
Theory and Implementation of the
Digital Cellular Standard Voice Coder:

VSELP on the TMS320C5x

Application Report

Jason Victor Macres
DSP Software Engineering, Incorporated

SPRA136
October 1994

Printed on Recycled Paper



IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright   1996, Texas Instruments Incorporated



1

Introduction

TIA subcommittee TR45.3 has adopted vector sum excited linear prediction (VSELP) as the voice coding
standard for U.S. digital cellular communications. Motorola was responsible for the design and
development of the VSELP algorithm. Additionally, Motorola has kept implementation details of the
VSELP algorithm proprietary. This paper explains an interoperable VSELP alternative algorithm and the
implementation of this algorithm on a TMS320C5x digital signal processor. The interoperable algorithm
is developed using reference [1] as a guideline.

The VSELP algorithm is a type of code excited linear predictive coding (CELP) algorithm that has been
adopted as the standard for digital cellular communications. The VSELP vocoder encodes speech at a bit
rate of 7950 bits/second. An additional 5050 bits/second are utilized for error protection and
synchronization, bringing the total bit rate to 13,000 bits/second. This paper describes only the voice coding
portion of the vocoder. A brief overview of the VSELP algorithm is presented for background.

Overview of VSELP

Structurally, the VSELP algorithm closely resembles the CELP algorithm. The difference lies in the form
and structure of the code books. Whereas CELP uses a stochastically overlapped code book (each entry
shares all but two samples with its neighboring entries), VSELP utilizes two sets of basis vectors to generate
the space of candidate vectors. Thus, the stochastic code book search of CELP corresponds to two code
book searches in VSELP. There are seven basis vectors for each search. Each basis vector contains 40
elements. The selection of the basis vectors is fundamental to deriving fast code book search procedures.
The basis vectors chosen provide for fast orthogonalization of the entire space. By orthogonalizing each
of the seven vectors with a vector V, the entire 128 (27) space, defined by the seven basis vectors, is also
orthogonalized.

An open-loop LPC analysis is performed on a frame of speech to derive a set of LPC filter coefficients.
These coefficients are bandwidth expanded for use in perceptual error weighting filters, H(z) and W(z),
where H(z) = 1/A(z) and W(z) = A(z)/A(z/γ). The input frame of speech is filtered through the filter W(z)
to obtain a perceptually weighted frame of speech. The analysis by synthesis proceeds with three code
books (unlike CELP, which proceeds with two). First, the adaptive code book is searched and the resulting
best entry and gain are found. This entry multiplied by its gain factor is orthogonalized with the first set
of seven basis vectors. Thus, the second code book search can be performed independently of the first code
book search. The new set of basis vectors is used form the code book for the second search. The best entry
and gain are found for this code book and orthogonalized with the second set of basis vectors. Finally, the
third code book search is performed. The gains of each of the three code book searches are jointly quantized
and transmitted with the three code book indices to the receiver.

The basic blocks in the VSELP coder are:

• Tenth-order LPC analysis (spectrum predictor)

• Long term (pitch) predictor

• Adaptive (pitch) code book search

• First basis vector code book search

• Second basis vector code book search

• Vector quantization of the code book gains
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The primary VSELP parameters are outlined in Table 1.

Table 1. Primary VSELP Parameters
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Symbol

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Parameter
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Value
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
SR

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Sampling rate
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

8 kHz
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
NF

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Samples per frame
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

160
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
NSF

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Samples per subframe ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

40
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
NP

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

LPC filter order ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

10
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
M1

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

No. basis vectors (1) ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

7
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
M2

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

No. basis vectors (2) ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

7
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
BWEXP ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Bandwidth expansion ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
0.8

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
LTFORD ÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Long term filter order ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
1

The VSELP algorithm has been developed from references [1] and [2]. These references contain
information pertaining to the high-level description of the algorithm and provide no actual implemented
software (high-level or assembly).

Bit Allocations

Table 2 shows the bit allocation for the VSELP frame. The frame energy (R0) and reflection coefficients
(LPC1–LPC10) are sent once per frame, while the pitch lag (LAG1–LAG4), code book indices
(CODE1_1–CODE1_4, CODE2_1–CODE2_4), and gain indices (GSP0_1–GSP0_4) are sent four times
per frame.

