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1 INTRODUCTION 

This document specifies the format of the VP6 compressed video bitstream created by On2 

Technologies Inc. It is accompanied by a set of C programming language source code files 

that together form a fully operational reference implementation of a VP6 decoder. 

VP6 is a leading edge video compression algorithm that uses motion compensated prediction, 

Discrete Cosine Transform (DCT) coding of the prediction error signal and context 

dependent entropy coding techniques based on Huffman and arithmetic principles. Section 2 

gives a list of the main features. 

Throughout the document various notational devices are used to convey meaning when 

describing the format and operation of the bitstream and decoder. These are outlined in 

Section 3. 

Sections 4 to 6 detail various structural aspects of the bitstream and data formats. This is 

followed by a description of the two entropy algorithms used in the decoder in Section 7. 

The description of the bitstream begins in Section 8 with a set of diagrams that show the top-

level building blocks and their relative order. The remaining sections, 9 to17, give the 

detailed low-level syntactic and semantic descriptions of all aspects of the bitstream and the 

interpretation of the bitstream. 

A final section provides the document revision history. 

All ambiguities between the algorithm described in this document and the accompanying 

reference software should be resolved in favor of the reference software. 

2 VP6 ALGORITHM FUNDAMENTALS 

VP6 is a leading edge video compression algorithm having the following features: 

� YUV 4:2:0 image format 

� Macro-block (MB) based coding (MB is 16x16 luma plus two 8x8 chroma) 

� ¼ pixel accuracy motion compensated prediction 

� 8x8 DCT transform 

� 64-level linear quantizer 

� Prediction loop filter 

� Frame variable quantization level 

� Scaling on output after decode 

� Two entropy coding strategies: Huffman & Binary Arithmetic (BoolCoder) 

� Extensive context-based entropy coding strategy 
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3 NOMENCLATURE 

In the tables in this document that outline the bitstream format the following method has been 

Similar to the definitions used in the C programming language, the following operators are 

used throughout this document: 

+ Addition 

- Subtraction (as a binary operator) or negation (as a unary operator). 

× Multiplication 

÷ Division 

++ Increment: e.g. x++ represents x = x + 1 

-- Decrement: e.g. x++ represents x = x - 1 

Sign( ) 

 

Abs( ) 
 

||  Logical OR 

&&  Logical AND 

!  Logical NOT 

>  Greater than 

>=  Greater than or equal to 

<  Less than 

<=  Less than or equal to 

==  Equal to 

!=  Not equal to 

&  Bitwise AND 

|  Bitwise OR 

>>  Shift right with sign extension 

<<  Shift left with zero fill 

=  Assignment operator 
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Tables that outline the format of the bitstream refer to the following operators to indicate how 

bits are stored in the bitstream (in the ‘Type’ column):  

� R(x) indicates a sequence of x-bits written directly to the bitstream as a sequence of raw 

bits, 

� B(x) indicates a single bit encoded using the BoolCoder with node probability x, 

� b(x) indicates a sequence of x-bits encoded using the BoolCoder with a fixed node 

probability of 128 for each bit, 

� T indicates a multi-bit syntax element that is encoded using the BoolCoder with reference 

to a specified decision tree and corresponding set of node probabilities. 

These operators are also referred to in the pseudo-code segments. The BoolCoder will be 

described in the Section 7.3. 

4 FRAME TYPES 

VP6 defines only two frame types, intra-coded and inter-coded. 

Intra, or I-frames, may be reconstructed from their compressed representation with no 

reference to other frames in the sequence. I-frames provide entry points into the bitstream that 

do not require preceding frames to be decoded providing a method of fast random access. 

Inter, prediction or P-frames, are encoded differentially with respect to a previously encoded 

reference frame in the sequence. This reference frame may either be the reconstruction of the 

immediately previous frame in the sequence or a stored previous frame known as the Golden 

Frame, described below.  

The alternative prediction, or Golden Frame, is a frame buffer that by default holds the last 

decoded I-frame but it may be updated at any time. A flag in the frame header indicates to the 

decoder whether or not to update the Golden Frame buffer. 

To update the Golden frame the current frame is first decoded and then copied in its entirety 

(including any UMV border (see Section 11.5)) into the Golden frame buffer.  

It should be noted that VP6 makes no use of backward or bi-directional prediction. 

Specifically, there is no equivalent to the MPEG B-frame. 

 

5 CODING PROFILES 

Certain techniques used within the codec require significant computational resources that 

may not be available on low-end or even higher end processors for the very largest image 

formats. In an attempt to reflect this two profiles are defined, Simple and Advanced. Each 

frame header contains a flag, VpProfile, which indicates the profile that was used to code it. 

In both profiles the BoolCoder is used for encoding block and macro-block coding mode 

decisions and motion vectors in the first data partition. 

When encoding in Simple Profile the DCT tokens are encoded in a second data partition, 

indicated in the bitstream by setting the MultiStream flag in the frame header. Furthermore, 



VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL 

August 17, 2006                          © On2 Technologies Inc 2006 10 

to reduce computational complexity both the prediction loop-filter and bi-cubic prediction 

filter are disabled.  

When using Advanced Profile the second partition is optional depending on the MultiStream 

flag in the frame header. Where it is absent, all encoded data appears a single partition 

encoded using the BoolCoder. The second partition may be encoded using either the Huffman 

or BoolCoder entropy schemes. In addition, the use of the prediction loop-filter is optionally 

enabled, depending on a flag in the frame header, and the prediction filter type may be 

dynamically switched between bi-linear and bi-cubic variants. 

In either profile where the second partition is present the UseHuffman flag in the frame 

header signifies whether the data is encoded using the Huffman or BoolCoder entropy 

schemes. 

6 DATA PARTITIONING 

A compressed frame is represented in the bitstream as a short header together with either one 

or two further partitions output as a contiguous stream of bytes. The second partition is 

optional, an encoder signals its presence or otherwise by setting the MultiStream flag as 

appropriate in the frame header (see Section 9). 

The two partitions may use different entropy coding methods as follows: 

� Partition 1: Always encoded using the BoolCoder, 

� Partition 2: Encoded with either the BoolCoder or the Huffman coder. 

If the second partition is used the value Buff2Offset in the frame header gives the offset from 

the start of the compressed frame buffer to the first byte of the partition.  

The decision as to whether one or two data partitions are used is an encoder decision and is 

indicated by the flag in the frame header.  

 

7 ENTROPY CODING 

There are two alternative entropy coding strategies, the Huffman Coder and the BoolCoder. 

The Huffman coder is a very computationally efficient method that is well suited to speed 

optimization and has reasonable compression performance. It is typically used in very high 

data-rate scenarios on low to mid-range processors because it can handle the large volume of 

tokens more efficiently than the BoolCoder. 

The BoolCoder is a simplified binary arithmetic coder allowing tokens to be encoded with 

fractions of a bit. It is much more efficient in terms of compression performance than the 

Huffman coder, but this comes with a significantly increased computational complexity. 

Both the Huffman coder and BoolCoder use binary decision trees to represent multi-bit 

syntax elements. In each case the tree is traversed as a sequence of branch decisions is read 

from the bitstream until a leaf node is reached. Each leaf node has an associated syntax 

element. 
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The difference between the two schemes lies in the way that a branch decision is encoded at 

each node in the tree. The Huffman coder encodes a whole bit to indicate which way to 

branch, 0 for left, 1 for right. However, the BoolCoder associates a probability value with 

each node (referred to as the Node Probability), being the probability of taking the left (or 

zero) branch. By doing so the BoolCoder can achieve sub-bit decision costs. 

Whereas the Huffman coder is completely specified by the binary decision tree, the 

BoolCoder additionally requires the definition of a set of Node Probabilities. Node 

probabilities are specified as an array of values, specified in order as the tree is traversed in 

depth-first order. 

Node probabilities are represented on a linear 8-bit scale: 0 represents probability 0, 255 

represents probability 1. However, the value 0 is explicitly forbidden, so the valid range is as 

follows: 

1 <= Node Probability <= 255 

 

7.1 Contexts 

Contexts are used throughout the code as a way of reducing the amount of statistical 

information that has to be encoded in to the bitstream. It reflects the fact that there is often 

significant statistical correlation of coding parameters in various scenarios -- for blocks that 

are spatially adjacent, for example. By using information already available at the decoder 

weighting may be applied to a set of baseline probabilities to adapt them better to the current 

coding environment. This results in more efficient entropy coding. 

To illustrate the concept, consider the case of the MB coding mode -- there are ten 

possibilities (see Table 4). By counting the occurrence of each coding mode over several clips 

representing different source material encoded at various data-rates a baseline set of mode 

probabilities can be established. This set may be hard-coded in to both encoder and decoder. 

So, CODE_INTRA and CODE_INTER_PLUS_MV may account for 5% and 65% of the 

tokens respectively, say.  

However, we may also observe that if both the blocks to the left and above a particular block 

are coded with mode CODE_INTRA, then the probability that this block too is coded with 

mode CODE_INTRA rises to 85% and the probability of it being encoded with mode 

CODE_INTER_PLUS_MV falls to only 3%. The context in this case is the coding mode of 

the two adjacent blocks. 

By using this conditional probability distribution, derived from a baseline distribution with 

respect to a defined context, we achieve more efficient entropy coding. 

7.2 Huffman Decoder 

In order to decode a syntax element the Huffman decoder traverses a specified binary tree, at 

each node branching to either the left or right child-node as dictated by the next bit read from 

the bitstream (0 indicates left, 1 indicates right). 

Traversal stops when a leaf node is encountered; each leaf node corresponds to a particular 

syntax element. 
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A Huffman tree is constructed from a set of leaf node probabilities using a standard algorithm 

that is much documented. Rather than encoding leaf node probabilities, however, VP6 

encodes instead a set of Node Probabilities (defined in Section 7) to be compatible with the 

way the BoolCoder trees are encoded. 

When Huffman coding is signaled, therefore, the decoder must translate the Node 

Probabilities in to a set of leaf-node probabilities that can then be used to create the Huffman 

tree. The leaf-node probability is calculated as the product of the individual node probabilities 

as the tree is traversed from its root to the leaf node, with appropriate normalization. 

There are two sections in the bitstream that involve such conversions, and they are outlined in 

Sections 13.1 and 13.3.3.2.  

 

7.2.1 Creating A Huffman Tree 

In order to create a Huffman tree for a set of N symbols the corresponding set of symbol 

probabilities is required. Let the i
th
 symbol, Si, have an associated probability Pi , specified in 

the range 1-255 (see Section 7). 

The first step is to sort the symbols in to ascending probability order, maintaining the relative 

order of symbols having equal probabilities. This set specifies the leaf nodes of the tree.  

To complete the tree the (N-1) internal nodes are created, at each step replacing the two least 

probable nodes in the list with one new node that has the two least probable nodes as 

children. The procedure can be summarized as follows (pseudo-code can be found at the end 

of the sub-section): 

• Create a new node and set its left and right children to be the least probable and 

second least probable nodes in the list, respectively, 

• Set the new node probability to the sum of the probability of its children, i.e. 

NewNodeProb = PLeftChild + PRightChild, 

• Remove the two child nodes from the sort list, 

• Insert the new node in to the sort list in a position that maintains the ascending 

probability order, i.e. at a position immediately before the first node with node 

probability greater than or equal to its own node probability. 

After this process is repeated (N-1) times the only node left in the sort list is the root node of 

the Huffman tree. By traversing the tree from root to leaf node, appending a 0 for each left 

and 1 for each right branch taken a codeword is generated for a symbol. 

In order to decode a symbol the tree is traversed from the root, taking left or right branches 

depending on whether a 0 or 1 is read from the bitstream, until a leaf node is reached. The 

symbol corresponding to this leaf node is the decoded symbol. 
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The following data structure represents a node in the tree. A leaf node is represented by a 

node where Symbol is not set to -1 and the Left and Right child indices are both set to –1: 

 

HUFF_NODE 

{ 

 Symbol    // Decoded Symbol for leaf node, -1 for internal node 

 Prob  // Huffman node probability 

 Left     // Index of Left Child in the sort list 

   Right     // Index of Right Child in the sort list 

} 
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The following pseudo-code outlines the process of building a Huffman tree 

from a set of symbols and their associated probabilities: 

 

Inputs : N  : Number of symbols 

   S[N] : List of N symbol identifiers 

   P[N]  : List of N symbol probabilities 

 

VP6_CreateHuffmanTree 

{ 

 HUFF_NODE SortList[2N-1]; 

 

for ( i=0; i<N; i++ ) 

{ 

 SortList[i].Symbol = S[i] 

   SortList[i].Prob    = P[i]  

   SortList[i].Left    = -1 

   SortList[i].Right   = -1 

} 

 

Sort SortList into ascending probability order maintaining  

relative order of nodess having equal probability 

 

for ( i=0; i<N-1; i++ ) 

{ 

 L = 2*i  // Least probable node 

   R = L+1  // Second least probable node 

 

   SortList[N+i].Symbol   = -1 // Merged node 

   SortList[N+i].Prob   = SortList[L].NodeProb + SortList[R].NodeProb

 SortList[N+i].Left     = L 

   SortList[N+i].Right    = R 

 

Sort nodes in SortList between positions R+1 and N+i (inclusive) 

in to ascending probability order maintaining relative order of  

nodes having equal probability 

} 

 

// Huffman tree root node is at position 2*N-2 in SortList 

}  

 

 

To decode a symbol the following procedure is followed: 

 

Input :  N        : Number of symbols/leaf nodes in tree 

   HUFF_NODE SortList[2N-1] : VP6_CreateHuffmanTree created tree  

 

VP6_HuffmanDecodeSymbol 

{ 

 NextNode = 2*N-2  // Root node 

 

 while ( SortList[NextNode].Symbol == -1 ) 

 { 

  if ( R(1)==0 ) 

   NextNode = SortList[NextNode].Left 

  Else 

   NextNode = SortList[NextNode].Right 

 } 

 

 DecodedSymbol = SortList[NextNode].Symbol 

} 
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7.3 BoolCoder 

Based on the same principles as a binary arithmetic coder, the BoolCoder codes successive 0 

or 1 decisions by continuously sub-dividing an initial unit interval in the ratio of the relative 

probabilities that a 0 and 1 will occur.  

Encoding multi-bit entities can be considered as traversing a binary decision tree where at 

each node there is an associated probability of taking the left, or zero, branch. This 

probability is referred to as the Node Probability. The probability of taking a right, or 1, 

branch is therefore one minus the node probability. This concept is used extensively 

throughout the code. 

Node probabilities are represented on a linear 8-bit scale: 0 represents probability 0, 255 

represents probability 1. However, the value 0 is explicitly forbidden, so the valid range is as 

follows: 

1 <= Node Probability <= 255 

 

The BoolCoder has the following attributes: 

Range -> the current range as a value from 0-255 

Count -> the number of times that Range moved to less than 128  

Value -> Holds up to the next 32-bits read from the bit stream  

Pos   -> offset of the next byte to be read from the bit stream 

 

Before decoding may commence the BoolCoder must be initialized as follows: 

 

� VP6_StartDecode: Initializes the bool decoder attributes:  

 Range    = 255 

 Count    = 8 

 Value    = First 32-bits extracted from bit stream 

 Pos      = 4  (4 bytes already extracted in to Value) 

 

Thereafter, individual bits may be decoded as follows if the specific node 

probability, or probability of decoding a zero, is known (Probability): 

� VP6_DecodeBool: Decodes a bit given a particular node probability: 

Split = 1 + ( ((Range-1) * Probability) >> 7 ) 

if Value < (Split << 24) 

{ 

 Range = Split 

 Bit = 0  

} 

else  

{ 

 Range = Range - Split 

 Value = Value – (Split <<24) 

 Bit = 1 

} 

 

After each bool decode perform the following normalization:  

 While Range < 128 

 { 
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  Range *= 2 

  Value *= 2 

  Count -- 

  if Count == 0 

  { 

   // Bits = extract byte from bitstream at position Pos 

        Value = Value | Bits 

         Pos ++ 

      Count = 8 

  } 

 } 

 Return Bit 

 

  

8 BITSTREAM MAP 

 

Figure 1 VP6 Bitstream 
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Please refer to the following sections for more information: 

• Frame Header (See Section 9). 

• Mode Probability Updates (See Section 10). 

• Mv Tree (See Section 11). 

• Single Stream Macroblock Info (See Figure 2). 

• Bool Coded MultiStream Macroblock Info (See Figure 3). 

• Huffman MultiStream Macroblock Info (See Figure 4). 

 

 

Figure 2 Single Stream -- Macroblock Info 

 

Please refer to the following sections for more information: 

• Coefficient probability Updates (See Figure 5). 

• Next Macro Block’s Prediction Information (See Figure 6). 

• Enocded Coefficients (See Figure 7). 
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Figure 3 Bool Coded – Multi-Stream Macroblock Info 

 

Please refer to the following sections for more information: 

• Coefficient probability Updates (See Figure 5). 

• Next Macroblock’s Prediction Information (See Figure 6). 

• Next Macroblock’s Boolean Encoded Coefficients (See Figure 7). 
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Figure 4 Huffman Coded -- Multi-Stream Macroblock Info 

 

Please refer to the following sections for more information: 

• Coefficient probability Updates (See Figure 5). 

• Next Macroblock’s Prediction Information (See Figure 6). 

• Next Macroblock’s Huffman Encoded Coefficients (See Figure 7). 
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Figure 5 Coefficient Probability Updates 

 

Please refer to Sections 12 & 13 for more information: 
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Figure 6 Encode Macroblock Prediction Information 

Please refer to Sections 10 & 11 for more information: 
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Figure 7 Macroblock's Coefficients 
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Figure 8 Block Coefficients 

Please refer to Sections 12 & 13 for more information: 
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9 FRAME HEADER 

The initial bytes of the compressed frame define a header containing the following: 

 

Field Type Notes 

FrameType R(1) 0 for I-Frame, 1 for P-Frame. 

DctQMask R(6) Quantizer setting for the frame. 

