbs

{

 HuffProb[DCT_EOB_TOKEN] = (NodeProb[0] * NodeProb[1]) >> 8

 HuffProb[ZERO_TOKEN] = (NodeProb[0] * (255 - NodeProb[1])) >> 8

 Prob = 255 - NodeProb[0]

 HuffProb[ONE_TOKEN] = (Prob * NodeProb[2]) >> 8

 Prob = (Prob*(255 - NodeProb[2])) >> 8

 Prob1 = (Prob * NodeProb[3]) >> 8

 HuffProb[TWO_TOKEN] = (Prob1 * NodeProb[4]) >> 8

 Prob1 = (Prob1 * (255 - NodeProb[4])) >> 8

 HuffProb[THREE_TOKEN] = (Prob1 * NodeProb[5]) >> 8

 HuffProb[FOUR_TOKEN] = (Prob1 * (255 - NodeProb[5])) >> 8

 Prob = (Prob * (255 - NodeProb[3])) >> 8

 Prob1 = (Prob * NodeProb[6]) >> 8

 HuffProb[DCT_VAL_CATEGORY1] = (Prob1 * NodeProb[7]) >> 8

 HuffProb[DCT_VAL_CATEGORY2] = (Prob1 * (255 - NodeProb[7])) >> 8

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 61

 Prob = (Prob * (255 - NodeProb[6])) >> 8

 Prob1 = (Prob * NodeProb[8]) >> 8

 HuffProb[DCT_VAL_CATEGORY3] = (Prob1 * NodeProb[9]) >> 8

 HuffProb[DCT_VAL_CATEGORY4] = (Prob1 * (255 - NodeProb[9])) >> 8

 Prob = (Prob * (255 - NodeProb[8])) >> 8

 HuffProb[DCT_VAL_CATEGORY5] = (Prob * NodeProb[10]) >> 8

 HuffProb[DCT_VAL_CATEGORY6] = (Prob * (255 - NodeProb[10])) >> 8

}

13.2 DC Decoding

For Dc the decoder must maintain a 2 dimensional array of probabilities:

DCProbs[2][11]

The first dimension of this array is indexed by colour plane as follows:

Index Description

0 Y colour plane

1 U or V colour plane

Table 21 DC Node Contexts Dimension 1 Index

The second dimension of this array corresponds to one probability for each entry in Table:

DC & AC Coding Tree Node Probability Values.

At each key frame (I frame) every probability value in this array of DC Probabilities is set to

128.

The DCProbs array persists from a keyframe (I Frame) to each subsequent interframe (P

frame).

Updates to this Baseline set of probabilities are made on each frame, and are described in the

bitstream section described in Table 22 DC Coding Tree Plane Probability Updates.

Field

DC Coding Tree Node Updates for Y

DC Coding Tree Node Updates for UV

Table 22 DC Coding Tree Plane Probability Updates

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 62

Field

DC Coding Tree Update for ZERO_CONTEXT_NODE

DC Coding Tree Update for EOB_CONTEXT_NODE

DC Coding Tree Update for ONE_CONTEXT_NODE

DC Coding Tree Update for LOW_VAL_CONTEXT_NODE

DC Coding Tree Update for TWO_CONTEXT_NODE

DC Coding Tree Update for THREE_CONTEXT_NODE

DC Coding Tree Update for HIGH_LOW_CONTEXT_NODE

DC Coding Tree Update for CAT_ONE_CONTEXT_NODE

DC Coding Tree Update for CAT_THREEFOUR_CONTEXT_NODE

DC Coding Tree Update for CAT_THREE_CONTEXT_NODE

DC Coding Tree Update for CAT_FIVE_CONTEXT_NODE

Table 23 DC Coding Tree Node Updates

Field Type Notes

NewNodeProbFlag B(x)

NewNodeProbValue b(7) Only present if NewNodeProbFlag is set

Table 24 DC Coding Tree Update Structure

NewNodeProbFlag. Flag indicating whether a new probability value for the tree node

follows (1) or not (0).

NewNodeProbValue. ½ of the new probability value to be used for tree node. The Tree node

probabilities are always clipped the range 1 to 255, i.e. a value of 0 should be converted to a

1.

VP6_DcUpdateProbs[2][MAX_ENTROPY_TOKENS-1] =

{

 { 146, 255, 181, 207, 232, 243, 238, 251, 244, 250, 249 },

 { 179, 255, 214, 240, 250, 255, 244, 255, 255, 255, 255 }

}

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 63

However, this set of baseline probabilities is not used directly in the token decoding process.

Instead the set of baseline probabilities is converted into a set of 6 separate DC coding trees

that are maintained inside of a 3 dimensional array as follows:

DcNodeContexts[2][3][11]

The first dimension of this array is indexed by colour plane as follows:

Index Description

0 Y colour plane

1 U or V colour plane

Table 25 DC Node Plane

The second dimension of this array includes an index for each of the following situations:

Index Situation

0 Left block’s predicted DC was 0 and above block’s predicted DC was 0

1 Either Left block’s predicted DC is non 0 or above block’s predicted DC is non 0

but not both

2 Both Left block’s predicted and above block’s predicted DCs are non 0

Table 26 DC Node Contexts

The third dimension of this array corresponds to one probability for each entry in Table: DC

& AC Coding Tree Node Probability Values.