The total number of bits per 20-millisecond speech frame is 159, yielding a voice coder bit rate of 7950.
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Table 2. VSELP Frame Bit Allocation
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
Parameter ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Bits ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Description

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
R0

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

5
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Frame energy
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
LPC1

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

6
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

1st reflection coefficient
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
LPC2

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

5
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

2nd reflection coefficient
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
LPC3

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

5
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

3rd reflection coefficientÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁLPC4

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ4

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ4th reflection coefficientÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁLPC5
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ4

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ5th reflection coefficientÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁLPC6
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ3

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ6th reflection coefficientÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

LPC7
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

3
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

7th reflection coefficient

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

LPC8 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

3 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

8th reflection coefficient

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
LPC9 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
3 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
9th reflection coefficient

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
LPC10 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
2 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
10th reflection coefficient

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
LAG1 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
7 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Lag, SF 1

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
LAG2 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
7 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Lag, SF 2

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
LAG3 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
7 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Lag, SF 3

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
LAG4 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
7 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
Lag, SF 4

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
CODE1_1 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
7 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
1st CB index, SF 1

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
CODE1_2 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
7 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
1st CB index, SF 2

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
CODE1_3 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
7 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
1st CB index, SF 3

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
CODE1_4 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
7 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
1st CB index, SF 4

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
CODE2_1 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
7 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
2nd CB index, SF 1

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
CODE2_2 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
7 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
2nd CB index, SF 2

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
CODE2_3 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
7 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
2nd CB index, SF 3

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
CODE2_4

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

7
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

2nd CB index, SF 4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
GSP0_1

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

8
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Gain index, SF 1
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
GSP0_2

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

8
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Gain index, SF 2
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁGSP0_3

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ8

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁGain index, SF 3ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁGSP0_4
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ8

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁGain index, SF 4
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Perceptual Weighting

Perceptual weighting of the input speech signal (or the error signal) improves the performance of the coder.
The high-energy formant regions of the speech spectrum mask noise better than lower energy portions of
the spectrum. The error signal generated by each synthesizer pass is weighted appropriately to capitalize
on this perceptual effect. The filter amplifies the error signal spectrum in nonformant regions of the speech
spectrum and attenuates the error signal spectrum in formant regions. Thus, an error signal whose spectral
energy is concentrated in formant regions of the speech is considered better than one whose spectral energy
is not located under formants.

Open-Loop LPC Analysis

Each incoming speech frame is processed through an open-loop LPC analysis to generate the filter
coefficients used in the remaining portions of the algorithm. The input speech is first windowed using a
Hamming window, then an autocorrelaion is performed and the result is normalized based on the energy
of the first coefficient of the autocorrelation.

The autocorrelation coefficients are then windowed for bandwidth expansion and spectral smoothing using
a rectangular (in frequency) window. The smoothed autocorrelations are the input to a Leroux-Guegan
routine, which transforms the autocorrelation parameters into reflection coefficients. The Leroux-Guegan
algorithm was chosen because it is ideal for fixed-point implementation and is very efficient.

A stability check is performed in the Leroux-Guegan algorithm by monitoring the rms value. If the rms falls
below 0, the Leroux-Guegan is terminated, and the previous reflection coefficients are used. This
instability can occur from ill-conditioned autocorrelation coefficients.

Interpolation

Because the reflection coefficients generated by the LPC analysis represent the spectrum of the speech for
one frame centered over the fourth subframe, the coefficients for the remaining subframes are interpolated
from the current and the previous frame’s coefficients. The direct form-filter coefficients are linearly
interpolated. The following table shows the interpolation scheme:

ai = (0.75)ai(previous) (0.25)ai(current) subframe 1 formula
ai = (0.50)ai(previous) (0.50)ai(current subframe 2 formula
ai = (0.25)ai(previous) (0.75)ai(current subframe 3 formula
ai =  ai(current) subframe 4 formula