MultiStream R(1) 0 for One partition, 1 for two partitions. 

IntraHeader || InterHeader See tables 

2 & 3 

If FrameType==0 : IntraHeader 

If FrameType==1 : InterHeader 

UseHuffman b(1) 0 for BoolCoder, 1 for Huffman Coder for 2
nd

 data 

partition. 

Table 1 Frame Header 

 

FrameType. An individual frame is encoded as either as an I- or P-frame. An I-frame, or 

intra-frame, is an atomic unit meaning that it can be completely decoded without reference to 

any previously decoded frame. A P-frame, or inter-frame, is coded differentially with respect 

to a prediction frame that is constructed from previously decoded reference frames and is not 

therefore an atomic unit. Each MB in the prediction frame is formed by using Motion 

Compensation, unless the MB is coded in intra-mode in which case no prediction is required. 

Two reference frames are defined: the last reconstructed frame and a previously decoded 

frame known as the Golden Frame. 

It should be noted that VP6 makes no use of backward or bi-directional prediction. 

Specifically, there is no equivalent to the MPEG B-frame. 

DctQMask. VP6 uses a 64 level linear quantizer, the particular quantizer level for a frame 

being specified as a 6-bit index, DctQMask, into a table that specifies the corresponding bin-

width. The value 63 represents the most accurate quantizer level, 0 represents the least 

accurate. Intermediate values are specified to give very roughly linear changes in data rate. 

MultiStream. The MultiStream flag indicates whether the bitstream is split between one (0) 

or two (1) partitions. The bitstream may optionally be split between two partitions, in 

addition to the frame header. The first partition contains coding mode information and motion 

vectors, the second partition contains the tokenized, quantized, DCT coded prediction error 

information.  

UseHuffman. When using two bitstream partitions (MultiStream set to 1) the second 

partition may optionally use Huffman (1) rather than Boolean Coding (0) techniques. This 

can help to reduce the computational load in both encoder and decoder at high data rates on 

low to medium power processors. 

 

Field Type Notes 

Vp3VersionNo R(5) Version of encoder used to encode frame. 
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VpProfile R(2) 0 Simple, 3 Advanced (1 and 2 undefined) 

(Reserved) R(1) Currently unused; always 0 

Buff2Offset R(16) Offset to 2
nd

 partition. If (MultiStream == 1) || 

(SIMPLE_PROFILE == 1). 

VFragments b(8) Number of rows of 8x8 blocks in un-scaled decoded 

image. 

HFragments b(8) Number of cols of 8x8 blocks in un-scaled decoded 

image. 

OutputVFragments b(8) Number of rows of 8x8 blocks in scaled output image. 

OutputHFragments b(8) Number of cols of 8x8 blocks in scaled output image. 

ScalingMode b(2) Mode to use for scaling decoded image. 

AutoSelectPMFlag b(1) ADVANCED _PROFILE (VpProfile == 3) only: 

0 Prediction filter type is fixed and will be specified, 

1 Auto-select bi-cubic or bi-linear prediction filter. 

PredictionFilterVarThresh b(5) If AutoSelectPMFlag == 1 only: 

Threshold on prediction filter variance.  

PredictionFilterMvSizeThresh b(3) If AutoSelectPMFlag == 1 only: 

Threshold on MV size to use prediction filter for. 

BiCubicOrBiLinearFiltFlag b(1) If AutoSelectPMFlag == 0 only: 

0 Use Bi-linear prediction filter, 

1 Use Bi-Cubic prediction filter. 

PredictionFilterAlpha b(4) Vp3VersionNo == 8 (VP6.2) only: 

Selector to choose bicubic filter 

coefficients 

Table 2 IntraHeader Definition 

 

Vp3VersionNo. Identifies the bitstream as being compliant with a particular VPx decoder 

format. The values 6,7, and 8 represent VP6.0, VP6.1, and VP6.2 bitsreams, respectively. The 

decoder should check this field to ensure that it can decode the bitstream. 

VpProfile. Two coding profiles are currently defined, SIMPLE and ADVANCED, each 

specifying the use of a set of coding tools. 

Reserved. This bit has no meaning when decoding the bitstream. It remains for historical 

reasons, and must be consumed during decoding. 

Buff2Offset. Specifies the offset of the second bitstream partition from the start of the frame 

buffer in bytes. Only present if MultiStream flag indicates that two bitstream partitions are 

being used.  

VFragments. The vertical coded height of the frame in 8x8 block units. If image is 240 

pixels high, VFragments will be 30. 
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HFragments. The horizontal coded width of the frame in 8x8 block units. If image is 320 

pixels wide, HFragments will be 40. 

OutputVFragments. The vertical decoded height of the frame as it should be scaled on 

output in 8x8 block units. See definition of ScalingMode below. 

OutputHFragments. The horizontal decoded width of the frame as it should be scaled on 

output in 8x8 block units. See definition of ScalingMode below. 

ScalingMode. Internally a frame may be encoded at a different resolution to the eventual size 

that it is presented on output from the decoder. There are four ways to scale the frame on 

output MAINTAIN_ASPECT_RATIO, SCALE_TO_FIT, CENTER, OTHER. 

AutoSelectPMFlag. Indicates what filter type will be used to generate interpolated sub-pixel 

motion compensated prediction blocks; Bi-linear and Bi-cubic filters are defined. Value 0 

indicates that filter type is fixed and will be specified in field BiCubicOrBiLinearFiltFlag. 

Value 1 turns on automatic selection of filter type using the two thresholds 

PredictionFilterVarThresh and PredictionFilterMvSizeThresh. Present only if frame coded 

using Advanced Profile. 

PredictionFilterVarThresh. Variance threshold at or above which the bi-cubic motion-

compensated interpolation filter will be used, otherwise bi-linear filter is used. Value 0 

indicates that the bi-cubic filter will always be used. Present only if AutoSelectPMFlag is 1. 

PredictionFilterMvSizeThresh. Used to set largest MV magnitude at which the bi-cubic 

filter is used, otherwise bi-linear filter is used. Largest MV component, in whole pixel units, 

for use of bi-cubic filter is (1 << (PredictionFilterMvSizeThresh – 1)). Present only if 

AutoSelectPMFlag is 1. 

BiCubicOrBiLinearFiltFlag. Selects specific filter type for producing interpolated sub-pixel 

motion compensated prediction blocks. Present only if AutoSelectPMFlag is 0. 

PredictionFilterAlpha. Specifies the index into the BicubicFilterSet table to use when 

retrieving filter coeffiecients. In general, these coeffiecents control the sharpness of the filter. 

Present only if Vp3VersionNo == 8 (VP6.2 bitstreams only) 

 

Field Type Notes 

Buff2Offset R(16) Offset to 2
nd

 partition. If (MultiStream == 1) || 

(SIMPLE_PROFILE == 1). 

RefreshGoldenFrame b(1) 0 Do not update the Golden Frame with this frame, 

1 Decoded frame should become new Golden Frame. 

UseLoopFilter b(1) ADVANCED_PROFILE only: 

0 Disable the loop-filter, 1 Enable the loop-filter. 

LoopFilterSelector b(1) UseLoopFilter==1 only: 

0 Basic loop filter, 1 De-ringing loop-filter (see 

below). 

AutoSelectPMFlag b(1) If Vp3VersionNo == 8 (VP6.2) 

and ADVANCED _PROFILE (VpProfile == 3) only: 

0 Prediction filter type is fixed and will be specified, 

1 Auto-select bi-cubic or bi-linear prediction filter. 
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PredictionFilterVarThresh b(5) If Vp3VersionNo == 8 (VP6.2) 

and AutoSelectPMFlag == 1 only: 

Threshold on prediction filter variance.  

PredictionFilterMvSizeThresh b(3) If Vp3VersionNo == 8 (VP6.2) 

and AutoSelectPMFlag == 1 only: 

Threshold on MV size to use prediction filter for. 

BiCubicOrBiLinearFiltFlag b(1) If Vp3VersionNo == 8 (VP6.2) 

and AutoSelectPMFlag == 0 only: 

0 Use Bi-linear prediction filter, 

1 Use Bi-Cubic prediction filter. 

PredictionFilterAlpha b(4) Vp3VersionNo == 8 (VP6.2) only: 

Selector to choose bicubic filter 

coefficients 

Table 3 InterHeader Definition 

 

Buff2Offset. Specifies the offset of the second bitstream partition from the start of the frame 

buffer in bytes. Only present if MultiStream flag indicates that two bitstream partitions are 

being used.  

RefreshGoldenFrame. Flag indicating whether the current frame, once fully decoded, 

should be used to update the alternative prediction frame known as the Golden Frame. If set 

to 1 the decoded frame becomes the new Golden Frame. Otherwise the existing Golden 

Frame persists. 

UseLoopFilter. Flags whether the loop-filter should be used for this frame. Present only if 

frame coded using Advanced Profile. 

LoopFilterSelector. Selects which loop filter to use for this frame, 0 indicates use of a basic 

de-blocking filter, 1 indicates use of a more complex de-blocking & de-ringing filter. Present 

only if UseLoopFilter set to 1. 

Note: Although supported by the bitstream the de-ringing version of the loop-filter is NOT 

currently defined in the VP6 decoder specification. Therefore, at the current time it is 

mandated that where the loop-filter is used the field LoopFilterSelector must be set to the 

value 0. 

AutoSelectPMFlag. Indicates what filter type will be used to generate interpolated sub-pixel 

motion compensated prediction blocks; Bi-linear and Bi-cubic filters are defined. Value 0 

indicates that filter type is fixed and will be specified in field BiCubicOrBiLinearFiltFlag. 

Value 1 turns on automatic selection of filter type using the two thresholds 

PredictionFilterVarThresh and PredictionFilterMvSizeThresh. Present only if frame coded 

using Advanced Profile. Present only in VP6.2 bitstreams (Vp3VersionNo == 8). 

PredictionFilterVarThresh. Variance threshold at or above which the bi-cubic motion-

compensated interpolation filter will be used, otherwise bi-linear filter is used. Value 0 

indicates that the bi-cubic filter will always be used. Present only if AutoSelectPMFlag is 1. 

Present only in VP6.2 bitstreams (Vp3VersionNo == 8). 

PredictionFilterMvSizeThresh. Used to set largest MV magnitude at which the bi-cubic 

filter is used, otherwise bi-linear filter is used. Largest MV component, in whole pixel units, 
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for use of bi-cubic filter is (1 << (PredictionFilterMvSizeThresh – 1)). Present only if 

AutoSelectPMFlag is 1. Present only in VP6.2 bitstreams (Vp3VersionNo == 8). 

BiCubicOrBiLinearFiltFlag. Selects specific filter type for producing interpolated sub-pixel 

motion compensated prediction blocks. Present only if AutoSelectPMFlag is 0. Present only 

in VP6.2 bitstreams (Vp3VersionNo == 8). 

PredictionFilterAlpha. Specifies the index into the BicubicFilterSet table to use when 

retrieving filter coeffiecients. In general, these coeffiecents control the sharpness of the filter. 

Present only if Vp3VersionNo == 8 (VP6.2 bitstreams only). 

10 MODE DECODING 

For I-frames each MB is implicitly encoded in intra-mode so no signaling of mode is 

required. 

For P-frames, each MB in the frame has an associated Coding Mode indicating to the decoder 

the method by which the MB prediction, if any, is constructed. VP6 defines ten possible 

coding modes. 

 

Coding Mode Prediction Frame MV 

CODE_INTER_NO_MV Previous frame reconstruction. Fixed: (0,0). 

CODE_INTRA None. None. 

CODE_INTER_PLUS_MV Previous frame reconstruction. Newly calculated MV. 

CODE_INTER_NEAREST_MV Previous frame reconstruction. Same MV as Nearest 

block. 

CODE_INTER_NEAR_MV Previous frame reconstruction. Same MV as Near block. 

CODE_USING_GOLDEN Golden Frame. Fixed: (0,0). 

CODE_GOLDEN_MV Golden Frame. Newly calculated MV. 

CODE_INTER_FOURMV Previous frame reconstruction. Each of the four luma-

blocks has associated MV. 

CODE_GOLD_NEAREST_MV Golden Frame. Same MV as Nearest 

block. 

CODE_GOLD_NEAR_MV Golden Frame. Same MV as Near block. 

Table 4 Coding Modes 

 

CODE_INTRA mode uses no prediction, each of its six blocks is forward DCT encoded after 

the fixed value 128 is subtracted from each sample value (this improves DCT accuracy).  

The nine remaining modes use motion compensation to derive a prediction for the MB. Two 

parameters specify the best match for a MB (or block for mode CODE_INTER_FOURMV), 

a motion vector and an indication of which reference frame the vector refers to (either the 
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previous reconstructed frame or the Golden frame).  The motion vector is specified in ¼ pixel 

units (i.e. ¼ sample precision for luma and 
1
/8 sample precision for chroma).  

The maximum magnitude of a MV component is 31 ¾ whole pixels (127 in units of ¼ pixel). 

If a MB has coding mode CODE_INTER_FOURMV then each of its four Y-blocks will be 

coded independently, each having an associated coding mode from a reduced set that 

excludes intra or any of the Golden Frame modes. In this case the motion vector for the two 

chroma blocks is computed by averaging the four Y vectors (rounding away from zero). 

In certain circumstances it is much more efficient to specify that a MB has the same MV as 

one of its nearest neighbors, rather than coding a new MV. For this reason VP6 defines the 

concept of the Nearest Motion Vector and Near Motion Vector, as the first 2 non (0,0) 

MVs encountered when traversing, in order, a list of the twelve spatially nearest decoded 

macroblock neighbors (the list is described by offsets from the present macroblock defined in 

the array NearMacroblocks below), that are encoded with reference to the same prediction 

frame as the current block. If no such blocks exist in the list then Nearest and Near MVs are 

undefined.  

So, for example, the coding mode CODE_GOLD_NEAREST_MV implies that the MV for 

the current MB should be set to the same vector as that specified for the Nearest block that 

used the Golden Frame prediction frame.  

In the following table the pairs of data values refer to {row, column} offsets in MacroBlock 

units: 

NearMacroBlocks[12] =  

{ 

 { -1,  0 }, 

 {  0, -1 }, 

 { -1, -1 }, 

 { -1,  1 }, 

 { -2,  0 }, 

 {  0, -2 }, 

 { -1, -2 }, 

 { -2, -1 }, 

 { -2,  1 }, 

 { -1,  2 }, 

 { -2, -2 }, 

 { -2,  2 } 

} 

The BoolCoder is used to decode coding modes using a two dimensional contextual table as 

follows:  

probXmitted [3][20] 

This table should be maintained by the decoder. It contains probabilities that any of the 10 

modes will be the next mode decoded in the bitstream given the following situations:  

The first dimension of this probXmitted array is indexed by contextual information 

regarding whether or not all of the modes are available for use as follows:  
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Index When to Use 

0  Nearest & Near MVs both exist for this macroblock 

1 Nearest  but no Near MV exists for this macroblock 

2 Neither Nearest nor Near MVs exist for this macroblock 

Table 5 Mode Availability Values for Dimension 1 of Mode Probability Vector 

 

The second dimension defines probabilities for each mode as follows: 

Index Probability That We Get 

0 CODE_INTER_NO_MV given the prior mode was CODE_INTER_NO_MV 

1 CODE_INTER_NO_MV given the prior mode was not CODE_INTER_NO_MV 

2 CODE_INTRA given the prior mode was  CODE_INTRA 

3 CODE_INTRA given the prior mode was  not CODE_INTRA 

4 CODE_INTER_PLUS_MV given the prior mode was  CODE_INTER_PLUS_MV 

5 CODE_INTER_PLUS_MV given the prior mode was  not CODE_INTER_PLUS_MV 

6 CODE_INTER_NEAREST_MV given the prior mode was  

CODE_INTER_NEAREST_MV 

7 CODE_INTER_NEAREST_MV given the prior mode was not 

CODE_INTER_NEAREST_MV 

8 CODE_INTER_NEAR_MV given the prior mode was  CODE_INTER_NEAR_MV 

9 CODE_INTER_NEAR_MV given the prior mode was  not CODE_INTER_NEAR_MV 

10 CODE_USING_GOLDEN given the prior mode was  CODE_USING_GOLDEN 

11 CODE_USING_GOLDEN given the prior mode was  not CODE_USING_GOLDEN 

12 CODE_GOLDEN_MV given the prior mode was  CODE_GOLDEN_MV 

13 CODE_GOLDEN_MV given the prior mode was  not CODE_GOLDEN_MV 

14 CODE_INTER_FOURMV given the prior mode was  CODE_INTER_FOURMV 

15 CODE_INTER_FOURMV given the prior mode was  not CODE_INTER_FOURMV 

16 CODE_GOLD_NEAREST_MV given the prior mode was  

CODE_GOLD_NEAREST_MV 

17 CODE_GOLD_NEAREST_MV given the prior mode was not 

CODE_GOLD_NEAREST_MV 

18 CODE_GOLD_NEAR_MV given the prior mode was  CODE_GOLD_NEAR_MV 

19 CODE_GOLD_NEAR_MV given the prior mode was  not CODE_GOLD_NEAR_MV 
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Table 6 ProbabilitySituation Table 

 

At each I-frame the set of context dependent probabilities, probXmitted is initialized to a 

default set specified as: 

VP6_BaselineXmittedProbs[3][20] =  

{ 

   { 42, 69,  2,  1,  7,  1, 42, 44, 22,  6,   

    3,  1,  2,  0,  5,  1,  1,  0,  0,  0} 

   {  8,229,  1,  1,  8,  0,  0,  0,  0,  0,   

    2,  1,  1,  0,  0,  0,  1,  1,  0,  0} 

   { 35,122,  1,  1,  6,  1, 34, 46,  0,  0,   

      2,  1,  1,  0,  1,  0,  1,  1,  0,  0} 

} 

For P-frames probXmitted values persist from the previously decoded frame.  