The conversion from DCProbs to DcNodeContexts makes use of a set of linear equations

defined by DcNodeEqs. The equations for these lines are stored in slope + constant format

as follows:

DcNodeEqs[5][3][2] =

{

 { { 122, 133 },{ 133, 51 },{ 142, -16 } }, // Zero Node

 { { 0, 1 },{ 0, 1 },{ 0, 1 } }, // UNUSED DUMMY

 { { 78, 171 },{ 169, 71 },{ 221, -30 } }, // One Node

 { { 139, 117 },{ 214, 44 },{ 246, -3 } }, // Low Val Node

 { { 168, 79 },{ 210, 38 },{ 203, 17 } }, // Two Node (2,3 or 4)

}

The first dimension of this array corresponds to the first 5 nodes of the table Table 20 DC &

AC Coding Tree Node Probability Values. Note: Only the first 5 nodes of the tree have a

linear equation applied to them, the remaining use the probability as transmitted in the

bitstream.

The second dimension of the array corresponds to one of the DC Node Contexts described in

table X.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 64

The third dimension of the array corresponds to the following indices:

Index Situation

0 Slope of a linear equation

1 Constant of linear equation

Table 27 DCNodeEqs Dimension 3

The conversion from DcProbs to DcNodeContext is described in the following pseudo code:

// DC Node Probabilities

for (Plane=0; Plane<2; Plane++)

{

 for (i=0; i<3; i++)

 {

 // Tree Nodes

 for (Node=0; Node<5; Node++)

 {

 Temp = ((DcProbs[Plane][Node] *

 DcNodeEqs[Node][i][0]+ 128) >> 8) +

 DcNodeEqs[Node][i][1];

 Temp = (Temp > 255)? 255: Temp

 Temp = (Temp < 1)? 1 : Temp

 DcNodeContexts[Plane][i][Node] = (UINT8)Temp

 }

 for (Node=5; Node<11; Node++)

 {

 DcNodeContexts[Plane][i][Node] = DcProbs[Plane][Node]

 }

 }

}

13.2.1 Arithmetic Decoding DC Coefficient

To decode an arithmetically encoded DC value the probability tree given in Figure 15 is used

with node probabilities from DcNodeContexts using the given plane and DC context. At

each node, if the value decoded from the bitstream is 0 then the left branch is followed,

otherwise the right branch is followed. This process is repeated until a leaf node is reached

which defines a decoded token. Finally, the corresponding set of extrabits is read for that

token.

ContPtr = DcNodeContexts[Plane][Context]

if (!B(ContPtr[ZERO_CONTEXT_NODE]))

 Dc = 0

else

{

 if (B(ContPtr[ONE_CONTEXT_NODE]))

 {

 if (B(ContPtr[LOW_VAL_CONTEXT_NODE]))

 {

 if (B(ContPtr[HIGH_LOW_CONTEXT_NODE]))

 {

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 65

 if (B(ContPtr[CAT_THREEFOUR_CONTEXT_NODE]))

 if(B(ContPtr[CAT_FIVE_CONTEXT_NODE])

 token = DCT_VAL_CATEGORY6

 else

 token = DCT_VAL_CATEGORY5

 else

 if(B(ContPtr[CAT_THREE_CONTEXT_NODE]))

 token = DCT_VAL_CATEGORY4

 else

 token = DCT_VAL_CATEGORY3

 }

 else

 {

 if(B(ContPtr[CAT_ONE_CONTEXT_NODE])

 token = DCT_VAL_CATEGORY2

 else

 token = DCT_VAL_CATEGORY1

 }

 value = TokenSetExtrabits[token].Min

 BitsCount = TokenSetExtrabits[token].ExtraBits - 1

 do

 {

 value += B(TokenSetExtrabits[token].Probs[BitsCount])

 <<BitsCount)

 BitsCount --

 }

 while(BitsCount >= 0)

 SignBit = b(1)

 Dc = ((value ^ -SignBit) + SignBit)

 }

 else

 {

 if (B(ContPtr[TWO_CONTEXT_NODE]))

 {

 if (B(ContPtr[THREE_CONTEXT_NODE]))

 token = FOUR_TOKEN

 else

 token = THREE_TOKEN

 }

 else

 {

 token = TWO_TOKEN

 }

 SignBit = b(1)

 Dc = ((token ^ -SignBit) + SignBit)

 }

 }

 else

 {

 SignBit = b(1)

 Dc =((1 ^ -SignBit) + SignBit)

 }

}

This code uses a nomenclature TokenSetExtrabits[row].Field which is a direct translation of

Table 18 Token Set and Extrabits. Field Probs refers to an array made from concatenating

the choices in field Arithmetic Encoding the Extra Bits, Min refers to the min field in the

table, and extra bits referes to the field marked # of extrabits.

Note : Decoding the dc requires that the contextual information regarding whether the blocks

immediately to the left of and above the current block have 0 or non 0 dc values.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 66

The EOB token is explicitly forbidden from occurring in the DC position so there is no need

to encode the decision that differentiates between EOB and 0, the token may immediately be

assumed to be the ZERO_TOKEN.

13.2.2 Huffman Decoding DC Values

If Huffman coding of the DC tokens has been used then the function ConvertBoolTrees is

used to produce the Huffman decoding tree directly from the BoolCoder tree DCProb[2][20].

The result is stored as a set of probabilities for the dc in :

DcHuffProbs[2][12]

The first dimension of this array is indexed in the same way as Table 25 DC Node Plane.

The second dimension of this array is indexed by the token index as in Table 18 Token Set

and Extrabits.

These probabilities are then converted into a standard Huffman tree and are stored into the

array:

DcHuffTree[2]

The first dimension of this array is indexed in the same way as Table 25 DC Node Plane.

It should be noted that a 0 in the DC position when huffman encoded is accompanied by

extrabits that specify the number of additional blocks
*
 within the same plane that also have a

0 in the DC position.