Interpolating the direct form coefficients can result in an unstable filter; therefore, the resulting coefficients
must be checked for stability. For the first, second, and third subframes, the filter coefficients are converted
to reflection coefficients. If any of the resulting reflection coefficients’ magnitudes are greater than 1, then
the interpolation process has produced an unstable filter. To remedy this instability, the filter coefficients
for the subframe are replaced by the uninterpolated filter coefficients. For the first subframe, the previous
frame’s uninterpolated filter coefficients are used. For the third subframe, the current frame’s
uninterpolated filter coefficients are used. The second subframe uses the uninterpolated filter coefficients
from the frame (previous or current) that has the higher energy. For the case when the energies are equal,
subframe 2 uses the uninterpolated filter coefficients from the previous frame.
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The following data flow illustrates the procedure for quantization and interpolation of the LPC filter
coefficients.

Figure 1. LPC Filter Coefficient Quantization and Interpolation

frame
Speech

Stable
interpolatedInterpolatedQuantized

LPC coeffsLPC coeffsLPC coeffsLPC coeffs Check
stability

Inter-
polate

Quant
analysis

LPC

Long-Term Predictor

The long-term filtering operation (adaptive code book search) for VSELP is similar to the general CELP
long-term filtering operation. The long-term filter is given by:

B(z) = 1
1–�z–L

(1)

To accommodate lags less than the subframe size (L < NSF), the equation is modified such that the filter’s
output is only a function of the filter state at the start of a subframe.

B(z) = 1

1–�z–flr(n+L
L

)L
  (2)

The flr(x) function truncates the fractional portion of x, returning only the integer portion of x. For L �

NSF, the equations are identical. For L < NSF, the flr function will evaluate to 2 when n = L, as depicted
in Figure 2.
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Figure 2. Adaptive Code Book Search

Search Procedure

Discarded Samples

Update Procedure

Best Lag Subvector

147 Elements

code book
extracted from the adaptive
Subvectors for each lag

Lag = 147

Lag = 43

Lag = 42

Lag = 41

Lag = 40

Adaptive Code Book (n)

Adaptive Code Book (n –1)

Adaptive Code Book

In Figure 2, the portion of the adaptive code book utilized (call this subvector bL) is of length NSF and starts
at the index defined by the current lag value in the search procedure. For L � NSF, this procedure is
straightforward because the length of bL fits (see Figure 2) inside the adaptive code book. The VSELP
algorithm supports lags from 20 to 147; therefore, a special situation exists when the lag (L) is less than
NSF. In this case, the bL vector is placed such that a portion of it hangs over the adaptive code book. These
elements of the adaptive code book (long-term filter state) do not exist yet. The flr function of equation [2]
remedies this by doubling the lag (code book index value). This results in copying the first NSF – L
elements of the bL vector to the ending NSF – L elements.
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Figure 3. Code Book Search Signal Flow
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For each lag (20 � L � 146), a vector called bL(n) of length NSF is extracted from the adaptive code book.
This vector is filtered through the bandwidth-expanded LPC filter H(z). The resulting vector, b’L(n), is
compared to the input vector p(n). The p(n) vector is the perceptually weighted input speech vector minus
the zero-input response of H(z). The zero-input response is subtracted from the input speech to remove any
of the ringing of the H(z) filter caused by the previous subframe. The bL vector that produces the minimum
mean square error (MSE) (or maximum match score) compared to p(n) is chosen as the best vector from
the adaptive code book. The lag L that produced this bL vector is transmitted to the receiver. The match
score is defined as:

MS =
(CL)2

GL
(3)

where:

GL = �
NSF–1

n=0

(b’L(n))2 (4)

CL = �
NSF–1

n= 0

b’L(n)p(n) (5)
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In digital cellular VSELP, β is restricted to positive numbers; therefore, only lags with a positive CL are
considered in the search procedure. If no lag with a positive CL can be found, the adaptive code book is
disabled. The lag is coded using seven bits, yielding 128 possible lag values. Since only 127 of these values
are valid (20 � L � 146), one lag value is reserved to disable the adaptive code book search in the decoder.
It should be noted that the gain coefficient is not coded at this time. After all three code vectors are
determined, a joint optimization is performed on the three gain terms, β, γ1, and γ2.