A mechanism for updating each entry of this table (for either I or P frames) is embedded in 

the bitstream as follows: 

 

Field 

Mode Probability Update Section for MBs When Nearest & Near MVs both exist 

Mode Probability Update Section for MBs When Nearest but no Near MV exists 

Mode Probability Update Section for MBs When Neither Nearest nor Near MVs exist 

Table 7 Bitstream Section : Mode Probability Updates 

 

Field Type Notes 

SetNewBaselineProbs B(174) Set new baseline probabilities flag. 

WhichVector b(4) Vector to set. Present only if SetNewBaselineProbs 

is 1. 

VectorUpdatesPresentFlag B(254) Updates to baseline probabilities follow flag. 

ModeProbUpdateVector See Table 9. 20 sets of probability updates (one for each entry in 

ProbabilitySituation ). Only present  if 

VectorUpdatesPresentFlag is 1. 

Table 8 Mode Probability Updates Section 

 

SetNewBaselineProbs. A flag indicating whether the baseline mode probabilities held in 

probXmitted should be reset to one of 16 pre-defined sets taken from the array 

VP6_ModeVq. 

WhichVector. Specifies which one of 16 sets of baseline probabilities from array 

VP6_ModeVq to copy into probXmitted for the appropriate ModeAvailability. Present only if 

SetNewBaselineProbs is 1. 
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VectorUpdatesPresentFlag. Indicates whether updates to the baseline probabilities follow.  

ModeProbUpdateVector. 20 sets of probability updates (one for each entry in  

ProbabilitySituation ). Only present  if Vector UpdatesPresentFlag is 1.) 

Note: VP6_modeVq is a 3 dimensional index the first dimension is the ModeAvailability 

(Nearest & Near MVs both exist , Nearest  but no Near MV exists , Neither Nearest  nor Near 

MV exists).  WhichVector is an index into the second dimension of this array.   The 20 

element vector specified by whichVector is copied into the probXmitted table for the 

appropriate ModeAvailability. 
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VP6_ModeVq[3][16][20] = 

{ 

  { 

    {  9, 15, 32, 25,  7, 19,  9, 21,  1, 12, 14, 12,  3, 18, 14, 23,  3, 10,  0,  4}, 

    { 48, 39,  1,  2, 11, 27, 29, 44,  7, 27,  1,  4,  0,  3,  1,  6,  1,  2,  0,  0}, 

    { 21, 32,  1,  2,  4, 10, 32, 43,  6, 23,  2,  3,  1, 19,  1,  6, 12, 21,  0,  7}, 

    { 69, 83,  0,  0,  0,  2, 10, 29,  3, 12,  0,  1,  0,  3,  0,  3,  2,  2,  0,  0}, 

    { 11, 20,  1,  4, 18, 36, 43, 48, 13, 35,  0,  2,  0,  5,  3, 12,  1,  2,  0,  0}, 

    { 70, 44,  0,  1,  2, 10, 37, 46,  8, 26,  0,  2,  0,  2,  0,  2,  0,  1,  0,  0}, 

    {  8, 15,  0,  1,  8, 21, 74, 53, 22, 42,  0,  1,  0,  2,  0,  3,  1,  2,  0,  0}, 

    {141, 42,  0,  0,  1,  4, 11, 24,  1, 11,  0,  1,  0,  1,  0,  2,  0,  0,  0,  0}, 

    {  8, 19,  4, 10, 24, 45, 21, 37,  9, 29,  0,  3,  1,  7, 11, 25,  0,  2,  0,  1}, 

    { 46, 42,  0,  1,  2, 10, 54, 51, 10, 30,  0,  2,  0,  2,  0,  1,  0,  1,  0,  0}, 

    { 28, 32,  0,  0,  3, 10, 75, 51, 14, 33,  0,  1,  0,  2,  0,  1,  1,  2,  0,  0}, 

    {100, 46,  0,  1,  3,  9, 21, 37,  5, 20,  0,  1,  0,  2,  1,  2,  0,  1,  0,  0}, 

    { 27, 29,  0,  1,  9, 25, 53, 51, 12, 34,  0,  1,  0,  3,  1,  5,  0,  2,  0,  0}, 

    { 80, 38,  0,  0,  1,  4, 69, 33,  5, 16,  0,  1,  0,  1,  0,  0,  0,  1,  0,  0}, 

    { 16, 20,  0,  0,  2,  8,104, 49, 15, 33,  0,  1,  0,  1,  0,  1,  1,  1,  0,  0}, 

    {194, 16,  0,  0,  1,  1,  1,  9,  1,  3,  0,  0,  0,  1,  0,  1,  0,  0,  0,  0} 

  }, 

  { 

    { 41, 22,  1,  0,  1, 31,  0,  0,  0,  0,  0,  1,  1,  7,  0,  1, 98, 25,  4, 10}, 

    {123, 37,  6,  4,  1, 27,  0,  0,  0,  0,  5,  8,  1,  7,  0,  1, 12, 10,  0,  2}, 

    { 26, 14, 14, 12,  0, 24,  0,  0,  0,  0, 55, 17,  1,  9,  0, 36,  5,  7,  1,  3}, 

    {209,  5,  0,  0,  0, 27,  0,  0,  0,  0,  0,  1,  0,  1,  0,  1,  0,  0,  0,  0}, 

    {  2,  5,  4,  5,  0,121,  0,  0,  0,  0,  0,  3,  2,  4,  1,  4,  2,  2,  0,  1}, 

    {175,  5,  0,  1,  0, 48,  0,  0,  0,  0,  0,  2,  0,  1,  0,  2,  0,  1,  0,  0}, 

    { 83,  5,  2,  3,  0,102,  0,  0,  0,  0,  1,  3,  0,  2,  0,  1,  0,  0,  0,  0}, 

    {233,  6,  0,  0,  0,  8,  0,  0,  0,  0,  0,  1,  0,  1,  0,  0,  0,  1,  0,  0}, 

    { 34, 16,112, 21,  1, 28,  0,  0,  0,  0,  6,  8,  1,  7,  0,  3,  2,  5,  0,  2}, 

    {159, 35,  2,  2,  0, 25,  0,  0,  0,  0,  3,  6,  0,  5,  0,  1,  4,  4,  0,  1}, 

    { 75, 39,  5,  7,  2, 48,  0,  0,  0,  0,  3, 11,  2, 16,  1,  4,  7, 10,  0,  2}, 

    {212, 21,  0,  1,  0,  9,  0,  0,  0,  0,  1,  2,  0,  2,  0,  0,  2,  2,  0,  0}, 

    {  4,  2,  0,  0,  0,172,  0,  0,  0,  0,  0,  1,  0,  2,  0,  0,  2,  0,  0,  0}, 

    {187, 22,  1,  1,  0, 17,  0,  0,  0,  0,  3,  6,  0,  4,  0,  1,  4,  4,  0,  1}, 

    {133,  6,  1,  2,  1, 70,  0,  0,  0,  0,  0,  2,  0,  4,  0,  3,  1,  1,  0,  0}, 

    {251,  1,  0,  0,  0,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0} 

  } , 

  { 

    {  2,  3,  2,  3,  0,  2,  0,  2,  0,  0, 11,  4,  1,  4,  0,  2,  3,  2,  0,  4}, 

    { 49, 46,  3,  4,  7, 31, 42, 41,  0,  0,  2,  6,  1,  7,  1,  4,  2,  4,  0,  1}, 

    { 26, 25,  1,  1,  2, 10, 67, 39,  0,  0,  1,  1,  0, 14,  0,  2, 31, 26,  1,  6}, 

    {103, 46,  1,  2,  2, 10, 33, 42,  0,  0,  1,  4,  0,  3,  0,  1,  1,  3,  0,  0}, 

    { 14, 31,  9, 13, 14, 54, 22, 29,  0,  0,  2,  6,  4, 18,  6, 13,  1,  5,  0,  1}, 

    { 85, 39,  0,  0,  1,  9, 69, 40,  0,  0,  0,  1,  0,  3,  0,  1,  2,  3,  0,  0}, 

    { 31, 28,  0,  0,  3, 14,130, 34,  0,  0,  0,  1,  0,  3,  0,  1,  3,  3,  0,  1}, 

    {171, 25,  0,  0,  1,  5, 25, 21,  0,  0,  0,  1,  0,  1,  0,  0,  0,  0,  0,  0}, 

    { 17, 21, 68, 29,  6, 15, 13, 22,  0,  0,  6, 12,  3, 14,  4, 10,  1,  7,  0,  3}, 

    { 51, 39,  0,  1,  2, 12, 91, 44,  0,  0,  0,  2,  0,  3,  0,  1,  2,  3,  0,  1}, 

    { 81, 25,  0,  0,  2,  9,106, 26,  0,  0,  0,  1,  0,  1,  0,  1,  1,  1,  0,  0}, 

    {140, 37,  0,  1,  1,  8, 24, 33,  0,  0,  1,  2,  0,  2,  0,  1,  1,  2,  0,  0}, 

    { 14, 23,  1,  3, 11, 53, 90, 31,  0,  0,  0,  3,  1,  5,  2,  6,  1,  2,  0,  0}, 

    {123, 29,  0,  0,  1,  7, 57, 30,  0,  0,  0,  1,  0,  1,  0,  1,  0,  1,  0,  0}, 

    { 13, 14,  0,  0,  4, 20,175, 20,  0,  0,  0,  1,  0,  1,  0,  1,  1,  1,  0,  0}, 

    {202, 23,  0,  0,  1,  3,  2,  9,  0,  0,  0,  1,  0,  1,  0,  1,  0,  0,  0,  0} 

  } 

} 

 



VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL 

August 17, 2006                          © On2 Technologies Inc 2006 33 

 

Field Type Notes 

Ten Sets of: 

UpdateFlag B(205) 0 No update, 1 Update Follows for this value. 

Sign B(128) Update sign: 0 Positive, 1 Negative (only if UpdateFlag 

set to 1) 

Difference T Update magnitude – Tree coded. (only if UpdateFlag 

set to 1) 

Table 9 ModeProbUpdateVector 

UpdateFlag. Flag indicating whether there follows an update for this probability value where 

the mode being coded is the same as the last mode coded. 

Sign. The sign of the change encoded for this probability value. 0 indicates positive, 1 

indicates negative change in probability value. 

Difference. Magnitude of the change for this probability value, coded using the BoolCoder 

with respect to the tree shown in Figure 9. 

 

Figure 9 Mode Probability Update Magnitude Tree 
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To decode a sign and difference the following steps are performed: 
 

  
if  sign == 1 

 Sign == -1 

else  

 Sign = 1 

 

if( B(171)) 

 return (sign * 4) * (1 + B(83)) 

else 

{ 

 if( !B(199) )  

 { 

  if(B(140)) 

   return sign * 12 

 

  if(B( 125)) 

   return sign * 16 

 

  if(B( 104)) 

   return sign * 20 

 

  return sign * 24 

 } 

 else  

 { 

  diff = VP6_bitread(&pbi->br,7) 

   return sign * diff * 4 

 } 

} 

 

Note: The encoder only sends update probabilities if it determines that they will produce an 

overall reduction in data-rate, taking into account the overhead cost of sending the update 

values themselves. 

The table probXmitted [3][20] is then used to construct an array of decision trees that are 

used for decoding modes: 

This decision tree is represented as a three dimensional array and has the following 

dimensions:  

ModeDecisionTree[3][10][9]. 

The first dimension represents the ModeAvailability for the macroblock we are about to 

decode. The Second Dimension represents the last prior coded mode and the third dimension 

represents the probability in the decision tree below at each of 9 numbered nodes described in 

the decision tree shown in figure 2. 
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Figure 10 Mode decoding decision tree 

 

To convert the table probXmitted [3][20] into ModeDecisionTree[3][10][9] the following 

steps are performed: 

for ( i=0; i<10; i++ ) 

{ 

  unsigned int C[MAX_MODES] 

  unsigned int total 

 

  // set up the probabilities for each tree 

  for(k=0;k<MODETYPES;k++) 

   total=0; 

   for ( j=0; j<10; j++ ) 

    if ( i == j ) 

     C[j]=0 

    else 

     C[j]=100*probXmitted[k][j*2+1] 

    total+=C[j] 

   probModeSame[k][i] = 255 - 255 * probXmitted[k][i*2]  

      / ( 1 +probXmitted[k][i*2+1] + probXmitted[k][i*2] ) 

 

   // each branch is basically calculated via  

   // summing all possibilities at that branch. 

   ModeDecisionTree[k][i][0]= 1 + 255 * 

    ( C[CODE_INTER_NO_MV]+ C[CODE_INTER_PLUS_MV]+ 
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    ( 1 + total); 

 

   ModeDecisionTree[k][i][1]= 1 + 255 * 

    ( C[CODE_INTER_NO_MV]+ C[CODE_INTER_PLUS_MV] ) /  

    ( 1 + C[CODE_INTER_NO_MV]+ C[CODE_INTER_PLUS_MV]+    

        C[CODE_INTER_NEAREST_MV]+ C[CODE_INTER_NEAR_MV]) 

 

   ModeDecisionTree[k][i][2]= 1 + 255 * 

     (C[CODE_INTRA]+ C[CODE_INTER_FOURMV]) /  

     (1 + C[CODE_INTRA]+ C[CODE_INTER_FOURMV]+ 

    C[CODE_USING_GOLDEN]+C[CODE_GOLDEN_MV]+ 

    C[CODE_GOLD_NEAREST_MV]+ C[CODE_GOLD_NEAR_MV]) 

    

   ModeDecisionTree[k][i][3]= 1 + 255 * 

    (C[CODE_INTER_NO_MV]) /  

    (1 +C[CODE_INTER_NO_MV]+ C[CODE_INTER_PLUS_MV]) 

 

   ModeDecisionTree[k][i][4]= 1 + 255 * 

    (C[CODE_INTER_NEAREST_MV]) /  

    (1 + C[CODE_INTER_NEAREST_MV]+ C[CODE_INTER_NEAR_MV]) 

 

   ModeDecisionTree[k][i][5]= 1 + 255 * 

     (C[CODE_INTRA]) /  

    ( 1 + C[CODE_INTRA]+ C[CODE_INTER_FOURMV]) 

 

   ModeDecisionTree[k][i][6]= 1 + 255 * 

    ( C[CODE_USING_GOLDEN] + C[CODE_GOLDEN_MV] ) /  

    (1 +C[CODE_USING_GOLDEN]+ C[CODE_GOLDEN_MV]+ 

     C[CODE_GOLD_NEAREST_MV]+ C[CODE_GOLD_NEAR_MV]) 

 

   ModeDecisionTree[k][i][7]= 1 + 255 * 

   ( C[CODE_USING_GOLDEN]) /  

    ( 1 + C[CODE_USING_GOLDEN]+ C[CODE_GOLDEN_MV]) 

 

   ModeDecisionTree[k][i][8]= 1 + 255 * 

    ( C[CODE_GOLD_NEAREST_MV]) /  

    ( 1 + C[CODE_GOLD_NEAREST_MV]+ C[CODE_GOLD_NEAR_MV]) 

  } 

 } 

} 

The function VP6_DecodeMode decodes the coding mode for a MB by traversing the 

decision tree defined in Figure 10. At the root node the decision made is whether the mode is 

the same as that of the last coded MB. Thereafter -- if not the same as the last MB -- at each 

node the decision to go down the left or right path is dictated by the next bit read from the 

bitstream by the BoolCoder. The node probabilities are stored in an array, the node number in 

the figure indicating the index at which the value for that node can be found. 

This process is described using the following steps: 

if ( B((probModeSame[type][lastmode]) ) 

mode = lastmode; 

else 

 *Stats = ModeDecisionTree[type][lastmode]  

if ( B((Stats[0]) ) 

 if ( B((Stats[2]) ) 

  if ( B((Stats[6]) ) 

   if(B(Stats[8])) 

    mode = CODE_GOLD_NEAR_MV 

   else 

           mode = CODE_GOLD_NEAREST_MV 

  else 

   if(B(Stats[7]) 
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    mode = CODE_GOLDEN_MV 

   else  

       mode = CODE_USING_GOLDEN  

 else 

  mode = CODE_INTRA; 

  if ( B((Stats[5]) ) 

   mode = CODE_INTER_FOURMV; 

  else 

   if ( B((Stats[1]) ) 

    If (B((Stats[4]) 

     Mode = CODE_INTER_NEAR_MV 

    else 

     mode = CODE_INTER_NEAREST_MV 

   else 

    if (B((Stats[3])) 

     mode = CODE_INTER_PLUS_MV 

    else 

     mode = CODE_INTER_NO_MV 

 return mode; 

 

In the case where the MB is coded using mode CODE_INTER_FOURMV the specific 

coding mode for each of the four blocks comes from a reduced set of four modes. In this case 

the mode is coded as a fixed two bit codeword using the BoolCoder and a probability of 128 

for each bit. The codewords are as follows: 

 

Block Coding Mode Code 

CODE_INTER_NO_MV 00 

CODE_INTER_PLUS_MV 01 

CODE_INTER_NEAREST_MV 10 

CODE_INTER_NEAR_MV 11 

Table 10 Block Coding Mode Signaling 

 

11 MOTION VECTORS 

VP6 supports ten MacroBlock coding modes (see Section 10) of which three are used for 

explicitly coding “new” motion vectors: 

• CODE_INTER_PLUS_MV : A new motion vector is coded with reference to the 

previous frame reconstruction. 

• CODE_GOLDEN_MV : A new motion vector is coded with reference to the Golden 

frame reconstruction 

• CODE_INTER_FOURMV : A different mode may to be specified for each of the 

luma blocks from a subset of those available at the MacroBlock level (see Table 10). 

Each block coded with mode CODE_INTER_PLUS_MV will have its own explicitly 

coded motion vector. 
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A further six modes use implicit motion vectors 

• CODE_INTER_NO_MV  : Use the motion vector (0,0) applied to the previous frame 

reconstruction. 

• CODE_INTER_NEAREST_MV : Use the motion vector from a previously coded 

nearest MacroBlock applied to the previous frame reconstruction. 