Pseudo Code for decoding DC in a given plane (Y or UV) follows:

if (CurrentDcRunLen[Plane] > 0)

{

 -- CurrentDcRunLen[Plane]

}

else

{

 token = DecodeBitsUsingHuffman(DcHuffTree[Plane])

 value = TokenSetExtrabits[token].Min

 if(token == ZERO_TOKEN)

 {

 Decode DC Zero Run as per 13.4 Decoding Huffman EOB and DC 0 Runs

 CurrentDcRunLen[Plane] = DC Run Length

 }

 else

 {

 if(token <=FOUR_TOKEN)

 {

 SignBit = R(1)

 }

 else if(token <=DCT_VAL_CATEGORY5)

 {

 value += R(token-4)

 SignBit = R(1)

 }

 else

 {

 value += R(11)

 SignBit = R(1)

 }

 Dc = ((value ^ -SignBit) + SignBit)

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 67

 }

}

13.3 AC Decoding

To decode ac coefficients the decoder must maintain a 4 dimensional set of probabilities:

AcProbs[2][3][6][11]

At each key frame (I frame) every probability value in this array of AC Probabilities is set to

128. The ACProbs array persists from a keyframe (I Frame) to each subsequent interframe (P

frame).

The first dimension of the AcProbs is indexed by the plane that the block we are encoding is

in as follows:

Index Description

0 Y colour plane

1 U or V colour plane

Table 28 AC Prob Plane Index

The second Dimension of the AcProbs is indexed by the following context situations:

Index Situation

0 preceding decoded coefficient (in current scan order) for the current block was 0

1 preceding decoded coefficient (in current scan order) for the current block was 1

2 preceding decoded coefficient (in current scan order) for the current block was

greater than 1

Table 29 AC Prob Prec Index

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 68

The third dimension of the AcProbs is indexed by the band that the coefficient is in as follows

Index Situation

0 Coefficient 1

1 Coefficients 2 – 4

2 Coefficients 5 – 10

3 Coefficients 11 – 21

4 Coefficients 22 – 36

5 Coefficients 37 – 63

Table 30 AC Prob Band Index

The fourth dimension of AcProbs is indexed by the context nodes as Table 20 DC & AC

Coding Tree Node Probability Values.

This entire table is updateable in the bitstream as follows:

Field

Ac Coding Tree Plane Updates for Preceding Case 0

Ac Coding Tree Plane Updates for Preceding Case 1

Ac Coding Tree Plane Updates for Preceding Case 2

Table 31 Plane AC Coding Tree Probability Updates

Field

AC Coding Tree Band Updates for Y

AC Coding Tree Band Updates for UV

Table 32 Plane AC Coding Tree Plane Probability Updates

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 69

Field

AC Coding Tree Updates for Band 0

AC Coding Tree Updates for Band 1

AC Coding Tree Updates for Band 2

AC Coding Tree Updates for Band 3

AC Coding Tree Updates for Band 4

AC Coding Tree Updates for Band 5

Table 33 AC Coding Tree Band Probability Updates

Field

AC Coding Tree Update for ZERO_CONTEXT_NODE

AC Coding Tree Update for EOB_CONTEXT_NODE

AC Coding Tree Update for ONE_CONTEXT_NODE

AC Coding Tree Update for LOW_VAL_CONTEXT_NODE

AC Coding Tree Update for TWO_CONTEXT_NODE

AC Coding Tree Update for THREE_CONTEXT_NODE

AC Coding Tree Update for HIGH_LOW_CONTEXT_NODE

AC Coding Tree Update for CAT_ONE_CONTEXT_NODE

AC Coding Tree Update for CAT_THREEFOUR_CONTEXT_NODE

AC Coding Tree Update for CAT_THREE_CONTEXT_NODE

AC Coding Tree Update for CAT_FIVE_CONTEXT_NODE

Table 34 AC Coding Tree Node Probability Updates

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 70

Field Type Notes

NewNodeProbFlag B(x) See lookup table AcUpdateProbs

NewNodeProbValue b(7) Only present if NewNodeProbFlag is set

Table 35 AC Coding Tree Update

The following table is a look up table that defines the probability to use when arithmetically

decoding the bit NewNodeProbFlag from the Table 34 AC Coding Tree Node Probability

Updates:

AcUpdateProbs[3][2][6][11] =

{

 { // preceded by 0

 {

 { 227, 246, 230, 247, 244, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 209, 231, 231, 249, 249, 253, 255, 255, 255 },

 { 255, 255, 225, 242, 241, 251, 253, 255, 255, 255, 255 },

 { 255, 255, 241, 253, 252, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 248, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 },

 {

 { 240, 255, 248, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 240, 253, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 },

 },

 { // preceded by 1

 {

 { 206, 203, 227, 239, 247, 255, 253, 255, 255, 255, 255 },

 { 207, 199, 220, 236, 243, 252, 252, 255, 255, 255, 255 },

 { 212, 219, 230, 243, 244, 253, 252, 255, 255, 255, 255 },

 { 236, 237, 247, 252, 253, 255, 255, 255, 255, 255, 255 },

 { 240, 240, 248, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 },

 {

 { 230, 233, 249, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 238, 238, 250, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 248, 251, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 },

 },

 { // preceded by > 1

 {

 { 225, 239, 227, 231, 244, 253, 243, 255, 255, 253, 255 },

 { 232, 234, 224, 228, 242, 249, 242, 252, 251, 251, 255 },

 { 235, 249, 238, 240, 251, 255, 249, 255, 253, 253, 255 },

 { 249, 253, 251, 250, 255, 255, 255, 255, 255, 255, 255 },

 { 251, 250, 249, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 },

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 71

 {

 { 243, 244, 250, 250, 255, 255, 255, 255, 255, 255, 255 },

 { 249, 248, 250, 253, 255, 255, 255, 255, 255, 255, 255 },

 { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 },

 },

 },

}

The first dimension of this table is indexed by the values in Table 29 AC Prob Prec Index.

The second dimension is indexed by the Table 28 AC Prob Plane Index.