Our implementation precomputes all of the correlations and energies and stores them. The temporary
storing of these parameters is not strictly necessary; however, it allows us to find a scale factor so the search
can be performed utilizing maximum dynamic range. Preserving dynamic range is very important for a
proper pitch search.

Code Search Algorithm

Each of the two code books is constructed from a set of M basis vectors. These vectors are combined
linearly to form a code book of size 2M. The code book vectors are described by:

ui(n) =�
M

m=1

� imvm(n) (6)

where vm is the mth basis vector and ui is the ith code-book vector. The value of θ is either +1 or –1 and
is formulated as follows. Each of the code book vectors, ui, is indexed by i. If the indices are viewed in
binary form, M bits are required to represent the index space. If the LSB of the index is defined as bit 1 and
the MSB is defined as bit M, then θim can be defined as:

If (bit m of index i = 1)

then θim = +1

If (bit m of index i = 0)

then θim = –1

The following provides an example for the trivial case when M = 2. This defines a code book size of 22,
or 4. In this case, only two basis vectors are required, namely v1 and v2. Each of the four code book vectors
is developed below.

ui = θi1�v1 + θi2�v2

u0 = u00 = θ01�v1 + θ02�v2 = v1 + v2
u1 = u01 = θ11�v1 + θ12�v2 = – v1 + v2
u2 = u10 = θ21�v1 + θ22�v2 = v1 – v2
u3 = u11 = θ31�v1 + θ32�v2 = – v1 – v2

It should be noted that u0 = –u3 and u1 = – u2. These are called complementary code book vectors, and this
property is exploited in the code book search to reduce computational requirements.

The VSELP code book structure was defined above for a static single code book. The formula below
expands the notation to describe a VSELP structure with multiple static code books. From equation (6):

uk,i(n) = �
M

m=1

� imvk,m(n) (7)
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For digital cellular VSELP, k = 1 or 2; that is, two static code books are used. The three code books are
searched sequentially. First, the adaptive code book is searched for the optimal vector assuming γ1 = 0 and
γ2 = 0. The technique used in searching the adaptive code book is described above. For the stochastic code
book searches, it is necessary to generate the zero-state response of each code vector to H(z). This is
accomplished by filtering each of the M (M=7) basis vectors for each code book through H(z) with the
history of H(z) set to 0 prior to filtering each vector. The resulting code vectors are defined by equation (8):

f k,I(n) = �
M

m=1

� imqk,m(n) (8)

where qk,m(n) is the zero-state response of H(z) to the basis vector vk,m(n).

The result of the first search is the optimal lag value and the optimal bL(n) vector. The bL(n) vector times
its gain, β, represents the adaptive code book’s contribution to the excitation signal. Next, the first
stochastic code book is searched, given bL(n). This results in an optimal code vector and corresponding
index (I) for the first code book, f1,I. Finally, the second code book is searched given bL(n) and f1,I(n). This
results in an optimal code vector and corresponding index (H) for the second code book, f2,H(n).

All of the searches in this implementation take full advantage of the ’C5x MAC instructions and are
optimized for speed.

Orthogonalization of the Code Vectors

The error signal generated after each of the code vectors from each code book is selected is:

e(n) = p(n) –�bL(n) – �1f k,I(n) – �2f k,I(n) (9)

and

Total weighted error= �
NSF–1

n=0

e2(n) (10)

Given γ2 = 0 and bL(n) for the first code book search, optimal values for β, γ1, and f1,I(n) must be found.
This however, would be too computationally expensive for real-time performance. If the b’L vector and
the each of the code vectors f1,I are orthogonal, then γ1 and the code vector can be jointly optimized
independent of β. By orthogonalizing each of the basis vectors to the b’L(n) vector, the entire space of code
vectors is orthogonalized. The Grahm-Schmidt algorithm is used to perform this orthogonalization as
follows:

� = �
NSF–1

n=0

(b’ L(n))2 (11)

and

�m = �
NSF–1

n=0

b’ L(n)q1,m(n) for 1 � m � M (12)
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The orthogonalized, filtered basis vectors for the first code book are defined by:

q’ 1,m(n) = q1,m(n) –
�m

�
b’ L(n) (13)