• CODE_INTER_NEAR_MV :: Use the motion vector from a previously coded near 

MacroBlock applied to the previous frame reconstruction 

• CODE_USING_GOLDEN : Use the motion vector (0,0) applied to the Golden frame 

reconstruction.     

• CODE_GOLD_NEAREST_MV:  Use the motion vector from a previously coded 

nearest MacroBlock applied to the Golden frame reconstruction. 

• CODE_GOLD_NEAR_MV: Use the motion vector from a previously coded near 

MacroBlock applied to the Golden frame reconstruction. 

A definition of nearest and near MacroBlocks and details of how these are derived can be 

found in Section 10. 

New motion vectors are coded differentially with respect to the motion vector of the nearest 

MacroBlock that uses the same reference frame (either the previous frame reconstruction or 

the Golden frame), if such a MacroBlock exists and it is either immediately to the left of or 

immediately above the current MacroBlock. Otherwise, new motion vectors are coded 

absolutely (this can be thought of as differential coded with respect to the vector (0,0)). 

 

 

11.1 Decoding a Motion Vector 

Each new motion vector comprises an x-component and a y-component. Each of these is 

categorized as either a short vector or a long vector. 

• A short vector is defined as a vector with a length that is less than 8 in ¼ pixel units. 

• A long vector is defined as a vector with a length that is greater than or equal to 8 

and less than or equal to 127 in ¼ pixel units. 

Different entropy strategies are used for coding short vectors and long vectors. 
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When decoding a motion vector the X component is decoded first followed by the Y 

component. The process of decoding a vector component is defined in the following table. 

 

Field Type Notes 

IsVectorShort B(x)  

ShortVector T Only present if ( IsVectorShort == 1)  

LongVector 7*B(x) Only present if (If IsVectorShort == 0)  

LongVectorBit3 B(x) Only present if (IsVectorShort == 0) and if any of bits 4 to 

7 are non-zero. 

ReadSignBit B(x)  

Table 11 Decoding a Motion Vector Component 

 

IsVectorShort. A flag that defines whether the vector is a long vector or a short vector. 

ShortVector. Only present if the vector is a short vector (IsVectorShort == 1). The short 

vector is decoded by traversing a BoolCoded tree (see Figure 11) 

LongVector. Only present if (IsVectorShort == 0). Bits 0 to 7 of a long vector (excluding bit 

3) are read in the following order: 0,1,2,7,6,5,4.  

LongVectorBit3: Only present if (IsVectorShort == 0) and at least one of bits 4 to 7 was 

non-zero. Bit 3 is implicitly set to 1 if bits 4 to 7 are all zero as we already know that this is 

not a short vector (i.e. its magnitude is >= 8). 

ReadSignBit: The sign bit for the vector. If the sign bit is 1 then negate the vector (vector = -

vector). 

For the purposes of description the following table defines data structures that are used to 

hold the probability values that are used when decoding motion vector components. 

 

Data Structure Notes 

IsMvShortProbs[2] Stores the probabilities used to decode IsVectorShort for the x and 

y components. (x=0, y=1) 

ShortMvProbs[2][7] Stores the tree node probabilities used to decode short motion vector 

components for x and y. (x=0, y=1 in first index) 

MvSizeProbs[2][8] Stores the probabilities needed to decode long motion vector 

components for x and y. (x=0, y=1 in first index) 

MvSignProbs[2] Stores the probabilities used to decode the sign bit for the x and y 

components. (x=0, y=1) 

Table 12 Probability data structures used in decoding motion vectors 

 

The default values for the data structures defined in Table 12 are as follows. Note that the 

first index in each table specifies x or y where x=0 and y =1; 

Default_IsMvShortProbs[2] = { 162, 164 }   // x,y 

Default_ShortMvProbs [2][7] =  
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{  

 { 225, 146, 172, 147, 214,  39, 156 },    // x 

 { 204, 170, 119, 235, 140, 230, 228 }   // y 

} 

Default_MvSizeProbs [2][8]=   

{      

 { 247, 210, 135,  68, 138, 220, 239, 246 },  // x 

    { 244, 184, 201,  44, 173, 221, 239, 253 }  // y 

} 

Default_MvSignProbs[2]  = { 128, 128 }    // x,y 

 

Figure 11 illustrates the BoolCoder tree used to decode short motion vectors. The node 

probabilities are defined in ShortMvProbs. 

 

Figure 11 Short MV Component Magnitude Decoding Tree 
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The following Pseudo code segment is provided to further clarify the process of decoding the 

X and Y motion vector components. 

// Loop twice. Once for the X vector (i = 0) and  

// once for the Y (i = 1)  

For ( i == 0; i < 2; i++ ) 

{ 

 Vector = 0 

 

 // Is the vector a short motion vector 

 If ( B( IsMvShortProbs[i] ) ) 

 { 

  // Traverse the short vector tree 

  If ( B( ShortMvProbs[i][0] ) ) 

  { 

   Vector += (1 << 2) 

   If ( B( ShortMvProbs[i][4] ) ) 

   { 

    Vector += (1 << 1) 

    Vector += B( ShortMvProbs[i][6] ) 

   } 

   Else 

    Vector += B( ShortMvProbs[i][5] ) 

  } 

  Else 

  { 

   If ( B( ShortMvProbs[i][1] ) ) 

   { 

    Vector += (1 << 1) 

    Vector += B( ShortMvProbs[i][3] ) 

   } 

   Else 

    Vector = B( ShortMvProbs[i][2] ) 

  } 

 } 

 Else  

 { 

  // Read bit 0,1,2, 7, 6, 5, 4 of the Long vector 

  Vector[i] = B( MvSizeProbs[i][0] ) 

  Vector[i] += B( MvSizeProbs[i][1] ) << 1 

  Vector[i] += B( MvSizeProbs[i][2] ) << 2 

  Vector[i] += B( MvSizeProbs[i][7] ) << 7 

  Vector[i] += B( MvSizeProbs[i][6] ) << 6 

  Vector[i] += B( MvSizeProbs[i][5] ) << 5 

  Vector[i] += B( MvSizeProbs[i][4] ) << 4 

 

  // Note : Bit 3 is implicit if none of  

  // the higher order bits are  

  if (Vector[i] & 0xF0 ) 

   Vector[i] += B( MvSizeProbs[i][3] ) << 3 

  else 

   Vector[i] += 0x08 

 }   

 

 SignBit = B(MvSignProbs[i]) 

 If (SignBit) 

 Vector[i] = -Vector[i]   

} 
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11.2 Motion Vector Probability Updates 

Vp6 allows per frame updates to the probability values used to decode motion vector 

components. For inter frames updates are applied in respect of the probability values used in 

the previous frame. However, when an intra frame is decoded all the probability values must 

all be reset to their defaults. 

The following tables define how these updates are decoded. In all cases the updates are 7 bit 

numbers. To convert these numbers to valid probabilities they must be modified as follows. 

NewProbability = DecodedValue << 1 

If (NewProbability == 0) 

 NewProbability = 1 

 

Field Type Notes 

XShortVecProbUpdateFlag B(x)  

XshortVecProbability b(7) Only present if (XShortVecProbUpdateFlag == 1) 

XsignProbUpdateFlag B(x)  

XsignProbability b(7) Only present if (XsignProbUpdateFlag == 1) 

YshortVecProbUpdateFlag B(x)  

YshortVecProbability b(7) Only present if (YShortVecProbUpdateFlag == 1) 

YsignProbUpdateFlag B(x)  

YsignProbability b(7) Only present if (YsignProbUpdateFlag == 1) 

ShortVecXTreeNodeProbs  See Table 14 

ShortVecYTreeNodeProbs  See Table 14 

LongVecXBitProbs  See Table 15 

LongVecYBitProbs  See Table 15 

Table 13 Motion Vector Tree Probability Coding 

 

XShortVecProbUpdateFlag. A flag indicating whether an update to the x entry of 

IsMvShortProbs follows. 

XShortVecProbability. A new entry for x in IsMvShortProbs.   

XSignProbUpdateFlag. Flag indicating whether an update to the x entry of MvSignProbs 

follows. 

XSignProbability. A new entry for x in MvSignProbs.   

YShortVecProbUpdateFlag. A flag indicating whether an update to the y entry of 

IsMvShortProbs follows. 

YShortVecProbability. A new entry for y in IsMvShortProbs.   
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YSignProbUpdateFlag. Flag indicating whether an update to the y entry of MvSignProbs 

follows. 

YSignProbability. A new entry for y in MvSignProbs. 

ShortVecXTreeNodeProbs. Set of seven new node probabilities for decoding the x-

component magnitude of a short MV (see Figure 11 and Table 14).  

ShortVecYTreeNodeProbs. Set of seven new node probabilities for decoding the y-

component magnitude of a short MV (see Figure 11 and Table 14).  

LongVecXTreeNodeProbs. Set of probabilities that each of the eight bits of the magnitude 

of the x-component of a long MV is zero (see Table 15). 

LongVecYTreeNodeProbs. Set of probabilities that each of the eight bits of the magnitude 

of the y-component of a long MV is zero (see Table 15). 

The following constant data structures define the probabilities used to decode BoolCoded bits 

in Table 13. 

UpdateIsMvShortProbabilities[2] = { 237, 231 } // x, y 

UpdateMvSignProbabilities[2] = { 246, 243 }  // x, y 

 

 

 

Field Type Notes 

Seven Sets of:  0 to 6 

NodeProbFollows B(x)  

NodeTreeNodeProb b(7) Present only if (NodeProbFollows == 1). 

Table 14 Short MV Tree Node updates 

 

NodeProbFollows. Flag indicating whether an update follows to the ‘nth’ entry in 

ShortMvProbs for the current motion vector component (x or y). 

NewTreeNodeProb. The updated entry in ShortMvProbs for the current moition vector 

component (x or y). See note on converting 7bit values to 8 bit probabilities at the top of this 

section. 

The following constant data structure defines the probabilities used to decode the BoolCoded 

bits in Table 14. 

UpdateShortVectorNodeProbabilities[2][7] =  

{ 

 {253, 253, 254, 254, 254, 254, 254},  // x 

 {245, 253, 254, 254, 254, 254, 254}  // y 

} 
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Field Type Notes 

Eight Sets of:  Bit order (0, 1, 2, 7, 6, 5, 4, 3): 

BitProbFollows B(x) Flag indicating whether new bit probability for 

component follows. 

BitProb b(7) New value for the bit probability. Present only if 

BitProbFollows is 1. 

Table 15 Long motion vector bit probability updates 

 

BitProbFollows. Flag indicating whether an update follows to the ‘nth’ entry in 

MvSizeProbs for the current motion vector component (x or y). 

BitProb. The updated entry in MvSizeProbs for the current motion vector component (x or 

y). See note on converting 7bit values to 8 bit probabilities at the top of this section. 

The following constant data structure defines the probabilities used to decode BitProbFollows 

in Table 15. 

UpdateLongVectorBitProbabilities[2][8] 

{ 

 {254, 254, 254, 254, 254, 250, 250, 252}, // x 

 {254, 254, 254, 254, 254, 251, 251, 254} // y 

} 

 

11.3 Prediction Loop Filtering 

Whilst VP6 does not have a traditional reconstruction buffer loop filter, it does support 

filtering of the pixels adjacent to 8x8 block boundaries in the prediction frame (previous 

frame or golden frame reconstruction as appropriate), as part of the process for creating a 

prediction block for non-zero motion vectors. As with traditional loop filters this helps to 

reduce blocking artifacts, but the filtering is not carried out in place within the reconstruction 

buffer. Rather, the output is copied into a separate temporary buffer. This is done before any 

filtering required for fractional pixel motion compensation (see Section 11.4).  

The prediction Loop filter is disabled in Simple Profile (see Section 5). In other profiles it is 

enabled if the UseLoopFilter flag in the frame header is set to 1 (see Section 9). 

If the prediction block defined by a motion vector straddles an 8x8 block boundary in the 

prediction frame then a de-blocking and/or de-ringing filter is applied to the pixels adjacent to 

the boundary to reduce any discontinuities (see Figure 12).  
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Figure 12 Prediction Loop Filtering of 8x8 Block Boundaries 

 

 

 

 

A maximum of two boundaries are filtered, one vertical and one horizontal. The following 

pseudo code illustrates how these boundaries are selected.   

{ 

 // mx and mv are the x and y motion vector components for this block 

 

 mVx       

 mVy       

 BoundaryX 

 BoundaryY  

 

 // Calculate full pixel aligned vectors for x and y 

 // MvShift is 2 for Y and 3 for UV 

    if(mx > 0 ) 

        mVx = (mx >> MvShift) 

    else  

        mVx = -((-mx) >> MvShift) 

 

    if(my > 0 ) 

        mVy = (my >> pbi->mbi.MvShift) 

    else 

        mVy = -((-my) >> pbi->mbi.MvShift) 

Reconstruction  

Motion Estimated 
Predictor Block 



VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL 

August 17, 2006                          © On2 Technologies Inc 2006 46 

 

   

 // calculate block border position for x 

 BoundaryX = (8 – (mVx & 7))&7 

 

 // calculate block border position for y 

 BoundaryY = (8 - (mVy & 7))&7 

 

} 

The values of BoundaryX and BoundaryY are the offsets in x and y of the edges that should 

be filtered from the top left hand corner of the 8x8 region pointed to by the whole pixel 

aligned vectors mVx and mVy. 

Two filter options are defined: 

� A deringing filter: has de-blocking & de-ringing characteristics (This option is not 

currently supported by the decoder (see Table 3) 

� A deblocking filter: has only de-blocking characteristic. 

The deblocking loop filter comprises a 4-tap filter (1, -3, 3, -1) and a quantizer dependant 

bounding function applied across the horizontal and vertical block boundaries as illustrated 

by the following pseudo code. The limit values used by the bounding function are defined in 

a table indexed by the current quantizer level (see DctQMask in Table 1). 

 

// Quantizer level dependent limit values 

PredictionLoopFilterLimitValues [64] =  

{ 

    30, 25, 20, 20, 15, 15, 14, 14, 

    13, 13, 12, 12, 11, 11, 10, 10, 

    9,  9,  8,  8,  7,  7,  7,  7, 

    6,  6,  6,  6,  5,  5,  5,  5, 

    4,  4,  4,  4,  3,  3,  3,  3, 

    2,  2,  2,  2,  2,  2,  2,  2, 

    2,  2,  2,  2,  2,  2,  2,  2, 

    1,  1,  1,  1,  1,  1,  1,  1 

}  

 

// Function to clamp values to the integer range 0 to 255 

Clamp0To255( Input ) 

{ 

 If ( Input < 0 ) 

  Return 0 

 Else if ( Input > 255 ) 

  Return 255 

 Else 

  Return Input 

} 

 

// Function to convert a signed value to an absolute value 

abs ( SignedVal ) 

{ 

 if ( SignedVal < 0 ) 

  return –SignedVal 

 else  

  return SignedVal 

} 
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// Prediction loop filter bounding function 

Bound ( FLimit, FiltVal ) 

{ 

 

if ( abs(FiltVal) < (2 * Flimit)  ) 

{ 

 if ( FiltVal < 0 ) 

  Result = -1 * ( Flimit - abs( -FiltVal - Flimit) ) 

 else 

  Result = ( Flimit - abs( FiltVal - Flimit) ) 

}   

else  

 Result = 0 

 

return Result 

} 

 

PredictionLoopFilterFunction( Srcptr, Step, CurrentQuantizerIndex ) 

{ 

 

// Setup the filter limit value based upon the current  

// frame’s quantizer level “DctQMask” (see in Table 1) 

FLimit = LoopFilterLimitValues[CurrentQuantizerIndex] 

 

For each point along the block edge to be filtered. 

{ 

FiltVal = ( Srcptr [- (2 * Step)] -  

          (Srcptr [-Step] * 3)  +  

    (Srcptr [0] * 3) -  

    Srcptr [Step] + 4 ) >> 3 

 

FiltVal = Bound ( FLimit, FiltVal ) 

 

  Srcptr [-1] = Clamp0To255( Src[-1] + FiltVal ) 

  Srcptr [ 0] = Clamp0To255([Src[ 0] - FiltVal]) 

 

Srcptr += Pitch 

} 

} 

Step is the distance between consecutive samples. For vertical block boundaries the value of 

Step is 1. 

11.4 Filtering For Fractional Pixel Motion Compensation 

VP6 supports the use of fractional pixel motion compensation. This requires the use of 

interpolation to determine sample values at non whole-pixel locations.  

Interpolation is achieved by means of filters applied to create interpolated values at ¼ sample 

precision in luma and 
1
/8 sample precision in chroma. 

Two types of filtering are supported:  

• Bilinear Filtering: Using 2 tap filters (see Section 11.4.1). 

• Bicubic Filtering: Using 4 tap filters (see Section 11.4.2). 

In “Simple Profile” Bicubic filtering is not allowed, so Bilinear filtering is used in all cases 

where fraction pixel predictors are required. 
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In Advanced Profile the decoder uses criteria specified by the encoder in the frame header 

(see Table 2) to select at the block level between bicubic and bilinear filtering. 

AutoSelectPMFlag . Where this flag is set to 0 the decoder must use Bilinear or bicubic 

filtering exclusively as specified by the BiCubicOrBilinearFiltFlag. Where this flag is set to 

1 the filter choice is defined by the prediction block variance and motion vector size. 

PredictionFilterMvSizeThresh. This field specifies a motion vector size threshold. Where 

the magnitude of either the x or the y component of a vector is greater than the threshold 

value the decoder must use the Bilinear filtering method. The field value is converted to a 

threshold in ¼ pixel units as follows. 