The third dimension is indexed by the Table 30 AC Prob Band Index.

The fourth dimension of this array corresponds to one probability for each entry in Table 20

DC & AC Coding Tree Node Probability Values.

13.3.1 Decoding Arithmetic Encoded AC Coefficients

Decoding AC requires all 4 pieces of contextual information listed above ; whether the

preceding coefficient in the block was 0, 1 or > 1, what plane the block is in, and the band of

the current coefficient. The set of probabilities that correspond to these 4 pieces of context

stored in ACProbs act as the binary decoding node probabilities for decoding an AC tokens

using the tree given in Figure 15.

At each node, if the value decoded from the bitstream is 0 then the left branch is followed,

otherwise the right branch is followed. This process is repeated until a leaf node is reached

which defines a decoded token. Finally, the corresponding set of extrabits is read for that

token.

Note: the decoded value of the DC coefficient is used as contextual information for the first

AC coefficient.

If a ZERO_TOKEN is encountered in AC it is followed by a run of zeros that is coded using

using the BoolCoder according to Section 7.3.

If the previously decoded AC token in the block was the ZERO_TOKEN then the next token

to be decoded can be neither ZERO_TOKEN nor EOB_TOKEN. In this case the first

decision in the tree is not required to be decoded, we can implicitly assume that the

ZERO_CONTEXT_NODE decision is a 1.

Following is pseudocode for decoding AC coefficients of a block using the arithmetic

encoder.

Set CoeffData to 64 0’s

if(dc == 0)

 Prec = 0

Else if (dc == 1)

 Prec = 1

Else

 Prec = 2

EncodedCoeffs = 1

do

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 72

{

 ProbPtr = AcUpdateProbs[Prec][Plane][ACProbBand[encodedCoeffs]]

 if ((EncodedCoeffs > 1) && (Prec == 0))

 ThisTokeNonZero = TRUE

 else

 ThisTokeNonZero = B(ProbPtr[ZERO_CONTEXT_NODE])

 if (!ThisTokeNonZero)

 {

 if (B(ProbPtr[EOB_CONTEXT_NODE]))

 Prec = 0

 else

 {

 EncodedCoeffs++

 break

 }

 // Decode Zero Run Count

 EncodedCoeffs += ZeroRunCount

 }

 else

 {

 if (B(ProbPtr[ONE_CONTEXT_NODE]))

 {

 Prec = 2

 if (B(ProbPtr[LOW_VAL_CONTEXT_NODE]))

 {

 if (B(ProbPtr[HIGH_LOW_CONTEXT_NODE]))

 if (B(ProbPtr[CAT_THREEFOUR_CONTEXT_NODE]))

 token = DCT_VAL_CATEGORY5 +

 B(ProbPtr[CAT_FIVE_CONTEXT_NODE])

 else

 token = DCT_VAL_CATEGORY3 +

 B(ProbPtr[CAT_THREE_CONTEXT_NODE])

 else

 token = DCT_VAL_CATEGORY1 +

 (ProbPtr[CAT_ONE_CONTEXT_NODE])

 value = TokenSetExtrabits [token].Min

 BitsCount = TokenSetExtrabits [token].Length

 do

 {

 value += (B(TokenSetExtrabits[token].Probs[BitsCount])

 <<BitsCount)

 BitsCount --

 }

 while(BitsCount >= 0)

 SignBit = b(1)

 CoeffData[EncodedCoeffs]] = (value ^ -SignBit) + SignBit

 }

 else

 {

 if (B(ProbPtr[TWO_CONTEXT_NODE]))

 token = THREE_TOKEN + B(ProbPtr[THREE_CONTEXT_NODE])

 else

 token = TWO_TOKEN

 SignBit = b(1)

 CoeffData[EncodedCoeffs] =(token ^ -SignBit) + SignBit

 }

 }

 else

 {

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 73

 Prec = 1

 SignBit = b(1)

 CoeffData[EncodedCoeffs] = (1 ^ -SignBit) + SignBit

 }

 EncodedCoeffs ++

 }

} while (EncodedCoeffs < BLOCK_SIZE)

EncodedCoeffs --

Finished:

13.3.2 Decoding Huffman Encoded AC Coefficients

One complication for decoding Huffman coefficients is that if an EOB token is encountered

in ac coefficient 1 extra bits are used to specify the number of additional blocks within the

same plane that also have a 0 for every AC coefficient. (see 13 DCT Coefficient Token Set)

Decoding Huffman encoded AC coefficients requires the use of 24 sepearate Huffman trees

stored in a 3 dimensional array:

AcHuffTree[2][3][4]

The first dimension of the AcProbs is indexed by the plane that the block we are encoding is

see Table 28 AC Prob Plane Index.

The second Dimension of the AcProbs is indexed by Table 29 AC Prob Prec Index

The third dimension of the AcProbs is indexed by the band that the coefficient is in as

follows:

Index Situation

0 Coefficient 1

1 Coefficients 2 – 4

2 Coefficients 5 – 10

3 Coefficients 11 – 63

Table 36 AC Huffman Prob Band Index

These trees are derived from the probabilities in AcProbs[2][3][0-3][11] the first 4 bands of

ACProbs using the as follows:

// AC

for (Prec = 0; Prec < 3; Prec++)

{

 for (Plane = 0; Plane < 2; Plane++)

 {

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 74

 for (Band = 0; Band < 4; Band++)

 {

 BoolTreeToHuffCodes (AcProbs[Plane][Prec][Band],

 AcHuffProbs[Prec][Plane][Band])

 BuildHuffTree (AcHuffTree[Prec][Plane][Band],

 AcHuffProbs[Prec][Plane][Band], 12)

 }

 }

}

Once these Huffman trees have been created, coefficients are decoded using the following

pseudo code:

Set CoeffData to 64 0’s

if(dc == 0)

 Prec = 0

Else if (dc == 1)

 Prec = 1

Else

 Prec = 2

EncodedCoeffs = 1

if (CurrentAc1RunLen[Plane] > 0)

{

 -- CurrentAc1RunLen[Plane]

 goto Finished

}

do

{

 Band = VP6_CoeffToHuffBand[EncodedCoeffs]

 token = DecodeBitsUsingHuffman (AcHuffTree[Prec][Plane][Band])

 value = TokenSetExtrabits [token].Min

 if(token == ZERO_TOKEN)

 {

 // Huffman Decode Zero Run Length

 Prec =0

 EncodedCoeffs += ZeroRun Length

 continue

 }

 if(token == DCT_EOB_TOKEN)

 {

 if (EncodedCoeffs == 1)

 {

 // Decode DCT EOB Run as per 13.4

 CurrentAc1RunLen[Plane] = EOB Token Run - 1

 }

 goto Finished;

 }

 if(token <=FOUR_TOKEN)

 SignBit = R(1)

 else if(token <=DCT_VAL_CATEGORY5)

 {

 value += R((token-4))

 SignBit = R(1)

 }

 else

 {

 value += R(11)

 SignBit = R(1)

 }

 CoeffData[EncodedCoeffs] = (value ^ -SignBit) + SignBit

 Prec = (value>1)? 2 : 1

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 75

 EncodedCoeffs ++

} while (EncodedCoeffs < 64)

EncodedCoeffs—-

Finished:

13.3.3 Decoding AC Zero Runs

To decode zero runs the decoder must maintain a 2 dimensional set of probabilities:

ZeroRunProbs[2][14].

Figure 16 AC Zero run length binary tree

The first dimension of the ZeroRun Probs is indexed by the band that the zero coefficient

starts in as follows

Index Coefficients

>4

>2 >8

>6 >8 >1 >3

>5 >7

5 6 7 8

1 2 3 4

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 76

0 Coefficients 1-5

1 Coefficients 6 – 63

Table 37 ZRL Band Index

The second dimension of the probability table is indexed by the node within Figure

16 AC Zero run length binary tree or the bit within the extrabits encoded if the run

length value is > 8 as follows:

Index Run Length

0 Probability of Run Length > 4

1 Probability of Run Length > 2

2 Probability of Run Length > 1

3 Probability of Run Length > 3

4 Probability of Run Length > 8

5 Probability of Run Length > 6

6 Probability of Run Length > 5

7 Probability of Run Length > 7

8 Probability of bit (Run Length -9) & 1

9 Probability of bit ((Run Length – 9) >> 1) & 1

10 Probability of bit ((Run Length – 9) >> 2) & 1

11 Probability of bit ((Run Length – 9) >> 3) & 1

12 Probability of bit ((Run Length – 9) >> 4) & 1

13 Probability of bit ((Run Length – 9) >> 5) & 1

Table 38 ZRL Node Index

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 77

Updates to ZeroRunProbs appear in the bitstream in the following order.

Field

Updates to ZeroRunNodes for ZRL band 0

Updates to ZeroRunNodes for ZRL band 1

Table 39 Updates to ZRL Probabibilities Band

Field

Updates to ZeroRunNode Probability of Run Length > 4

Updates to ZeroRunNode Probability of Run Length > 2

Updates to ZeroRunNode Probability of Run Length > 1

Updates to ZeroRunNode Probability of Run Length > 3

Updates to ZeroRunNode Probability of Run Length > 8

Updates to ZeroRunNode Probability of Run Length > 6

Updates to ZeroRunNode Probability of Run Length > 5

Updates to ZeroRunNode Probability of Run Length > 7

Updates to ZeroRunNode Probability of bit (Run Length -9) & 1

Updates to ZeroRunNode Probability of bit ((Run Length – 9) >> 1) & 1

Updates to ZeroRunNode Probability of bit ((Run Length – 9) >> 2) & 1

Updates to ZeroRunNode Probability of bit ((Run Length – 9) >> 3) & 1

Updates to ZeroRunNode Probability of bit ((Run Length – 9) >> 4) & 1

Updates to ZeroRunNode Probability of bit ((Run Length – 9) >> 5) & 1

Table 40 Updates to ZeroRunNodes

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 78

Field Type Notes

NewNodeProbFlag B(x) See lookup table ZRLUpdateProbs

NewNodeProbValue b(7) Only present if NewNodeProbFlag is set

Table 41 Updates to ZeroRunNode Probability

The probability used for decoding zrl probabilities node field NewNodeProbFlag is

determined from the following table.

ZrlUpdateProbs[2][14] =

{

 { 219, 246, 238, 249, 232, 239, 249, 255, 248, 253, 239, 244, 241, 248 },

 { 198, 232, 251, 253, 219, 241, 253, 255, 248, 249, 244, 238, 251, 255 },

}

This table’s first dimension is indexed by Table 37 ZRL Band Index

The second dimension is indexed by Table 38 ZRL Node Index.

At each key frame (I frame) every probability value in this array of AC Probabilities is set to

the multidimensional array ZeroRunProbDefaults.

ZeroRunProbDefaults[2][14] =

{

 { 198, 197, 196, 146, 198, 204, 169, 142, 130, 136, 149, 149, 191, 249 },

 { 135, 201, 181, 154, 98, 117, 132, 126, 146, 169, 184, 240, 246, 254 },

}

This table’s first dimension is indexed by Table 37 ZRL Band Index

The second dimension is indexed by Table 38 ZRL Node Index

The ACProbs array persists from a keyframe (I Frame) to each subsequent interframe (P

frame).