The orthogonalized, filtered code vectors for the first code book are defined by:

f’ 1,i(n) =�
M

m=1

� imq’ 1,m(n)  for 0� i � 2M –1 (14)

The new expression for the total weighted error for the first code book search is

E’1,i = �
NSF

n=0

(p(n) – �1f’ 1,i(n))2 (15)

This expression is independent of b and bL and also assumes no contribution from the second code book.
The value for the gain is computed for each code vector but is not encoded yet. As stated previously, the
value for the gains of each of the vectors contributing to the excitation vector are jointly optimized after
all searches are complete.

The second stochastic code book search is identical to the first except that the basis vectors for the second
code book are orthogonalized to both the bL(n) vector and to the optimum code vector from code book 1,
f’ 1,I(n). This orthogonalization can be performed sequentially. The filter basis vectors, q2,m(n), are first
orthogonalized to bL(n). The resulting vectors are then orthogonalized to f’1,I(n).

The orthogonalized, filtered code vectors for the second code book are defined by:

f’ 2,i(n) =�
M

m=1

� imq’2,m(n)  for 0� i � 2M –1 (16)

The new expression for the total weighted error for the second code book search is

E’ 2,i = �
NSF

n=0

(p(n) – �2f’ 2,i(n))2 (17)

For the implementation of the fixed-point VSELP, a modified Grahm-Schmidt algorithm was used. The
difference between this Grahm-Schmidt and the one just presented is that this one is scaled by an energy
constant. This scale washes out in the code book search, yet avoids an expensive division and preserves
dynamic range.

Gray Code Search

In this section, a fast search procedure for finding the best code vector from the stochastic code book is
developed. As with the adaptive code book search, the vector that minimizes the MSE (that is, that
maximizes the match score) is sought. Note that the subscript denoting the first or second code book has
been dropped for clarity. The code search procedures are identical for each code book. The match score
is defined as:
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MS =
(Ci)2

Gi
(18)

The search procedure calculates the match score for each vector in the code book. The best code vector
(indexed by i) will have the highest match score of all code vectors in the code book. The computational
requirements for one subframe search of one code book is 2�NSF multiply-accumulates (MACS). This
results in a code book search computational requirement of:

2� NSF� 2M( MACS
code book

)� 2(codebooks
subframe

)� 4(subframes
frame

)� 50(frames
s

) (19)

= 4.1 x 106(MACS
s )

To reduce this complexity, the structure of the VSELP code books is exploited. Defining the correlation
between the p(n) vector and the filtered code vector, f’i(n):

Ci = �
NSF

n=0

f’ ip(n) (20)

Expanding f’i(n) using equation (8) yields:

= �
NSF–1

n=0

�
M

m=1

� imq’m(n)p(n) (21)

Rearranging the summations yields:

= �
M

m=1

� im�
NSF–1

n=0

q’m(n)p(n) (22)

Defining

Rm = 2�
NSF–1

n=0

q’m(n)p(n) (23)

then substituting this back into 22 yields:

Ci = 1
2
�

M

m=1

� imRm (24)

Defining the gain of the filtered code vector, f’i(n):

Gi = �
NSF–1

n=0

(f’ i(n))2 (25)
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Expanding f’i(n) using equation (8) yields:

= �
NSF–1

n� 0

(�
M

m� 1

�imq’m(n))(�
M

j = 1

� i j q’ j (n)) (26)

Rearranging the summations yields:

= �
M

m�1

�
M

j�1

� im� i j
�

NSF–1

n� 0

q’ j (n)q’m(n) (27)

Defining

Dmj = 4�
NSF–1

n=0

q’m(n)q’j(n) (28)

and substituting back into equation (27) yields:

Gi = �
M

m=1

�
M

j=1

� im� ij

Dmj

4
(29)

Because:

� i j � i m = � i m� i jj

and:

� i j � i m = 1 for j=m

the equation can be expanded to:

Gi = 1
2
�

M

j�2

�
j–1

m� 1

� i m� i j Dmj + 1
4
�

M

j = 1

Djj (30)