// has a non zero threshold been specified 

if ( PredictionFilterMvSizeThresh > 0 ) 

{ 

 FilterMvSizeThresh = (1 << (FilterMvSizeThresh - 1)) << 2   

} 

// No motion vector length restriction 

Else 

 FilterMvSizeThresh = ((MAX_MV_EXTENT >> 1) + 1) << 2  

 

PredictionFilterVarThresh. This field is used to specify a prediction block variance 

threshold that is used to select between bilinear and bicubic filtering. The threshold is only 

tested in cases where bicubic filtering is allowed and the magnitude of both the x and the y 

motion vector components is less than the size threshold specified above. A value of zero for 

this field indicates that the decoder should not apply a variance threshold test and should use 

the bicubic filtering method. In cases where this field is non-zero, bicubic filtering is used if 

the measured variance of the prediction block is greater than a threshold number computed as 

follows:- 

FilterVarThresh =  (PredictionFilterMvSizeThresh << 5) 

The variance test is applied before filtering to create a fractional pixel prediction block, hence 

the prediction block variance is calculated using an 8x8 whole sample aligned region of the 

appropriate reconstruction buffer (either the previous frame or golden frame). The whole 

sample aligned vectors used to define the top left hand corner of this region are calculated as 

follows:- 

// Mvshift is 2 for luma blocks and 3 for chroma blocks 

WholeSampleAlignedX = (MvX >> MvShift) 

WholeSampleAlignedY = (MvY >> MvShift) 

 

For performance reasons the variance calculation does not consider all the points in the 

prediction block. Rather it computes the variance based upon 16 sample points (every other 

sample in every other row) as illustrated in the following pseudo code. 

Var16Point ( DataPtr, Stride ) 

{ 

 DiffPtr = DataPtr 

 XSum = 0 

 XXSum = 0 

 

for ( i=0; i<4; i+=2 ) 

{ 

// Examine alternate pixel locations. 

XSum += DiffPtr[0] 

XXSum += DiffPtr[0] * DiffPtr[0] 

XSum += DiffPtr[2] 

XXSum += DiffPtr[2] * DiffPtr[2] 
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XSum += DiffPtr[4] 

XXSum += DiffPtr[4] * DiffPtr[4] 

XSum += DiffPtr[6] 

XXSum += DiffPtr[6] * DiffPtr[6] 

 

// Step to next row of block. 

DiffPtr += (Stride << 1) 

} 

 

// Compute population variance as mis-match metric. 

return (( (XXSum<<4) - XSum*XSum ) ) >> 8 

} 

Stride is the distance between corresponding samples in consecutive rows. 

It is important to note that the reconstruction buffer must not be filtered in place. The results 

of the filtering process must be written to a separate buffer.   

 

11.4.1 Bilinear Filtering 

The following 1-D filter taps are used for bilinear filtering to ¼ sample precision in luma. 

BilinearLumaFilters[4][2] = 

{ 

    { 128,   0 }, // Full sample aligned 

    {  96,  32 }, // 1/4  

    {  64,  64 }, // 1/2 

    {  32,  96 }, // 3/4 

} 

The following 1-D filter taps are used for bilinear filtering to 
1
/8 sample precision in chroma. 

BilinearChromaFilters[8][2] = 

{ 

    { 128,   0 }, // Full sample aligned 

    { 112,  16 }, // 1/8 

    {  96,  32 }, // 1/4  

    {  80,  48 }, // 3/8   

    {  64,  64 }, // 1/2 

    {  48,  80 },  // 5/8 

    {  32,  96 }, // 3/4 

    {  16, 112 }  // 7/8 

} 

In cases where the motion vector has a fractional component in both x and y, an intermediate 

result is calculated by applying the filter in the x direction (horizontally). This intermediate 

result used as input to a second pass which filters in the y direction (vertically) to produce the 

final 2-d filtered output. 

The results of the filtering process for each point are calculated as follows: 

// PixelStep Is the distance between consecutive samples. 

// This is 1 when filtering in x  

// When filtering in y it is the buffer stride (line length)  

 

OutputVal =  (SrcPtr[0] * Filter[0]) + (SrcPtr[PixelStep] * Filter[1]) + 64 

OutputVal >>= 7   
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11.4.2 Bicubic Filtering 

Bicubic filter taps are calculated for 16 values of alpha from -0.25 to -1.00. For each value of 

alpha, there are 8 sets of coefficients corresponding to 1/8 pel offsets from 0 to 7/8. These 

values are only used in VP6.2 bitstreams. The 17th entry in the table is used for VP6.1 

bitstreams. 

    BicubicFilterSet[17][8][4] = 

    {   {  0, 128,   0,   0 },  // Full sample aligned, A ~= -0.25 

        { -3, 122,   9,   0 },  // 1/8 

        { -4, 109,  24,  -1 },  // 1/4 

        { -5,  91,  45,  -3 },  // 3/8 

        { -4,  68,  68,  -4 },  // 1/2 

        { -3,  45,  91,  -5 },  // 5/8 

        { -1,  24, 109,  -4 },  // 3/4 

        {  0,   9, 122,  -3 },  // 7/8 

    }, 

    {   {  0, 128,   0,   0 },  // A ~= -0.30 

        { -4, 124,   9,  -1 }, 

        { -5, 110,  25,  -2 }, 

        { -6,  91,  46,  -3 }, 

        { -5,  69,  69,  -5 }, 

        { -3,  46,  91,  -6 }, 

        { -2,  25, 110,  -5 }, 

        { -1,   9, 124,  -4 }, 

    }, 

    {   {  0, 128,   0,   0 },  // A ~= -0.35 

        { -4, 123,  10,  -1 }, 

        { -6, 110,  26,  -2 }, 

        { -7,  92,  47,  -4 }, 

        { -6,  70,  70,  -6 }, 

        { -4,  47,  92,  -7 }, 

        { -2,  26, 110,  -6 }, 

        { -1,  10, 123,  -4 }, 

    }, 

    {   {  0, 128,   0,   0 },  // A ~= -0.40 

        { -5, 124,  10,  -1 }, 

        { -7, 110,  27,  -2 }, 

        { -7,  91,  48,  -4 }, 

        { -6,  70,  70,  -6 }, 

        { -4,  48,  92,  -8 }, 

        { -2,  27, 110,  -7 }, 

        { -1,  10, 124,  -5 }, 

    }, 

    {   {  0, 128,   0,   0 },  // A ~= -0.45 

        { -6, 124,  11,  -1 }, 

        { -8, 111,  28,  -3 }, 

        { -8,  92,  49,  -5 }, 

        { -7,  71,  71,  -7 }, 

        { -5,  49,  92,  -8 }, 

        { -3,  28, 111,  -8 }, 

        { -1,  11, 124,  -6 }, 

    }, 

    {   {  0, 128,   0,   0 },  // A ~= -0.50 

        { -6, 123,  12,  -1 }, 

        { -9, 111,  29,  -3 }, 

        { -9,  93,  50,  -6 }, 

        { -8,  72,  72,  -8 }, 

        { -6,  50,  93,  -9 }, 

        { -3,  29, 111,  -9 }, 

        { -1,  12, 123,  -6 }, 

    }, 
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    {   {  0, 128,   0,   0 },  // A ~= -0.55 

        { -7, 124,  12,  -1 }, 

        {-10, 111,  30,  -3 }, 

        {-10,  93,  51,  -6 }, 

        { -9,  73,  73,  -9 }, 

        { -6,  51,  93, -10 }, 

        { -3,  30, 111, -10 }, 

        { -1,  12, 124,  -7 }, 

    }, 

    {   {  0, 128,   0,   0 },  // A ~= -0.60 

        { -7, 123,  13,  -1 }, 

        {-11, 112,  31,  -4 }, 

        {-11,  94,  52,  -7 }, 

        {-10,  74,  74, -10 }, 

        { -7,  52,  94, -11 }, 

        { -4,  31, 112, -11 }, 

        { -1,  13, 123,  -7 }, 

    }, 

    {   {  0, 128,   0,   0 },  // A ~= -0.65 

        { -8, 124,  13,  -1 }, 

        {-12, 112,  32,  -4 }, 

        {-12,  94,  53,  -7 }, 

        {-10,  74,  74, -10 }, 

        { -7,  53,  94, -12 }, 

        { -4,  32, 112, -12 }, 

        { -1,  13, 124,  -8 }, 

    }, 

    {   {  0, 128,   0,   0 },  // A ~= -0.70 

        { -9, 124,  14,  -1 }, 

        {-13, 112,  33,  -4 }, 

        {-13,  95,  54,  -8 }, 

        {-11,  75,  75, -11 }, 

        { -8,  54,  95, -13 }, 

        { -4,  33, 112, -13 }, 

        { -1,  14, 124,  -9 }, 

    }, 

    {   {  0, 128,   0,   0 },  // A ~= -0.75 

        { -9, 123,  15,  -1 }, 

        {-14, 113,  34,  -5 }, 

        {-14,  95,  55,  -8 }, 

        {-12,  76,  76, -12 }, 

        { -8,  55,  95, -14 }, 

        { -5,  34, 112, -13 }, 

        { -1,  15, 123,  -9 }, 

    }, 

    {   {  0, 128,  0,    0 },  // A ~= -0.80 

        {-10, 124,  15,  -1 }, 

        {-14, 113,  34,  -5 }, 

        {-15,  96,  56,  -9 }, 

        {-13,  77,  77, -13 }, 

        { -9,  56,  96, -15 }, 

        { -5,  34, 113, -14 }, 

        { -1,  15, 124, -10 }, 

    }, 

    {   {  0, 128,  0,    0 },  // A ~= -0.85 

        {-10, 123,  16,  -1 }, 

        {-15, 113,  35,  -5 }, 

        {-16,  98,  56, -10 }, 

        {-14,  78,  78, -14 }, 

        {-10,  56,  98, -16 }, 

        { -5,  35, 113, -15 }, 

        { -1,  16, 123, -10 }, 

    }, 
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    {   {  0, 128,  0,    0 },  // A ~= -0.90 

        {-11, 124,  17,  -2 }, 

        {-16, 113,  36,  -5 }, 

        {-17,  98,  57, -10 }, 

        {-14,  78,  78, -14 }, 

        {-10,  57,  98, -17 }, 

        { -5,  36, 113, -16 }, 

        { -2,  17, 124, -11 }, 

    }, 

    {   {  0, 128,   0,   0 },  // A ~= -0.95 

        {-12, 125,  17,  -2 }, 

        {-17, 114,  37,  -6 }, 

        {-18,  99,  58, -11 }, 

        {-15,  79,  79, -15 }, 

        {-11,  58,  99, -18 }, 

        { -6,  37, 114, -17 }, 

        { -2,  17, 125, -12 }, 

    }, 

    {   {  0, 128,   0,   0 },  // A ~= -1.00 

        {-12, 124,  18,  -2 }, 

        {-18, 114,  38,  -6 }, 

        {-19,  99,  59, -11 }, 

        {-16,  80,  80, -16 }, 

        {-11,  59,  99, -19 }, 

        { -6,  38, 114, -18 }, 

        { -2,  18, 124, -12 }, 

    }, 

    { 

        {  0, 128,   0,  0 },  // Coefficients for VP6.1 bitstreams    

        { -4, 118,  16, -2 },     

        { -7, 106,  34, -5 },     

        { -8,  90,  53, -7 },     

        { -8,  72,  72, -8 },     

        { -7,  53,  90, -8 },     

        { -5,  34, 106, -7 },     

        { -2,  16, 118, -4 }      

    } 

} 

 

In cases where the motion vector has a fractional component in both x and y, an intermediate 

result is calculated by applying the filter in the x direction (horizontally). This intermediate 

result used as input to a second pass which filters in the y direction (vertically) to produce the 

final 2-d filtered output. 

The results of the filtering process for each point are calculated as follows: 

// PixelStep Is the distance between consecutive samples. 

// This is 1 when filtering in x  

// When filtering in y it is the buffer stride (line length)  

 

OutputVal =  (SrcPtr[-PixelStep] * Filter[0]) +  

    (SrcPtr[0] * Filter[1]) + 

    (SrcPtr[PixelStep] * Filter[2]) + 

    (SrcPtr[2 * PixelStep] * Filter[3]) + 64 

OutputVal >>= 7  

 

// Clip the result the output range 0 to 255.  

If (OutputVal < 0) 

 OutputVal = 0 

Else if (OutputVal > 255) 

 OutputVal = 255 
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11.5 Support For Unrestricted Motion Vectors 

VP6 support the concept of unrestricted motion vectors (UMV). That is, it is legal for a 

vector to point to a prediction block that extends beyond the borders of the image. To support 

this feature and the playback scaling features of the codec (see Section 2) the  reconstruction 

buffers are extended by 48 sample points in all directions:- 

The buffers are extended by duplicating the edge values 48 times. This is done first in x 

(horizontally) and then in the y (vertically). 

 

Figure 13 Extension of the reconstruction buffer to create UMV borders 

 
 

12 SCAN ORDERS 

Scan re-ordering refers to the process of changing the order in which the coefficients of a 

DCT transformed block are coded in an attempt to group the non-zero coefficients together at 

the beginning of the list. 

If we number the 64 coefficients of the 8x8 transformed block in raster order such that 

coefficients 0 and 63 are the DC and highest order AC coefficients, respectively, then the 

scan re-ordering is specified by a 64 element array which gives the new ordering. In the 

bitstream coefficients appear in the modified order, so at the decoder they have to be re-

arranged back to raster order before inverse quantization and IDCT.  

 

 

Original image 

Unrestricted motion vector borders 
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12.1 Default Scan Order 

The default scan order is the standard zig-zag order shown in Figure 14.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Default  zig-zag scan order 

 

The decoder uses the following table to convert back to raster order before applying the 

inverse quantizer and IDCT. 

default_dequant_table[64] = 

{    

    0,  1,  8,  16,  9,  2,  3, 10, 

    17, 24, 32, 25, 18, 11,  4,  5, 

    12, 19, 26, 33, 40, 48, 41, 34, 

    27, 20, 13,  6,  7, 14, 21, 28, 

    35, 42, 49, 56, 57, 50, 43, 36,  

    29, 22, 15, 23, 30, 37, 44, 51, 

    58, 59, 52, 45, 38, 31, 39, 46, 

    53, 60, 61, 54, 47, 55, 62, 63 

 0   1   2   3   4   5   6   7 

 

 8   9  10  11  12  13  14  15 

 

16  17  18  19  20  21  22  23 

 

24  25  26  27  28  29  30  31 

 

32  33  34  35  36  37  38  39 

 

40  41  42  43  44  45  46  47 

 

48  49  50  51  52  53  54  55 

 

56  57  58  59  60  61  62  63 
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} 

 

12.2 Custom Scan Order 

In addition to the default scan orders specified above VP6 supports the use of per frame 

custom scan orders. The use of custom scan orders is an encoder decision and is signaled to 

the decoder using the ScanOrderUpdateFlag (see Table 17). 

If ScanOrderUpdateFlag indicates that there is no custom scan-order for a frame, the scan 

order must be reset to the default.  

For intra-coded frames the scan order is first set to the appropriate default. This default is 

then updated using delta information encoded in the bitstream. For inter-coded frames deltas 

are applied to the custom scan order used in the previous frame rather than to the one of the 

default scan orders. 

In all scan orders the first DCT coefficient is always the DC coefficient.  

All references below to specific AC coefficients refer to their position in the standard zig-zag 

scan order as shown in Figure 14. For example AC2 would refer to the second AC coefficient 

in ziz-zag order that corresponds to coefficient 8 in the original raster order. 

Custom scan order updates are read as part of the functional block “Coefficient Probability 

Updates” (see Figure 2-Figure 5).  

The 63 AC positions (numbered 1 to 63) in the modified scan order are split into 16 bands as 

follows: 

 

Band Number Positions 

0 1 

1 2 to 4 

2 5 to 10 

3 11 to 12 

4 13 to 15 

5 16 to 19 

6 20 to 21 

7 22 to 26 

8 27 to 28 

9 29 to 34 

10 35 to 36 

11 37 to 42 

12 43 to 48 

13 49 to 53 

14 54 to 57 

15 58 to 63 

Table 16 Custom scan order bands 
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To specify a custom scan order, each AC coefficient (in zig zag order) is assigned to one of 

the above bands. Within each band the coefficients are then sorted into ascending order based 

upon the original zig-zag scan order.  

For example, if AC7 and AC21 are labeled as belonging to band 3, then AC7 will be assigned 

position 11 and AC21 position 12 in the modified scan order. 

The following table describes the way custom scan order deltas are coded in the bitstream.  

 

Field Type Notes 

ScanOrderUpdateFlag b(1) Indicates whether scan-order update 

follows. 

63 Sets of:   

CoeffBandUpdateFlag B(x) Flag indicating whether the 

coefficient’s band has changed 

NewCoeffBand b(4) The new band for the coefficient. 

Table 17 Scan Order Update 

 

ScanOrderUpdateFlag. Indicates whether or not a set of scan-order updates follow: (1) yes 

(0) no.  

CoeffBandUpdateFlag. A flag indicating whether or not a coefficient’s band has been 

updated: (1) yes  (0) no. Present only if ScanOrderUpdateFlag is 1. 

NewCoeffBand. 4-bit band specifier for the coefficient. Present only if both 

ScanOrderUpdateFlag  and CoeffBandUpdateFlag are 1. 

The following table gives the probabilities used for decoding CoeffBandUpdateFlag  for 

each of the AC coefficients in standard zig-zag order. 

CoeffBandUpdateFlagProbs[64] = 

{   

 NA,  132, 132, 159, 153, 151, 161, 170,  

 164, 162, 136, 110, 103, 114, 129, 118,  

 124, 125, 132, 136, 114, 110, 142, 135,  

 134, 123, 143, 126, 153, 183, 166, 161,  

 171, 180, 179, 164, 203, 218, 225, 217,  

 215, 206, 203, 217, 229, 241, 248, 243, 

 253, 255, 253, 255, 255, 255, 255, 255,  

 255, 255, 255, 255, 255, 255, 255, 255  

} 

The first entry in the table is a dummy entry for the DC coefficient. This always appears at 

the start of the scan order and is never updated in the bitstream. 