13.3.3.1 Decoding AC Zero Runs in the Arithmetic Encoder

If a ZERO_TOKEN is encountered in AC it is followed by a run of zeros that is coded using

using the BoolCoder according to the tree shown in Figure 16. If a run length greater than

eight is indicated, then the run length minus nine is encoded using six-bits, least significant

bit first.

The algorithm for decoding the zero run is demonstrated in the following pseudo code:

// Select the appropriate Zero run context

ZeroRunProbPtr = pbi->ZeroRunProbs[ZrlBand[pos]]

// Now decode the zero run length

// Run lenght 1-4

if (!B(ZeroRunProbPtr[0]))

{

 if (!B(ZeroRunProbPtr[1]))

 ZeroRunCount = 1 + B(ZeroRunProbPtr[2])

 else

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 79

 ZeroRunCount = 3 + B(ZeroRunProbPtr[3])

}

// Run length 5-8

else if (!B(ZeroRunProbPtr[4]))

{

 if (!B(ZeroRunProbPtr[5]))

 ZeroRunCount = 5 + B(ZeroRunProbPtr[6])

 else

 ZeroRunCount = 7 + B(ZeroRunProbPtr[7])

}

// Run length > 8

else

{

 ZeroRunCount = B(ZeroRunProbPtr[8])

 ZeroRunCount += B(ZeroRunProbPtr[9]) << 1

 ZeroRunCount += B(ZeroRunProbPtr[10]) << 2

 ZeroRunCount += B(ZeroRunProbPtr[11]) << 3

 ZeroRunCount += B(ZeroRunProbPtr[12]) << 4

 ZeroRunCount += B(ZeroRunProbPtr[13]) << 5

 ZeroRunCount += 9

}

13.3.3.2 Decoding Huffman AC Zero Runs

To decode Huffman zero runs the decoder must maintain 2 zero run Huffman trees:

ZeroHuffTree[2].

The following tree is specified for decoding run lengths of zeros at DC position and EOB

tokens at the first AC position. This is converted to a set of Huffman probabilities as follows:

Input: NodeProb[] : Set of 8 Node Probabilities.

Output: HuffProb[] : Set of 9 Huffman Probabilities.

ZRLBoolTreeToHuffProbs

{

 Prob = (NodeProb[0] * NodeProb[1]) >> 8

 HuffProb[0] = (Prob * NodeProb[2]) >> 8

 HuffProb[1] = (Prob * (255 - NodeProb[2])) >> 8

 Prob = (NodeProb[0] * 255 - NodeProb[1])) >> 8

 HuffProb[2] = (Prob * NodeProb[3]) >> 8

 HuffProb[3] = (Prob * 255 - NodeProb[3])) >> 8

 Prob = (255 - NodeProb[0]) * NodeProb[4]) >> 8

 Prob = (Prob * NodeProb[5]) >> 8

 HuffProb[4] = (Prob * NodeProb[6]) >> 8

 HuffProb[5] = (Prob * 255 - NodeProb[6])) >> 8

 Prob = ((255 - NodeProb[0]) * NodeProb[4]) >> 8

 Prob = (Prob * (255 - NodeProb[5])) >> 8

 HuffProb[6] = (Prob * NodeProb[7]) >> 8

 HuffProb[7] = (Prob * (255 - NodeProb[7])) >> 8

 Prob = ((255 - NodeProb[0]) * (255 - NodeProb[4])) >> 8

 HuffProb[8] = Prob

}

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 80

These trees are converted from the trees ZeroRunProb in Section 13.3.3 Decoding AC

Zero Runs via the following pseudocode.

for (i = 0; i < ZRL_BANDS; i++)

{

 ZRLBoolTreeToHuffCodes(ZeroRunProbs[i], ZeroHuffProbs[i])

 VP6_BuildHuffTree (ZeroHuffTree[i], ZeroHuffProbs[i])

}

These trees are then used to decode zero runs through generic Huffman decoding as is

demonstrated below:

// Read zero run-length

ZrlBand = ZrlBand[EncodedCoeffs]

ZrlToken = DecodeBitsUsingHuffman (ZeroHuffTree[ZrlBand])

if (ZrlToken<8)

 EncodedCoeffs += ZrlToken

else

 EncodedCoeffs += 8 + R(6)

13.4 Decoding Huffman EOB and DC 0 Runs

To decode Huffman EOB Runs use the Tree shown in Figure 17 Huffman EOB Run

Lengths and Huffman DC 0 Run Lengths.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 81

Figure 17 Huffman EOB Run Lengths

If the result of decoding is 11 then six additional bits are decoded and added to the 11 to give

a final EOB run of between 11 and 75.

The decoding of the AC1 EOB run and DC0 run count is demonstrated via this pseudo code:

EOBRunCount = 1 + R(2)

if (EOBRunCount == 3)

 EOBRunCount += R(2)

else if (EOBRunCount == 4)

 if (R(1))

 EOBRunCount = 11 + R(6)

 else

 EOBRunCount = 7 + R(2)

14 DC PREDICTION

The DC coefficient for a block is reconstructed by adding together a prediction value and a

prediction error. The prediction error is encoded in the bitstream and decoded as described in

Section 13.2. The prediction value is computed from the DC values of neighboring blocks in

the current frame that have already been decoded.

>2

>6

2 1

>1

>5 >3

>4

3 4 5 6 >9 >7

>8

7 8 9 10

>10

11

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 82

For a particular block the DC values of up to two particular immediate neighbors contribute

to the prediction. The two blocks concerned are the blocks immediately to the left of and

immediately above the current block.

The DC value of a neighboring block only contributes to the prediction of the DC value for a

particular block if all of the following conditions are satisfied:

• The neighboring block exists; there is no left neighbor for blocks at the left edge and

no above neighbor for blocks at the top edge of the frame,

• The neighboring block was predicted from the same reference frame as the block

being predicted (last frame reconstruction or golden frame),

• Inter-coded blocks can only be predicted by neighboring inter-coded blocks and

intra-coded blocks can only be predicted by neighboring intra-coded blocks.