Given two code words indexed by i and u such that u differs from i by only one bit (that is, bit position v),
then:

�uv = –� iv (31)

�um = � im for m != v (32)

The correlations Ci and Cu are related by:

Cu = Ci + �uvRv (33)

The gains Gi and Gu are related by:

Gu = Gi + �
v–1

j�1

�uj�uvDjv + �
M

j�v� 1

�uj�uvDvj (34)
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If the code book is searched in a sequence such that the code vector index changes by only one bit from
the previous code vector index, then the previous set of equations leads to a very efficient method to search
the code book. By sequencing the indices using a Gray code, only one bit will change as the indices are
generated. In addition, only half of each code book needs to be searched because the other half is the
complementary set of code vectors (differing only by sign). The sign of Ci is checked to determine which
of the complementary code vectors yields a positive gain γ. The resulting computational requirements are
now reduced to:

CR = 2� 4 � 50 � {[2 � M1 � NSF + M1 + 28] + [2
M

2
� (M1 + 2)]}

= 0.468� 106 MACS (35)

Gain Quantization

The gain values for each of the three code book contributions to the excitation vector are jointly optimized
using a vector quantization table. The development of the quantization procedure can be found in [1]. The
parameters required for the joint vector quantization of the gain values are:

Rcc(j, k) = �
N–1

n=0

c’k(n)c’j(n) k = 0, 2; j = k, 2 (36)

where c’k(n) denotes the kth (k = [0...2]) excitation contribution vector filtered through the H(z) synthesis
filter. Therefore, the upper triangular matrix Rcc is the crosscorrelation matrix of the three filtered code
book excitation contributions.

Rpc(k) = �
N–1

n=0

p(n)c’k(n) k = 0,2 (37)

where p(n) is the perceptually weighted speech minus the ringing in the synthesis filter from the previous
frame. The three-element vector Rpc is the crosscorrelation vector of the three filtered code book excitation
contributions with the p(n) vector.

Rx(k) � �
N–1

n=0

c2
k(n) k� 0, 2 (38)

where ck(n) denotes the kth (k = [0...2]) excitation contribution vector (not filtered). Thus, the vector Rx(k)
denotes the energy in each of the three code book excitation contributions.

Equation (39) defines the parameter RS, the energy in the LPC filter’s residual signal.

RS = NSF� R’q(0) � �
NP

i�1

(1– ri
2) (39)

where R’q(0) is the average power in the current subframe of speech and the product series is the normalized
error power in the synthesis filter. R’q(0) is interpolated from Rq(0) at the subframe rate using the strategy
in Equations 40 – 42.



14

R’q(0) = Rq(0)previous frame           for subframe 1 (40)

R’q(0) = Rq(0)current frame               for subframes 3, 4 (41)

R’q(0) = Rq(0)previous frameRq(0)current frame
�  for subframe 2 (42)

The error equation used in searching the quantization tables is:

E = –a GS P0� – b GS P1� – c GS (1–P0 –P1)�

                      + d GS P0 P1� + e GS P0(1–P0 –P1)� + f GS P1(1–P0 –P1)�

+ g GS P0 + h GS P1 + i GS (1–P0–P1) (43)

where P0 is the fraction of the coder excitation energy due to the adaptive code book contribution, P1 is the
fraction of the coder excitation energy due to the first stochastic code book, and GS is an energy tweak
parameter (GS = R/RS). Note: (1–P0 –P1) is the fraction of the coder excitation energy due to the second
stochastic code book. The definitions of a through i follow:

a = 2Rpc(0) RS
Rx(0)
� (44)

b = 2Rpc(1) RS
Rx(1)
� (45)

c = 2Rpc(2) RS
Rx(2)
� (46)

d =
2Rcc(0, 1)RS

Rx(0)Rx(1)�
(47)

e =
2Rcc(0, 2)RS

Rx(0)Rx(2)�
(48)

f =
2Rcc(1, 2)RS

Rx(1)Rx(2)�
(49)

g =
Rcc(0, 0)RS

Rx(0)
(50)
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h =
Rcc(1, 1)RS

Rx(1)
(51)

i =
Rcc(2, 2)RS

Rx(2)
(52)

The values P0, P1, and GS are vector quantized in a three-column table of length 256. For each subframe,
the index of the elements that minimize the error equation (43) is selected. The resulting code book gains
are defined by the following equations, where the subscript vq indicates the index of the best table entry.