13 DCT COEFFICIENT TOKEN SET AND DECODING 

Quantized DCT coefficients have a range of twelve bits plus sign (-2048, 2047) and are 

represented by the following set of twelve tokens: 
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Ind
ex 

Token Min  Max  #Extra 
Bits 
(incl. 
sign) 

Arithmetic Encoding the 
Extra Bits 

0 ZERO_TOKEN 0 0 
*  

1 ONE_TOKEN 1 1 1 B(128) 

2 TWO_TOKEN 2 2 1 B(128) 

3 THREE_TOKEN 3 3 1 B(128) 

4 FOUR_TOKEN 4 4 1 B(128) 

5 DCT_VAL_CATEGORY1 5 6 2 B(159), B(128) 

6 DCT_VAL_CATEGORY2 7 10 3 B(165), B(145), B(128) 

7 DCT_VAL_CATEGORY3 11 18 4 B(173), B(148), B(140), B(128) 

8 DCT_VAL_CATEGORY4 19 34 5 B(176), B(155), B(140), B(135), 

B(128) 

9 DCT_VAL_CATEGORY5 35 66 6 B(180), B(157), B(141), B(134), 

B(130), B(128) 

10 DCT_VAL_CATEGORY6 67 2114 12 B(254), B(254), B(243), B(230), 

B(196), B(177), B(153), B(140), 

B(133), B(129), B(128) 

11 DCT_EOB_TOKEN N/A N/A 
**  

Table 18 Token Set and Extrabits 

 

For each token the min-value represents the smallest value that can be encoded using that 

token and the number of extra-bits reflects the range of values that the token can represent,  

with the most significant bit of the magnitude sent first followed in turn by each subsequent 

less significant bit. The last extrabit encoded is always the sign bit. In the arithmetic encoding 

the extra bits are each encoded with differing probabilities as specified by the final column in 

table 1.  In Huffman encodings these bits are just pumped on to the bitstream. 

 

For example, the token DCT_VAL_CATEGORY3 represents the eight numbers whose 

magnitude is in the range (11,18) inclusive. This requires three bits for magnitude, plus one to 

indicate sign giving a total of four extra-bits. The value –17 has the four extra-bits 

represented by the Hex value 0xD (sign is LSB, magnitude coded as 17-11=6), so is encoded 

by the token DCT_VAL_CATEGORY3 followed by the four bits 0xD. 

In addition two tokens listed above are sometimes used to decode more than a single 

coefficient.  The table below describes these uses.   
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Token Situation Description 

ZERO_TOKEN DC when arithmetic 

Encoded 

The current coefficient has a 0 value. 

ZERO_TOKEN DC when Huffman 

Encoded  

The current coefficient has a 0 value. 

Extra bits specify the a run of additional 

blocks
*
 within the same plane that also 

have a 0 in the DC position. 

ZERO_TOKEN AC The current coefficient has a 0 value. 

The extrabits specify the number of 

subsequent coefficients (following the 

same scan order)  within the block that 

are also 0.  ( see figure x) 

EOB_TOKEN DC Not allowed! 

EOB_TOKEN In first AC Coefficient 

when Huffman Encoded 

Every AC coefficient in the current block 

is 0.  

Extra bits specify the a run of additional 

blocks within the same plane that also 

have a 0 for every AC coefficient. ( see 

figure x) 

EOB_TOKEN Anywhere but the first 

AC Coefficient when 

Huffman Encoded 

The current coefficient has a 0 value and 

the rest of the coefficients within the 

same block in the current scanorder are 

also 0. 

EOB_TOKEN  Any AC coefficient 

when Arithmetic 

Encoded 

The current coefficient has a 0 value and 

the rest of the coefficients within the 

same block in the current scanorder are 

also 0. 

Table 19 Special DCT Tokens 

 

*
Blocks are encoded in raster order within a macroblock, and then macroblocks are encoded 

in raster order within a video image.  Subsequent blocks in Y are ordered as follows: 

 

0 1 4 5 

2 3 6 7 
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In the arithmetic encoder these tokens can be decoded from the bitstream using a fixed binary 

tree (figure 4).   The probabilities at each node in the tree are determined contextually 

(discussed later in this section) and are stored in tables that are kept by the decoder and may 

be updated on a frame by frame basis.  

 

 ZERO_CONTEXT_NODE 

EOB_CONTEXT_NODE ONE_CONTEXT_NODE 

LOW_VALUE_CONTEXT_NODE 

HIGH_LOW_CONTEXT_NODE TWO_CONTEXT_NODE 

THREE_CONTEXT_NODE CAT_3_4_CONTEXT_NODE 

CAT_5_CONTEXT_NODE 

CAT_1_CONTEXT_NODE 

CAT_3_CONTEXT_NODE 

EOB 0 1 

2 

3 4 CAT1 CAT2 

CAT3 CAT4 CAT5 CAT6 
 

Figure 15 Binary Coding Tree for DC & AC Tokens 

 

The probabilities of taking the left branch ( 0) at each of these labeled nodes are 

stored in the as a single dimensional vector with 11 entries indexed as follows: 

 

 

Index Node Name 

0 ZERO_CONTEXT_NODE 

1 EOB_CONTEXT_NODE 
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2 ONE_CONTEXT_NODE 

3 LOW_VAL_CONTEXT_NODE 

4 TWO_CONTEXT_NODE 

5 THREE_CONTEXT_NODE 

6 HIGH_LOW_CONTEXT_NODE 

7 CAT_ONE_CONTEXT_NODE 

8 CAT_THREEFOUR_CONTEXT_NODE 

9 CAT_THREE_CONTEXT_NODE 

10 CAT_FIVE_CONTEXT_NODE 

Table 20 DC & AC Coding Tree Node Probability Values 

 

13.1 DCT Token Huffman Tree 

In Figure 15 Binary Coding Tree for DC & AC Tokens a tree is specified for decoding DCT 

coefficient tokens. This tree along with a set of probabilities which correspond to the 

probabilities of taking the 0 branch at each node in the tree is converted to a set of Huffman 

probabilities as follows: 

 

Input:  NodeProb[]  : Set of 11 Node Probabilities. 

Output: HuffProb[]  : Set of 12 Huffman Probabilities. 

 

DCTTokenBoolTreeToHuffProbs 

{ 

    HuffProb[DCT_EOB_TOKEN] = (NodeProb[0] * NodeProb[1]        ) >> 8 

    HuffProb[ZERO_TOKEN]    = (NodeProb[0] * (255 - NodeProb[1])) >> 8 

 

    Prob = 255 - NodeProb[0] 

    HuffProb[ONE_TOKEN]           = (Prob * NodeProb[2]) >> 8 

 

    Prob  = (Prob*(255 - NodeProb[2])) >> 8 

    Prob1 = (Prob * NodeProb[3]) >> 8 

    HuffProb[TWO_TOKEN]           = (Prob1 * NodeProb[4]) >> 8 

 

    Prob1 = (Prob1 * (255 - NodeProb[4])) >> 8 

    HuffProb[THREE_TOKEN]         = (Prob1 * NodeProb[5]        ) >> 8 

    HuffProb[FOUR_TOKEN]          = (Prob1 * (255 - NodeProb[5])) >> 8 

 

    Prob = (Prob * (255 - NodeProb[3])) >> 8 

    Prob1 = (Prob * NodeProb[6]) >> 8 

    HuffProb[DCT_VAL_CATEGORY1]   = (Prob1 * NodeProb[7]        ) >> 8 

    HuffProb[DCT_VAL_CATEGORY2]   = (Prob1 * (255 - NodeProb[7])) >> 8 
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    Prob = (Prob * (255 - NodeProb[6])) >> 8 

    Prob1 = (Prob * NodeProb[8]) >> 8 

    HuffProb[DCT_VAL_CATEGORY3]   = (Prob1 * NodeProb[9]        ) >> 8 

    HuffProb[DCT_VAL_CATEGORY4]   = (Prob1 * (255 - NodeProb[9])) >> 8 

 

    Prob = (Prob * (255 - NodeProb[8])) >> 8 

    HuffProb[DCT_VAL_CATEGORY5]   = (Prob * NodeProb[10]        ) >> 8 

    HuffProb[DCT_VAL_CATEGORY6]   = (Prob * (255 - NodeProb[10])) >> 8 

} 

13.2 DC Decoding 

For Dc the decoder must maintain a 2 dimensional array of probabilities: 

DCProbs[2][11] 

The first dimension of this array is indexed by colour plane as follows: 

Index Description 

0 Y colour plane 

1 U or V colour plane 

Table 21 DC Node Contexts Dimension 1 Index 

 

The second dimension of this array corresponds to one probability for each entry in Table: 

DC & AC Coding Tree Node Probability Values.  

At each key frame ( I frame) every probability value in this array of DC Probabilities is set to 

128.  

The DCProbs array persists from a keyframe (I Frame) to each subsequent interframe ( P 

frame).   

Updates to this Baseline set of probabilities are made on each frame, and are described in the 

bitstream section described in Table 22 DC Coding Tree Plane Probability Updates.  

 

Field 

DC Coding Tree Node Updates for Y 

DC Coding Tree Node Updates for UV 

Table 22 DC Coding Tree Plane Probability Updates 
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Field 

DC Coding Tree Update for ZERO_CONTEXT_NODE 

DC Coding Tree Update for EOB_CONTEXT_NODE 

DC Coding Tree Update for ONE_CONTEXT_NODE 

DC Coding Tree Update for LOW_VAL_CONTEXT_NODE 

DC Coding Tree Update for TWO_CONTEXT_NODE 

DC Coding Tree Update for THREE_CONTEXT_NODE 

DC Coding Tree Update for HIGH_LOW_CONTEXT_NODE 

DC Coding Tree Update for CAT_ONE_CONTEXT_NODE 

DC Coding Tree Update for CAT_THREEFOUR_CONTEXT_NODE 

DC Coding Tree Update for CAT_THREE_CONTEXT_NODE 

DC Coding Tree Update for CAT_FIVE_CONTEXT_NODE 

Table 23 DC Coding Tree Node Updates 

 

Field Type Notes 

NewNodeProbFlag B(x)  

NewNodeProbValue b(7) Only present if NewNodeProbFlag is set 

Table 24 DC Coding Tree Update Structure 

 

NewNodeProbFlag. Flag indicating whether a new probability value for the tree node 

follows (1) or not (0). 

NewNodeProbValue. ½ of the new probability value to be used for tree node. The Tree node 

probabilities are always clipped the range 1 to 255, i.e. a value of 0 should be converted to a 

1.  

VP6_DcUpdateProbs[2][MAX_ENTROPY_TOKENS-1] =  

{  

 { 146, 255, 181, 207, 232, 243, 238, 251, 244, 250, 249 }, 

 { 179, 255, 214, 240, 250, 255, 244, 255, 255, 255, 255 } 

} 
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However, this set of baseline probabilities is not used directly in the token decoding process. 

Instead the set of baseline probabilities is converted into a set of 6 separate DC coding trees 

that are maintained inside of a 3 dimensional array as follows: 

DcNodeContexts[2][3][11] 

The first dimension of this array is indexed by colour plane as follows: 

Index Description 

0 Y colour plane 

1 U or V colour plane 

Table 25 DC Node Plane 

 

The second dimension of this array includes an index for each of the following situations: 

Index Situation 

0 Left block’s predicted DC was 0 and above block’s predicted DC was 0 

1 Either Left block’s predicted DC is non 0 or above block’s predicted DC is non 0 

but not both 

2 Both Left block’s predicted and above block’s predicted DCs are non 0  

Table 26 DC Node Contexts 

 

The third dimension of this array corresponds to one probability for each entry in Table: DC 

& AC Coding Tree Node Probability Values.  

The conversion from DCProbs to DcNodeContexts makes use of a set of linear equations 

defined by DcNodeEqs.  The equations for these lines are stored in slope + constant format 

as follows:  

DcNodeEqs[5][3][2] = 

{ 

 { { 122, 133 },{ 133,  51 },{ 142, -16 } },  // Zero Node  

 { {   0,   1 },{   0,   1 },{   0,   1 } },  // UNUSED DUMMY 

 { {  78, 171 },{ 169,  71 },{ 221, -30 } },  // One Node 

 { { 139, 117 },{ 214,  44 },{ 246,  -3 } },  // Low Val Node 

 { { 168,  79 },{ 210,  38 },{ 203,  17 } },  // Two Node (2,3 or 4) 

} 
 

The first dimension of this array corresponds to the first 5 nodes of the table Table 20 DC & 

AC Coding Tree Node Probability Values.  Note: Only the first 5 nodes of the tree have a 

linear equation applied to them, the remaining use the probability as transmitted in the 

bitstream. 

The second dimension of the array corresponds to one of the DC Node Contexts described in 

table X. 
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The third dimension of the array corresponds to the following indices: 

Index Situation 

0 Slope of a linear equation 

1 Constant of linear equation 

Table 27 DCNodeEqs Dimension 3 

 

The conversion from DcProbs to DcNodeContext is described in the following pseudo code: 

// DC Node Probabilities 

for ( Plane=0; Plane<2; Plane++ ) 

{ 

 for ( i=0; i<3; i++ ) 

 { 

  // Tree Nodes 

  for ( Node=0; Node<5; Node++ ) 

  { 

   Temp = ( (DcProbs[Plane][Node] * 

   DcNodeEqs[Node][i][0]+ 128 ) >> 8) + 

   DcNodeEqs[Node][i][1];  

 

   Temp = (Temp > 255)? 255: Temp 

   Temp = (Temp <   1)? 1  : Temp 

   

   DcNodeContexts[Plane][i][Node] = (UINT8)Temp 

  } 

  for ( Node=5; Node<11; Node++ ) 

  { 

   DcNodeContexts[Plane][i][Node] = DcProbs[Plane][Node] 

  } 

 } 

} 

13.2.1 Arithmetic Decoding DC Coefficient  

To decode an arithmetically encoded DC value the probability tree given in Figure 15 is used 

with node probabilities from DcNodeContexts using the given plane and DC context.  At 

each node, if the value decoded from the bitstream is 0 then the left branch is followed, 

otherwise the right branch is followed. This process is repeated until a leaf node is reached 

which defines a decoded token.  Finally, the corresponding set of extrabits is read for that 

token.   

  

ContPtr = DcNodeContexts[Plane][Context] 

if ( !B( ContPtr[ZERO_CONTEXT_NODE] ) )     

 Dc  = 0 

else  

{  

 if ( B( ContPtr[ONE_CONTEXT_NODE]) ) 

 { 

  if ( B( ContPtr[LOW_VAL_CONTEXT_NODE]) ) 

  {           

   if ( B( ContPtr[HIGH_LOW_CONTEXT_NODE]) ) 

   {         
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    if ( B( ContPtr[CAT_THREEFOUR_CONTEXT_NODE]) ) 

     if( B( ContPtr[CAT_FIVE_CONTEXT_NODE]) 

      token = DCT_VAL_CATEGORY6 

     else 

      token = DCT_VAL_CATEGORY5 

    else          

     if( B( ContPtr[CAT_THREE_CONTEXT_NODE]) ) 

      token = DCT_VAL_CATEGORY4 

     else 

      token = DCT_VAL_CATEGORY3 

   } 

   else 

   { 

    if(B( ContPtr[CAT_ONE_CONTEXT_NODE]) 

     token = DCT_VAL_CATEGORY2 

    else 

     token = DCT_VAL_CATEGORY1 

   } 

   value = TokenSetExtrabits[token].Min  

   BitsCount = TokenSetExtrabits[token].ExtraBits - 1 

   do 

   { 

    value +=  B(TokenSetExtrabits[token].Probs[BitsCount]) 

       <<BitsCount) 

    BitsCount --  

   } 

   while( BitsCount >= 0) 

 

   SignBit = b(1) 

   Dc  = ((value ^ -SignBit) + SignBit)  

  } 

  else 

  { 

   if ( B( ContPtr[TWO_CONTEXT_NODE]) ) 

   {          

    if ( B( ContPtr[THREE_CONTEXT_NODE])) 

     token = FOUR_TOKEN 

    else 

     token = THREE_TOKEN 

   } 

   else    

   {          

    token = TWO_TOKEN  

   } 

   SignBit = b(1) 

   Dc  = ((token ^ -SignBit) + SignBit)  

  } 

 } 

 else 

 { 

  SignBit = b(1) 

  Dc  =((1 ^ -SignBit) + SignBit)  

 } 

} 

This code uses a nomenclature TokenSetExtrabits[row].Field which is a direct translation of 

Table 18 Token Set and Extrabits.  Field Probs refers to an array made from concatenating 

the choices in field Arithmetic Encoding the Extra Bits, Min refers to the min field in the 

table, and extra bits referes to the field marked # of extrabits.  

Note : Decoding the dc requires that the contextual information regarding whether the blocks 

immediately to the left of and above the current block have 0 or non 0 dc values.  
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The EOB token is explicitly forbidden from occurring in the DC position so there is no need 

to encode the decision that differentiates between EOB and 0, the token may immediately be 

assumed to be the ZERO_TOKEN. 

 

13.2.2 Huffman Decoding DC Values 

If Huffman coding of the DC tokens has been used then the function ConvertBoolTrees is 

used to produce the Huffman decoding tree directly from the BoolCoder tree DCProb[2][20].   

The result is stored as a set of probabilities for the dc in : 

DcHuffProbs[2][12] 

The first dimension of this array is indexed in the same way as Table 25 DC Node Plane. 

The second dimension of this array is indexed by the token index as in Table 18 Token Set 

and Extrabits. 

These probabilities are then converted into a standard Huffman tree and are stored into the 

array: 

DcHuffTree[2] 

The first dimension of this array is indexed in the same way as Table 25 DC Node Plane. 

It should be noted that a 0 in the DC position when huffman encoded is accompanied by 

extrabits that specify the number of additional blocks
*
 within the same plane that also have a 

0 in the DC position. 