There are three scenarios:

• If both neighboring blocks are available the prediction is computed as the arithmetic

average of their DC values, truncated towards zero (values may be negative),

• If only one neighboring block is available, its DC value is used as the predictor,

• If neither neighboring block is available, the last decoded DC value for a block

predicted from the same reference frame is used as the predictor. At the beginning of

each frame this last decoded DC value is set to zero for each prediction frame type.

This is summarized in the following table:

Left

Available

Above

Available

Predictor

NO NO Last decoded DC value for a block with the same

prediction frame

NO YES A

YES NO L

YES YES (L + A + Sign(L+A)) / 2

15 INVERSE QUANTIZATION

Each motion predicted 8x8 block (see Section 11) of a video frame is transformed by the

encoder to a set of 64 coefficients via the discrete cosine transform. These 64 coefficients are

then quantized by means of 2 separate uniform scalar quantizers : 1 for the DC coefficient,

and 1 for all 63 of the AC coefficients.

Reversing the uniform scalar quantizer involves performing integer multiplication on each of

its 64 coefficients. The quantization value (multiplicand) for DC is determined by indexing

the table DcQuantizationTable by the value DctQMask (from table Table 1). Likewise the

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 83

Ac quantization value is determined by indexing the table AcQuantization Table by the value

DctQMask .

DcQuantizationTable[64] =

{

 188, 188, 188, 188, 180, 172, 172, 172,

 172, 172, 168, 164, 164, 160, 160, 160,

 160, 140, 140, 140, 140, 132, 132, 132,

 132, 128, 128, 128, 108, 108, 104, 104,

 100, 100, 96, 96, 92, 92, 76, 76,

 76, 76, 72, 72, 68, 64, 64, 64,

 64, 64, 60, 44, 44, 44, 40, 40,

 36, 32, 28, 20, 12, 12, 8, 8
}

ACQuantizationTable[64] =

{

 376, 368, 360, 352, 344, 328, 312, 296,

 280, 264, 248, 232, 216, 212, 208, 204,

 200, 196, 192, 188, 184, 180, 176, 172,

 168, 160, 156, 148, 144, 140, 136, 132,

 128, 124, 120, 116, 112, 108, 104, 100,

 96, 92, 88, 84, 80, 76, 72, 68,

 64, 60, 56, 52, 48, 44, 40, 36,

 32, 28, 24, 20, 16, 12, 8, 4

}

This dequantization process is described in the following pseudo code.

CoeffData[0] *= DcQuantizationTable[DctQMask]

for(i=1;i<63;i++)

 CoeffData[i] *= AcQuantizationTable[DctQMask]

16 INVERSE DCT TRANSFORM

Inversing the DCT requires that the coefficients have been placed back in raster order (not

zig-zag or custom scan order as described in Section 12). A non standard fixed point integer

inverse discrete cosine transform with 14 bits of precision is used to convert the coefficients

back to pixels or pixel difference values. This transform is based upon the paper by M.

Vetterli, A. Ligtenberg “ A Discrete Fourier-Cosine Transform Chip” IEEE Journal on

Selected Areas of Communications, Vol. SAC-4 No.1 Jan. 1986, pp 49-61.

The following pseudo-code implements the functionality

#define xC1S7 64277

#define xC2S6 60547

#define xC3S5 54491

#define xC4S4 46341

#define xC5S3 36410

#define xC6S2 25080

#define xC7S1 12785

ip = SourceData

op = IntermediateData

for (loop=0; loop<8; loop++)

{

 _A = ((xC1S7 * ip[1])>>16) + ((xC7S1 * ip[7])>>16)

 _B = ((xC7S1 * ip[1])>>16) - ((xC1S7 * ip[7])>>16)

 _C = ((xC3S5 * ip[3])>>16) + ((xC5S3 * ip[5])>>16)

 _D = ((xC3S5 * ip[5])>>16) – ((xC5S3 * ip[3])>>16)

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 84

 _Ad = ((xC4S4 * (_A - _C))>>16)

 _Bd = ((xC4S4 * (_B - _D))>>16)

 _Cd = _A + _C

 _Dd = _B + _D

 _E = ((xC4S4 * (ip[0] + ip[4]))>>16)

 _F = ((xC4S4 * (ip[0] - ip[4]))>>16)

 _G = ((xC2S6 * ip[2])>>16) + ((xC6S2 * ip[6])>>16)

 _H = ((xC6S2 * ip[2])>>16) – ((xC2S6 * ip[6])>>16)

 _Ed = _E - _G

 _Gd = _E + _G

 _Add = _F + _Ad

 _Bdd = _Bd - _H

 _Fd = _F - _Ad

 _Hd = _Bd + _H

 op[0] = _Gd + _Cd

 op[7] = _Gd - _Cd

 op[1] = _Add + _Hd

 op[2] = _Add - _Hd

 op[3] = _Ed + _Dd

 op[4] = _Ed - _Dd

 op[5] = _Fd + _Bdd

 op[6] = _Fd - _Bdd

 ip += 8

 op+=8

}

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 85

ip = IntermediateData

op = OutputData

for (loop=0; loop<8; loop++)

{

 _A = ((xC1S7 * ip[1*8])>>16) + ((xC7S1 * ip[7*8])>>16)

 _B = ((xC7S1 * ip[1*8])>>16) - ((xC1S7 * ip[7*8])>>16)

 _C = ((xC3S5 * ip[3*8])>>16) + ((xC5S3 * ip[5*8])>>16)

 _D = ((xC3S5 * ip[5*8])>>16) – ((xC5S3 * ip[3*8])>>16)