Pseudo Code for decoding DC in a given plane (Y or UV) follows: 

if ( CurrentDcRunLen[Plane] > 0 ) 

{ 

    -- CurrentDcRunLen[Plane] 

} 

else 

{ 

 token = DecodeBitsUsingHuffman(DcHuffTree[Plane])                                                      

 value = TokenSetExtrabits[token].Min 

 if(token == ZERO_TOKEN) 

   {    

  Decode DC Zero Run as per 13.4 Decoding Huffman EOB and DC 0 Runs 

  CurrentDcRunLen[Plane] = DC Run Length 

   } 

 else 

   { 

  if(token <=FOUR_TOKEN) 

       { 

        SignBit = R(1) 

  } 

       else if(token <=DCT_VAL_CATEGORY5) 

       { 

        value   += R(token-4) 

          SignBit = R(1) 

       } 

       else 

       { 

        value   += R(11) 

          SignBit = R(1) 

       } 

       Dc = ((value ^ -SignBit) + SignBit)  
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 } 

} 

 

13.3 AC Decoding 

To decode ac coefficients the decoder must maintain a 4 dimensional set of probabilities: 

AcProbs[2][3][6][11] 

At each key frame ( I frame) every probability value in this array of AC Probabilities is set to 

128.  The ACProbs array persists from a keyframe (I Frame) to each subsequent interframe (P 

frame).   

The first dimension of the AcProbs is indexed by the plane that the block we are encoding is 

in as follows:  

Index Description 

0 Y colour plane 

1 U or V colour plane 

Table 28 AC Prob Plane Index 

 

The second Dimension of the AcProbs is indexed by the following context situations:  

Index Situation 

0 preceding decoded coefficient ( in current scan order) for the current block was 0  

1 preceding decoded coefficient ( in current scan order) for the current block was 1 

2 preceding decoded coefficient ( in current scan order) for the current block was 

greater than 1  

Table 29 AC Prob  Prec Index 
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The third dimension of the AcProbs is indexed by the band that the coefficient is in as follows 

Index Situation 

0 Coefficient 1 

1 Coefficients 2 – 4 

2 Coefficients 5 – 10 

3 Coefficients 11 – 21 

4 Coefficients 22 – 36 

5 Coefficients 37 – 63 

Table 30 AC Prob Band Index 

 

The fourth dimension of AcProbs is indexed by the context nodes as Table 20 DC & AC 

Coding Tree Node Probability Values. 

This entire table is updateable in the bitstream as follows:  

Field  

Ac Coding Tree Plane Updates for Preceding Case 0 

Ac Coding Tree Plane Updates for Preceding Case 1 

Ac Coding Tree Plane Updates for Preceding Case 2 

Table 31 Plane AC Coding Tree Probability Updates 

 

Field 

AC Coding Tree Band Updates for Y 

AC Coding Tree Band Updates for UV 

Table 32 Plane AC Coding Tree Plane Probability Updates 
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Field 

AC Coding Tree Updates for Band 0 

AC Coding Tree Updates for Band 1 

AC Coding Tree Updates for Band 2 

AC Coding Tree Updates for Band 3 

AC Coding Tree Updates for Band 4 

AC Coding Tree Updates for Band 5 

Table 33 AC Coding Tree Band Probability Updates 

 

Field 

AC Coding Tree Update for ZERO_CONTEXT_NODE 

AC Coding Tree Update for EOB_CONTEXT_NODE 

AC Coding Tree Update for ONE_CONTEXT_NODE 

AC Coding Tree Update for LOW_VAL_CONTEXT_NODE 

AC Coding Tree Update for TWO_CONTEXT_NODE 

AC Coding Tree Update for THREE_CONTEXT_NODE 

AC Coding Tree Update for HIGH_LOW_CONTEXT_NODE 

AC Coding Tree Update for CAT_ONE_CONTEXT_NODE 

AC Coding Tree Update for CAT_THREEFOUR_CONTEXT_NODE 

AC Coding Tree Update for CAT_THREE_CONTEXT_NODE 

AC Coding Tree Update for CAT_FIVE_CONTEXT_NODE 

Table 34 AC Coding Tree Node Probability Updates 
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Field Type Notes 

NewNodeProbFlag B(x) See lookup table AcUpdateProbs 

NewNodeProbValue b(7) Only present if NewNodeProbFlag is set 

Table 35 AC Coding Tree Update 

 

The following table is a look up table that defines the probability to use when arithmetically 

decoding the bit NewNodeProbFlag from the Table 34 AC Coding Tree Node Probability 

Updates: 

 

AcUpdateProbs[3][2][6][11] = 

{ 

 { // preceded by 0 

  { 

   { 227, 246, 230, 247, 244, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 209, 231, 231, 249, 249, 253, 255, 255, 255 }, 

   { 255, 255, 225, 242, 241, 251, 253, 255, 255, 255, 255 }, 

   { 255, 255, 241, 253, 252, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 248, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

  }, 

  { 

   { 240, 255, 248, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 240, 253, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

  }, 

 }, 

 { // preceded by 1 

  { 

   { 206, 203, 227, 239, 247, 255, 253, 255, 255, 255, 255 }, 

   { 207, 199, 220, 236, 243, 252, 252, 255, 255, 255, 255 }, 

   { 212, 219, 230, 243, 244, 253, 252, 255, 255, 255, 255 }, 

   { 236, 237, 247, 252, 253, 255, 255, 255, 255, 255, 255 }, 

   { 240, 240, 248, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

  }, 

  { 

   { 230, 233, 249, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 238, 238, 250, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 248, 251, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

  }, 

 }, 

 { // preceded by > 1 

  { 

   { 225, 239, 227, 231, 244, 253, 243, 255, 255, 253, 255 }, 

   { 232, 234, 224, 228, 242, 249, 242, 252, 251, 251, 255 }, 

   { 235, 249, 238, 240, 251, 255, 249, 255, 253, 253, 255 }, 

   { 249, 253, 251, 250, 255, 255, 255, 255, 255, 255, 255 }, 

   { 251, 250, 249, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

  }, 
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  { 

   { 243, 244, 250, 250, 255, 255, 255, 255, 255, 255, 255 }, 

   { 249, 248, 250, 253, 255, 255, 255, 255, 255, 255, 255 }, 

   { 253, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

   { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 }, 

  }, 

 }, 

} 

 

The first dimension of this table is indexed by the values in Table 29 AC Prob  Prec Index.  

The second dimension is indexed by the Table 28 AC Prob Plane Index. 

The third dimension is indexed by the Table 30 AC Prob Band Index. 

The fourth dimension of this array corresponds to one probability for each entry in Table 20 

DC & AC Coding Tree Node Probability Values.  

 

13.3.1 Decoding Arithmetic Encoded AC Coefficients  

Decoding AC requires all 4 pieces of contextual information listed above ; whether the 

preceding coefficient in the block was 0, 1 or > 1,  what plane the block is in, and the band of 

the current coefficient. The set of probabilities that correspond to these 4 pieces of context 

stored in ACProbs act as the binary decoding node probabilities for decoding an AC tokens 

using the tree given in Figure 15.   

At each node, if the value decoded from the bitstream is 0 then the left branch is followed, 

otherwise the right branch is followed. This process is repeated until a leaf node is reached 

which defines a decoded token.  Finally, the corresponding set of extrabits is read for that 

token.   

Note: the decoded value of the DC coefficient is used as contextual information for the first 

AC coefficient. 

If a ZERO_TOKEN is encountered in AC it is followed by a run of zeros that is coded using 

using the BoolCoder according to Section 7.3. 

If the previously decoded AC token in the block was the ZERO_TOKEN then the next token 

to be decoded can be neither ZERO_TOKEN nor EOB_TOKEN. In this case the first 

decision in  the tree is not required to be decoded, we can implicitly assume that the 

ZERO_CONTEXT_NODE decision is a 1. 

Following is pseudocode for decoding AC coefficients of a block using the arithmetic 

encoder. 

Set CoeffData to 64 0’s 

if(dc == 0)  

 Prec = 0 

Else if (dc == 1) 

 Prec = 1 

Else  

 Prec = 2 

 

EncodedCoeffs = 1 

do 
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{ 

 ProbPtr = AcUpdateProbs[Prec][Plane][ACProbBand[encodedCoeffs]] 

 if ( (EncodedCoeffs > 1) && (Prec == 0) ) 

  ThisTokeNonZero = TRUE 

 else 

  ThisTokeNonZero = B( ProbPtr[ZERO_CONTEXT_NODE] ) 

 

 if ( !ThisTokeNonZero  )     

 { 

  if ( B( ProbPtr[EOB_CONTEXT_NODE]) ) 

   Prec = 0 

  else           

  { 

   EncodedCoeffs++ 

   break           

  } 

 

  // Decode Zero Run Count 

  EncodedCoeffs += ZeroRunCount 

 } 

 else 

 {              

  if ( B( ProbPtr[ONE_CONTEXT_NODE]) ) 

  { 

   Prec = 2 

   if ( B( ProbPtr[LOW_VAL_CONTEXT_NODE]) ) 

   {             

    if ( B( ProbPtr[HIGH_LOW_CONTEXT_NODE]) ) 

     if ( B( ProbPtr[CAT_THREEFOUR_CONTEXT_NODE]) ) 

      token =  DCT_VAL_CATEGORY5 +  

         B(ProbPtr[CAT_FIVE_CONTEXT_NODE]) 

     else          

      token =  DCT_VAL_CATEGORY3 + 

         B(ProbPtr[CAT_THREE_CONTEXT_NODE]) 

    else 

       token =  DCT_VAL_CATEGORY1 +  

         (ProbPtr[CAT_ONE_CONTEXT_NODE]) 

 

    value = TokenSetExtrabits [token].Min  

    BitsCount = TokenSetExtrabits [token].Length 

    do 

    { 

     value +=  (B(TokenSetExtrabits[token].Probs[BitsCount]) 

        <<BitsCount) 

     BitsCount --  

    } 

    while( BitsCount >= 0) 

 

    SignBit = b(1) 

    CoeffData[EncodedCoeffs]] = (value ^ -SignBit) + SignBit  

   } 

   else 

   {          

    if ( B( ProbPtr[TWO_CONTEXT_NODE]) ) 

     token = THREE_TOKEN + B( ProbPtr[THREE_CONTEXT_NODE]) 

    else    

     token = TWO_TOKEN  

    SignBit = b(1) 

    CoeffData[EncodedCoeffs] =(token ^ -SignBit) + SignBit  

   } 

  } 

  else 

  { 
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   Prec = 1 

   SignBit = b(1) 

   CoeffData[EncodedCoeffs] = (1 ^ -SignBit) + SignBit  

  } 

  EncodedCoeffs ++    

 } 

 

} while (EncodedCoeffs < BLOCK_SIZE) 

 

EncodedCoeffs -- 

 

Finished: 
 

13.3.2 Decoding Huffman Encoded AC Coefficients  

One complication for decoding Huffman coefficients is that if an EOB token is encountered 

in ac coefficient 1 extra bits are used to specify the number of additional blocks within the 

same plane that also have a 0 for every AC coefficient. ( see 13 DCT Coefficient Token Set) 

Decoding Huffman encoded AC coefficients requires the use of 24 sepearate Huffman trees 

stored in a 3 dimensional array: 

AcHuffTree[2][3][4] 

 

The first dimension of the AcProbs is indexed by the plane that the block we are encoding is 

see Table 28 AC Prob Plane Index. 

The second Dimension of the AcProbs is indexed by Table 29 AC Prob  Prec Index 

The third dimension of the AcProbs is indexed by the band that the coefficient is in as 

follows: 

 

Index Situation 

0 Coefficient 1 

1 Coefficients 2 – 4 

2 Coefficients 5 – 10 

3 Coefficients 11 – 63 

Table 36 AC Huffman Prob Band Index 

 

These trees are derived from the probabilities in AcProbs[2][3][0-3][11] the first 4 bands of 

ACProbs using the as follows:  

// AC 

for ( Prec = 0; Prec < 3; Prec++ ) 

{ 

 for ( Plane = 0; Plane < 2; Plane++ ) 

 { 
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  for ( Band = 0; Band < 4; Band++ ) 

  { 

   BoolTreeToHuffCodes ( AcProbs[Plane][Prec][Band], 

          AcHuffProbs[Prec][Plane][Band] ) 

   BuildHuffTree ( AcHuffTree[Prec][Plane][Band],  

        AcHuffProbs[Prec][Plane][Band], 12 )  

  } 

 } 

} 

 

Once these Huffman trees have been created, coefficients are decoded using the following 

pseudo code:  
 

Set CoeffData to 64 0’s 

if(dc == 0)  

 Prec = 0 

Else if (dc == 1) 

 Prec = 1 

Else  

 Prec = 2 

 

EncodedCoeffs = 1 

 

if (CurrentAc1RunLen[Plane] > 0 ) 

{ 

 -- CurrentAc1RunLen[Plane] 

 goto Finished 

} 

do 

{ 

 Band = VP6_CoeffToHuffBand[EncodedCoeffs]             

 token = DecodeBitsUsingHuffman (AcHuffTree[Prec][Plane][Band])               

 value = TokenSetExtrabits [token].Min  

 if(token == ZERO_TOKEN) 

 { 

  // Huffman Decode Zero Run Length 

  Prec =0 

  EncodedCoeffs += ZeroRun Length    

  continue 

 } 

 if(token == DCT_EOB_TOKEN) 

 { 

  if ( EncodedCoeffs == 1 ) 

  { 

   // Decode DCT EOB Run as per 13.4 

   CurrentAc1RunLen[Plane] = EOB Token Run - 1 

  } 

  goto Finished; 

 } 

 if(token <=FOUR_TOKEN) 

  SignBit = R(1) 

 else if(token <=DCT_VAL_CATEGORY5) 

 { 

  value   += R( (token-4)) 

  SignBit = R(1) 

 } 

 else 

 { 

  value   += R( 11) 

  SignBit = R(1) 

 } 

 CoeffData[EncodedCoeffs] = (value ^ -SignBit) + SignBit              

 Prec = (value>1)? 2 : 1         
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 EncodedCoeffs ++    

 

} while (EncodedCoeffs < 64) 

 

EncodedCoeffs—- 

Finished: 

   

13.3.3 Decoding AC Zero Runs  

To decode zero runs the decoder must maintain a 2 dimensional set of probabilities: 

ZeroRunProbs[2][14].  

 

 

 
 

Figure 16 AC Zero run length binary tree 

 

The first dimension of the ZeroRun Probs is indexed by the band that the zero coefficient 

starts in as follows 

Index Coefficients 

>4 

>2 >8 

>6 >8 >1 >3 

>5 >7 

5 6 7 8 

1 2 3 4 
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0 Coefficients 1-5 

1 Coefficients 6 – 63 

Table 37 ZRL Band Index 

The second dimension of the probability table is indexed by the node within Figure 

16 AC Zero run length binary tree or the bit within the extrabits encoded if the run 

length value is > 8 as follows: 

 

Index Run Length 

0 Probability of Run Length > 4 

1 Probability of Run Length > 2 

2 Probability of Run Length > 1 

3 Probability of Run Length > 3 

4 Probability of Run Length > 8  

5 Probability of Run Length > 6 

6 Probability of Run Length > 5 

7 Probability of Run Length > 7 

8 Probability of bit ( Run Length -9 ) & 1 

9 Probability of bit (( Run Length – 9) >> 1 ) & 1 

10 Probability of bit (( Run Length – 9) >> 2 ) & 1 

11 Probability of bit (( Run Length – 9) >> 3 ) & 1 

12 Probability of bit (( Run Length – 9) >> 4 ) & 1 

13 Probability of bit (( Run Length – 9) >> 5 ) & 1 

Table 38 ZRL Node Index 
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Updates to ZeroRunProbs appear in the bitstream in the following order.  

 

Field 

Updates to ZeroRunNodes for ZRL band 0 

Updates to ZeroRunNodes for ZRL band 1 

Table 39 Updates to ZRL Probabibilities Band 

    

Field 

Updates to ZeroRunNode Probability of Run Length > 4 

Updates to ZeroRunNode Probability of Run Length > 2 

Updates to ZeroRunNode Probability of Run Length > 1 

Updates to ZeroRunNode Probability of Run Length > 3 

Updates to ZeroRunNode Probability of Run Length > 8  

Updates to ZeroRunNode Probability of Run Length > 6 

Updates to ZeroRunNode Probability of Run Length > 5 

Updates to ZeroRunNode Probability of Run Length > 7 

Updates to ZeroRunNode Probability of bit ( Run Length -9 ) & 1 

Updates to ZeroRunNode Probability of bit (( Run Length – 9) >> 1 ) & 1 

Updates to ZeroRunNode Probability of bit (( Run Length – 9) >> 2 ) & 1 

Updates to ZeroRunNode Probability of bit (( Run Length – 9) >> 3 ) & 1 

Updates to ZeroRunNode Probability of bit (( Run Length – 9) >> 4 ) & 1 

Updates to ZeroRunNode Probability of bit (( Run Length – 9) >> 5 ) & 1 

Table 40 Updates to ZeroRunNodes  
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Field Type Notes 

NewNodeProbFlag B(x) See lookup table ZRLUpdateProbs 

NewNodeProbValue b(7) Only present if NewNodeProbFlag is set 

Table 41 Updates to ZeroRunNode Probability  

 

The probability used for decoding zrl probabilities node field NewNodeProbFlag is 

determined from the following table.  

 
ZrlUpdateProbs[2][14] = 

{ 

 { 219, 246, 238, 249, 232, 239, 249, 255, 248, 253, 239, 244, 241, 248 },  

 { 198, 232, 251, 253, 219, 241, 253, 255, 248, 249, 244, 238, 251, 255 },  

} 

This table’s first dimension is indexed by Table 37 ZRL Band Index 

The second dimension is indexed by Table 38 ZRL Node Index. 

 

At each key frame ( I frame) every probability value in this array of AC Probabilities is set to 

the multidimensional array ZeroRunProbDefaults.   

 

ZeroRunProbDefaults[2][14] =  

{   

 { 198, 197, 196, 146, 198, 204, 169, 142, 130, 136, 149, 149, 191, 249 }, 

 { 135, 201, 181, 154,  98, 117, 132, 126, 146, 169, 184, 240, 246, 254 }, 

} 

This table’s first dimension is indexed by Table 37 ZRL Band Index 

The second dimension is indexed by Table 38 ZRL Node Index 

The ACProbs array persists from a keyframe (I Frame) to each subsequent interframe ( P 

frame).   