 _Ad = ((xC4S4 * (_A - _C))>>16)

 _Bd = ((xC4S4 * (_B - _D)>>16)

 _Cd = _A + _C

 _Dd = _B + _D

 _E = ((xC4S4 * (ip[0] + ip[4*8]))>>16)

 _F = ((xC4S4 * (ip[0] - ip[4*8]))>>16)

 _G = ((xC2S6 * ip[2*8])>>16) + ((xC6S2 * ip[6*8])>>16)

 _H = ((xC6S2 * ip[2*8])>>16) – ((xC2S6 * ip[6*8])>>16)

 _Ed = _E - _G

 _Gd = _E + _G

 _Add = _F + _Ad

 _Bdd = _Bd - _H

 _Fd = _F - _Ad

 _Hd = _Bd + _H

 op[0*8] = ((_Gd + _Cd) >> 4)

 op[7*8] = ((_Gd - _Cd) >> 4)

 op[1*8] = ((_Add + _Hd) >> 4)

 op[2*8] = ((_Add - _Hd) >> 4)

 op[3*8] = ((_Ed + _Dd) >> 4)

 op[4*8] = ((_Ed - _Dd) >> 4)

 op[5*8] = ((_Fd + _Bdd) >> 4)

 op[6*8] = ((_Fd - _Bdd) >> 4)

 ip++ // next column

 op++

}

17 FRAME RECONSTRUCTION

Frame reconstruction is the process of re-building a reconstructed image by combining a

prediction signal and a prediction error signal.

In VP6 the following cases need to be considered.

• Reconstruction of Intra coded blocks (no prediction signal present).

• Reconstruction of Inter coded blocks which have a zero (0,0) motion vector.

• Reconstruction of Inter coded blocks that have a motion vector that is full pixel

aligned in both x and y.

• Reconstruction of Inter coded blocks the have a motion vector in one or both of x and

y that is not full pixel aligned

Note that this section deals only with the process of recombining the prediction signal and the

fully decoded prediction error signal. It does not consider DC prediction (see Section 14) as

this occurs before the IDCT.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 86

17.1 Intra Coded Blocks

Intra coded frames and blocks are coded without any reference to any previous frame.

However, prior to encoding the value 128 is subtracted from all data samples, so this needs to

be added back in as part of the reconstruction process.

Intra block reconstruction can be summarized by the following pseudo code:

For each sample in the block

{

 OutputValue = InputValue + 128

 // Clip to the range 0-255

 If (OutputValue < 0)

 OutputValue = 0

 Else If (OutputValue > 255)

 OutputValue = 255

}

17.2 Zero Vectors

Zero motion vector prediction is a simplified case of motion compensation where each

sample is predicted by the sample at the same position in either the previous frame

reconstruction (mode CODE_INTER_NO_MV) or the golden frame reconstruction (mode

CODE_USING_GOLDEN (See Section 10)).

No filtering is carried out on the prediction block and the reconstruction process can be

summarized by the following pseudo code:

For each sample in the block

{

 OutputValue = PredictedValue + PrecitionError

 // Clip to the range 0-255

 If (OutputValue < 0)

 OutputValue = 0

 Else If (OutputValue > 255)

 OutputValue = 255

}

17.3 Full Pixel Aligned Vectors

Reconstruction with a non-zero but full pixel aligned motion vectors involves combining the

prediction error signal with sample values from a set of points in either the previous or golden

frame reconstruction, that are offset by the given x and y from the samples that are being

reconstructed.

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 87

It is worth noting that a motion vector that is full pixel aligned for Y may be fractional

sample aligned for U and V, in which case the U and V blocks for the macro block will need

to be handled differently (see Section 17.4).

When using Advanced Profile and where the UseLoopFilter bit in the frame header is set to

1 (see Table 3), the issue is further complicated by prediction loop filtering (see Section

11.3). When the prediction loop filter is being used, the samples that will form the prediction

block are copied to and filtered in a temporary buffer and this temporary buffer is then used

as the source for prediction values. Prediction loop filtering MUST NOT update the

reconstruction buffer.

The process of reconstruction following on from any mandated prediction loop filtering can

be summarized by the following pseudo code:

For each sample in the block

{

 OutputValue = PredictionValue + PrecitionError

 // Clip to the range 0-255

 If (OutputValue < 0)

 OutputValue = 0

 Else If (OutputValue > 255)

 OutputValue = 255

}

17.4 Fractional Pixel Aligned Vectors

In order to reconstruct using a fractional pixel aligned vector it is necessary to filter a set of

sample points from either the previous frame or golden frame reconstruction buffer to

produce a new interpolated set of samples (see Section 11.4).

In Simple Profile the filtering is always Bilinear (see Section 11.4.1).

In Advanced profile the original full pixel aligned set of samples from which the fractional

points will be derived may first need to be filtered using the prediction loop filter to smooth

block discontinuities (see Section 11.3). The interpolation stage may use either a bilinear or a

bicubic filter (see Sections 11.4.1 and 11.4.2).

Having created a set of filtered, fractional pixel prediction points, the reconstruction then

proceeds as described below.

For each sample in the block

{

 OutputValue = PredictionValue + PrecitionError

 // Clip to the range 0-255

 If (OutputValue < 0)

 OutputValue = 0

 Else If (OutputValue > 255)

 OutputValue = 255

}

VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL

August 17, 2006 © On2 Technologies Inc 2006 88

18 DOCUMENT REVISION HISTORY

Document
Version

Description Name/Date

1.00 First Draft Created. AWG / JB / PGW

12th Nov 2003

1.01 Minor corrections and amplifications AWG / JB / PGW

14th Nov 2003

1.02 Incorporate VP6.1 and 6.2 changes LQ

17th Aug 2006