 

13.3.3.1 Decoding AC Zero Runs in the Arithmetic Encoder 

If a ZERO_TOKEN is encountered in AC it is followed by a run of zeros that is coded using 

using the BoolCoder according to the tree shown in Figure 16. If a run length greater than 

eight is indicated, then the run length minus nine is encoded using six-bits, least significant 

bit first. 

The algorithm for decoding the zero run is demonstrated in the following pseudo code: 

// Select the appropriate Zero run context 

ZeroRunProbPtr = pbi->ZeroRunProbs[ZrlBand[pos]] 

    

// Now decode the zero run length 

// Run lenght 1-4 

if ( !B( ZeroRunProbPtr[0] ) )  

{ 

 if ( !B( ZeroRunProbPtr[1] ) ) 

  ZeroRunCount = 1 + B( ZeroRunProbPtr[2] ) 

 else 
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  ZeroRunCount = 3 + B( ZeroRunProbPtr[3] ) 

} 

// Run length 5-8 

else if ( !B( ZeroRunProbPtr[4] ) ) 

{ 

 if ( !B( ZeroRunProbPtr[5] ) ) 

  ZeroRunCount = 5 + B( ZeroRunProbPtr[6] ) 

 else 

  ZeroRunCount = 7 + B( ZeroRunProbPtr[7] ) 

} 

// Run length > 8 

else 

{ 

 ZeroRunCount = B( ZeroRunProbPtr[8] ) 

 ZeroRunCount += B( ZeroRunProbPtr[9] ) << 1 

 ZeroRunCount += B( ZeroRunProbPtr[10] ) << 2 

 ZeroRunCount += B( ZeroRunProbPtr[11] ) << 3 

 ZeroRunCount += B( ZeroRunProbPtr[12] ) << 4 

 ZeroRunCount += B( ZeroRunProbPtr[13] ) << 5 

 ZeroRunCount += 9 

}  

 

13.3.3.2 Decoding Huffman AC Zero Runs  

To decode Huffman zero runs the decoder must maintain 2 zero run Huffman trees: 

ZeroHuffTree[2].   

 

The following tree is specified for decoding run lengths of zeros at DC position and EOB 

tokens at the first AC position. This is converted to a set of Huffman probabilities as follows: 

  

Input:  NodeProb[]  : Set of 8 Node Probabilities. 

Output: HuffProb[] : Set of 9 Huffman Probabilities. 

 

ZRLBoolTreeToHuffProbs 

{ 

    Prob        = (NodeProb[0] * NodeProb[1]) >> 8 

    HuffProb[0] = (Prob * NodeProb[2]) >> 8 

    HuffProb[1] = (Prob * (255 - NodeProb[2])) >> 8 

 

    Prob        = (NodeProb[0] * 255 - NodeProb[1])) >> 8 

    HuffProb[2] = (Prob * NodeProb[3]) >> 8 

    HuffProb[3] = (Prob * 255 - NodeProb[3])) >> 8 

 

    Prob        = (255 - NodeProb[0]) * NodeProb[4]) >> 8 

    Prob        = (Prob * NodeProb[5]) >> 8 

    HuffProb[4] = (Prob * NodeProb[6]) >> 8 

    HuffProb[5] = (Prob * 255 - NodeProb[6])) >> 8 

 

    Prob        = ((255 - NodeProb[0]) * NodeProb[4]) >> 8 

    Prob        = (Prob * (255 - NodeProb[5])) >> 8 

    HuffProb[6] = (Prob * NodeProb[7]) >> 8 

    HuffProb[7] = (Prob * (255 - NodeProb[7])) >> 8 

 

    Prob        = ((255 - NodeProb[0]) * (255 - NodeProb[4])) >> 8 

    HuffProb[8] = Prob 

} 
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These trees are converted from the trees ZeroRunProb in Section 13.3.3 Decoding AC 

Zero Runs  via the following pseudocode. 

 
for ( i = 0; i < ZRL_BANDS; i++ ) 

{ 

 ZRLBoolTreeToHuffCodes(ZeroRunProbs[i], ZeroHuffProbs[i] ) 

 VP6_BuildHuffTree (ZeroHuffTree[i], ZeroHuffProbs[i]) 

} 

 

These trees are then used to decode zero runs through generic Huffman decoding as is 

demonstrated below:  
 

// Read zero run-length 

ZrlBand  = ZrlBand[EncodedCoeffs] 

ZrlToken = DecodeBitsUsingHuffman (ZeroHuffTree[ZrlBand]) 

if ( ZrlToken<8 ) 

 EncodedCoeffs += ZrlToken    

else 

 EncodedCoeffs += 8 + R(6) 

 

 

    

13.4 Decoding Huffman EOB and DC 0 Runs  

 

To decode Huffman EOB Runs use the Tree shown in Figure 17 Huffman EOB Run 

Lengths and Huffman DC 0 Run Lengths.   
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Figure 17 Huffman EOB Run Lengths 

 

If the result of decoding is 11 then six additional bits are decoded and added to the 11 to give 

a final EOB run of between 11 and 75.    

The decoding of the AC1 EOB run and DC0 run count is demonstrated via this pseudo code:  

 
EOBRunCount = 1 + R( 2) 

if (EOBRunCount == 3 ) 

 EOBRunCount += R( 2) 

else if (EOBRunCount == 4 ) 

 if ( R(1) ) 

  EOBRunCount = 11 + R( 6) 

 else 

  EOBRunCount = 7 + R( 2)  

 

14 DC PREDICTION 

The DC coefficient for a block is reconstructed by adding together a prediction value and a 

prediction error. The prediction error is encoded in the bitstream and decoded as described in 

Section 13.2. The prediction value is computed from the DC values of neighboring blocks in 

the current frame that have already been decoded. 
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For a particular block the DC values of up to two particular immediate neighbors contribute 

to the prediction. The two blocks concerned are the blocks immediately to the left of and 

immediately above the current block.  

The DC value of a neighboring block only contributes to the prediction of the DC value for a 

particular block if all of the following conditions are satisfied: 

• The neighboring block exists; there is no left neighbor for blocks at the left edge and 

no above neighbor for blocks at the top edge of the frame, 

• The neighboring block was predicted from the same reference frame as the block 

being predicted (last frame reconstruction or golden frame), 

• Inter-coded blocks can only be predicted by neighboring inter-coded blocks and 

intra-coded blocks can only be predicted by neighboring intra-coded blocks. 

There are three scenarios: 

• If both neighboring blocks are available the prediction is computed as the arithmetic 

average of their DC values, truncated towards zero (values may be negative), 

• If only one neighboring block is available, its DC value is used as the predictor, 

• If neither neighboring block is available, the last decoded DC value for a block 

predicted from the same reference frame is used as the predictor. At the beginning of 

each frame this last decoded DC value is set to zero for each prediction frame type. 

This is summarized in the following table: 

 

Left 

Available 

Above 

Available 

Predictor 

NO NO Last decoded DC value for a block with the same 

prediction frame 

NO YES A 

YES NO L 

YES YES (L + A + Sign(L+A) ) / 2 

 

15 INVERSE QUANTIZATION 

Each motion predicted 8x8 block (see Section 11) of a video frame is transformed by the 

encoder to a set of 64 coefficients via the discrete cosine transform.  These 64 coefficients are 

then quantized by means of 2 separate uniform scalar quantizers : 1 for the DC coefficient, 

and 1 for all 63 of the AC coefficients.   

Reversing the uniform scalar quantizer involves performing integer multiplication on each of 

its 64 coefficients.  The quantization value (multiplicand) for DC is determined by indexing 

the table DcQuantizationTable  by the value DctQMask (from table Table 1).  Likewise the 
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Ac quantization value is determined by indexing the table AcQuantization Table by the value 

DctQMask . 

DcQuantizationTable[ 64 ] =  

{ 

 188, 188, 188, 188, 180, 172, 172, 172, 

 172, 172, 168, 164, 164, 160, 160, 160, 

 160, 140, 140, 140, 140, 132, 132, 132, 

 132, 128, 128, 128, 108, 108, 104, 104, 

 100, 100,  96,  96,  92,  92,  76, 76, 

   76,  76,  72,  72,  68,  64,  64, 64, 

   64,  64,  60,  44,  44,  44,  40, 40, 

   36,  32,  28,  20,  12,  12,   8,  8 
} 

 

ACQuantizationTable[64] =  

{  

 376, 368, 360, 352, 344, 328, 312, 296, 

 280, 264, 248, 232, 216, 212, 208, 204, 

 200, 196, 192, 188, 184, 180, 176, 172, 

 168, 160, 156, 148, 144, 140, 136, 132, 

 128, 124, 120, 116, 112, 108, 104, 100, 

   96,  92,  88,  84,  80,  76,  72,  68, 

   64,  60,  56,  52,  48,  44,  40,  36, 

   32,  28,  24,  20,  16,  12,   8,   4 

} 

This dequantization process is described in the following pseudo code.  

CoeffData[0] *= DcQuantizationTable[DctQMask] 

for(i=1;i<63;i++) 

 CoeffData[i] *= AcQuantizationTable[DctQMask] 

16 INVERSE DCT TRANSFORM 

Inversing the DCT requires that the coefficients have been placed back in raster order ( not 

zig-zag or custom scan order as described in Section 12). A non standard fixed point integer 

inverse discrete cosine transform with 14 bits of precision is used to convert the coefficients 

back to pixels or pixel difference values. This transform is based upon the paper by M. 

Vetterli, A. Ligtenberg “ A Discrete Fourier-Cosine Transform Chip” IEEE Journal on 

Selected Areas of Communications, Vol. SAC-4 No.1 Jan. 1986, pp 49-61.   

The following pseudo-code implements the functionality 

#define xC1S7 64277 

#define xC2S6 60547 

#define xC3S5 54491 

#define xC4S4 46341 

#define xC5S3 36410 

#define xC6S2 25080 

#define xC7S1 12785 
 

ip = SourceData 

op = IntermediateData 

for ( loop=0; loop<8; loop++ ) 

{ 

 _A = ((xC1S7 * ip[1])>>16) + ((xC7S1 * ip[7])>>16) 

 _B = ((xC7S1 * ip[1])>>16) - ((xC1S7 * ip[7])>>16) 

 _C = ((xC3S5 * ip[3])>>16) + ((xC5S3 * ip[5])>>16) 

 _D = ((xC3S5 * ip[5])>>16) – ((xC5S3 * ip[3])>>16) 
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 _Ad = ((xC4S4 * (_A - _C))>>16) 

 _Bd = ((xC4S4 * (_B - _D))>>16) 

 _Cd = _A + _C 

 _Dd = _B + _D 

 _E = ((xC4S4 * (ip[0] + ip[4]))>>16) 

 _F = ((xC4S4 * (ip[0] - ip[4]))>>16) 

 _G = ((xC2S6 * ip[2])>>16) + ((xC6S2 * ip[6])>>16) 

 _H = ((xC6S2 * ip[2])>>16) – ((xC2S6 * ip[6])>>16) 

 _Ed = _E - _G 

 _Gd = _E + _G 

 _Add = _F + _Ad 

 _Bdd = _Bd - _H 

 _Fd = _F - _Ad 

 _Hd = _Bd + _H 

 op[0] = _Gd + _Cd 

 op[7] = _Gd - _Cd 

 op[1] = _Add + _Hd 

 op[2] = _Add - _Hd 

 op[3] = _Ed + _Dd 

 op[4] = _Ed - _Dd 

 op[5] = _Fd + _Bdd 

 op[6] = _Fd - _Bdd 

 ip += 8 

 op+=8 

} 



VP6 Bitstream & Decoder Specif ication COMPANY CONFIDENTIAL 

August 17, 2006                          © On2 Technologies Inc 2006 85 

 

ip = IntermediateData 

op = OutputData 

for ( loop=0; loop<8; loop++ ) 

{ 

 _A = ((xC1S7 * ip[1*8])>>16) + ((xC7S1 * ip[7*8])>>16) 

 _B = ((xC7S1 * ip[1*8])>>16) - ((xC1S7 * ip[7*8])>>16) 

 _C = ((xC3S5 * ip[3*8])>>16) + ((xC5S3 * ip[5*8])>>16) 

 _D = ((xC3S5 * ip[5*8])>>16) – ((xC5S3 * ip[3*8])>>16) 

 _Ad = ((xC4S4 * (_A - _C))>>16) 

 _Bd = ((xC4S4 * (_B - _D)>>16) 

 _Cd = _A + _C 

 _Dd = _B + _D 

 _E = ((xC4S4 * (ip[0] + ip[4*8]))>>16) 

 _F = ((xC4S4 * (ip[0] - ip[4*8]))>>16) 

 _G = ((xC2S6 * ip[2*8])>>16) + ((xC6S2 * ip[6*8])>>16) 

 _H = ((xC6S2 * ip[2*8])>>16) – ((xC2S6 * ip[6*8])>>16) 

 _Ed = _E - _G 

 _Gd = _E + _G 

 _Add = _F + _Ad 

 _Bdd = _Bd - _H 

 _Fd = _F - _Ad 

 _Hd = _Bd + _H 

 op[0*8] = ((_Gd + _Cd )  >> 4) 

 op[7*8] = ((_Gd - _Cd )  >> 4) 

 op[1*8] = ((_Add + _Hd ) >> 4) 

 op[2*8] = ((_Add - _Hd ) >> 4) 

 op[3*8] = ((_Ed + _Dd )  >> 4) 

 op[4*8] = ((_Ed - _Dd )  >> 4) 

 op[5*8] = ((_Fd + _Bdd ) >> 4) 

 op[6*8] = ((_Fd - _Bdd ) >> 4) 

 ip++   // next column 

 op++ 

} 

 

17 FRAME RECONSTRUCTION 

Frame reconstruction is the process of re-building a reconstructed image by combining a 

prediction signal and a prediction error signal. 

In VP6 the following cases need to be considered. 

• Reconstruction of Intra coded blocks (no prediction signal present). 

• Reconstruction of Inter coded blocks which have a zero (0,0) motion vector. 

• Reconstruction of Inter coded blocks that have a motion vector that is full pixel 

aligned in both x and y. 

• Reconstruction of Inter coded blocks the have a motion vector in one or both of x and 

y that is not full pixel aligned 

Note that this section deals only with the process of recombining the prediction signal and the 

fully decoded prediction error signal. It does not consider DC prediction (see Section 14) as 

this occurs before the IDCT. 
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17.1 Intra Coded Blocks 

Intra coded frames and blocks are coded without any reference to any previous frame. 

However, prior to encoding the value 128 is subtracted from all data samples, so this needs to 

be added back in as part of the reconstruction process. 

Intra block reconstruction can be summarized by the following pseudo code: 

For each sample in the block 

{ 

 OutputValue = InputValue + 128 

 

 // Clip to the range 0-255 

 If ( OutputValue < 0 ) 

  OutputValue = 0 

 Else If ( OutputValue > 255 ) 

  OutputValue = 255 

} 

 

 

 

  

17.2 Zero Vectors 

Zero motion vector prediction is a simplified case of motion compensation where each 

sample is predicted by the sample at the same position in either the previous frame 

reconstruction (mode CODE_INTER_NO_MV ) or the golden frame reconstruction (mode 

CODE_USING_GOLDEN  (See Section 10)). 

No filtering is carried out on the prediction block and the reconstruction process can be 

summarized by the following pseudo code: 

For each sample in the block 

{ 

 OutputValue = PredictedValue + PrecitionError 

 

 // Clip to the range 0-255 

 If ( OutputValue < 0 ) 

  OutputValue = 0 

 Else If ( OutputValue > 255 ) 

  OutputValue = 255 

} 

 

17.3 Full Pixel Aligned Vectors 

Reconstruction with a non-zero but full pixel aligned motion vectors involves combining the 

prediction error signal with sample values from a set of points in either the previous or golden 

frame reconstruction, that are offset by the given x and y from the samples that are being 

reconstructed. 
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It is worth noting that a motion vector that is full pixel aligned for Y may be fractional 

sample aligned for U and V, in which case the U and V blocks for the macro block will need 

to be handled differently (see Section 17.4). 

When using Advanced Profile and where the UseLoopFilter bit in the frame header is set to 

1 (see Table 3), the issue is further complicated by prediction loop filtering (see Section 

11.3). When the prediction loop filter is being used, the samples that will form the prediction 

block are copied to and filtered in a temporary buffer and this temporary buffer is then used 

as the source for prediction values. Prediction loop filtering MUST NOT update the 

reconstruction buffer. 

The process of reconstruction following on from any mandated prediction loop filtering can 

be summarized by the following pseudo code: 

For each sample in the block 

{ 

 OutputValue = PredictionValue + PrecitionError 

 

 // Clip to the range 0-255 

 If ( OutputValue < 0 ) 

  OutputValue = 0 

 Else If ( OutputValue > 255 ) 

  OutputValue = 255 

} 

 

17.4  Fractional Pixel Aligned Vectors 

In order to reconstruct using a fractional pixel aligned vector it is necessary to filter a set of 

sample points from either the previous frame or golden frame reconstruction buffer to 

produce a new interpolated set of samples (see Section 11.4).  

In Simple Profile the filtering is always Bilinear (see Section 11.4.1). 

In Advanced profile the original full pixel aligned set of samples from which the fractional 

points will be derived may first need to be filtered using the prediction loop filter to smooth 

block discontinuities (see Section 11.3). The interpolation stage may use either a bilinear or a 

bicubic filter (see Sections 11.4.1 and 11.4.2). 

Having created a set of filtered, fractional pixel prediction points, the reconstruction then 

proceeds as described below. 

For each sample in the block 

{ 

 OutputValue = PredictionValue + PrecitionError 

 

 // Clip to the range 0-255 

 If ( OutputValue < 0 ) 

  OutputValue = 0 

 Else If ( OutputValue > 255 ) 

  OutputValue = 255 

} 
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