�q =
RS GSvq P0vq

Rx(0)
� (53)

th�1q =
RS GSvq P1vq

Rx(1)
� (54)

�2q =
RS GSvq (1–P0v q–P1vq)

Rx(1)
� (55)

For the fixed-point implementation, the energies are calculated and converted up front to floating-point
format. The parameters are then calculated in floating point because of the wide dynamic range. These
parameters are then scaled back to the 16-bit integer domain according to the largest of the parameters
(hence, the ratios between parameters are maintained.)

Speech Decoder

The speech decoder resembles the encoder with the following exceptions:

• The coefficients for the LPC synthesis filter are not the bandwidth-expanded ones. They are
taken from the RC coefficients in the RX bitstream.

• There is no closed-loop search procedure.

• There is an adaptive postfilter in the signal flow.

The coefficients for the filter A(z) are interpolated at the subframe rate from the reflection coefficients
received at the frame rate. For each frame, the quantized reflection coefficients specified by the bitstream
are converted to direct form-filter coefficients. They are then interpolated using the same scheme as defined
in the interpolation section. The three code book indices are used to look up the correct vector in each of
the code books. Each selected vector is multiplied by its corresponding gain value as calculated using
equations (53), (54), and (55). The three scaled code book contributions are then summed to form the
excitation signal and applied as input to the LPC synthesis filter A(z). In addition, this excitation signal is
fed back into the adaptive code book. The output of the LPC synthesis filter is called the nonpostfiltered
speech vector. To mask the effects of quantization in the coder, the speech is filtered through a spectral
postfilter.
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Adaptive Postfilter

The adaptive postfilter shapes the noise spectrum to match the speech spectrum, thus hiding the effects of
quantization in the VSELP coder beneath the formants of the speech signal [12]. Given the speech synthesis
filter, 1/A(z), the postfilter is defined as:

H(z) =
A( z

bwf1)

A( z
bwf2)

(56)

where 0 � bwf1 � bwf2 < 1. With bwf1 and bwf2 defined as bandwidth expansion factors (like the
bandwidth factors used in the perceptual-weighting filter), this filter boosts the formants in the speech
signal. Several methods exist for the implementation of the postfilter. Two methods are outlined below.

TIA Postfilter

A problem with the postfilter described above is the accentuation of the speech signal’s spectral tilt. This
results in the attenuation of the higher frequencies of the speech spectrum. The method described in [1]
requires the use of a Levinson-Durbin recursion after the bandwidth expansion of the speech correlation
coefficients. The denominator coefficients are converted to autocorrelation coefficients and then
bandwidth expanded by w(i) = 0.923077(i�i). Finally, these autocorrelation coefficients are converted
back to filter coefficients via a Levinson-Durbin recursion. This proves to be computationally expensive
and provides no quality improvement compared to the method described below. In addition to the spectral
shaping filter, a brightness filter is used to boost the high frequencies. The speech, after passing through
the filter H(z), is scaled to remove any gain introduced by the filter.

Scale=

�
NSF–1

n= 0

(sin(n))2

�
NSF–1

n= 0

(sout(n))2

� (57)

The scale value is then passed through a first order low-pass filter to remove discontinuities:

Scale’(n) = = 0.9875� Scale’(n–1) + 0.125� Scale (58)

Modified Postfilter

Rather than adjusting for the spectral tilt in the postfilter via adjusted numerator coefficients, this method
utilizes an adaptive brightness filter. The first reflection coefficient of the numerator filter is used as the
coefficient for the brightness filter. This method is described in [14]. This results in the same spectral effect
as the specified method, yet it is computationally less expensive. This is the method we used for our
implementation.
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Features of VSELP

The code book described above allows a fast code book search to be conducted. Memory requirements are
also reduced since only the basis vectors are stored (not the entire code book). The selected code book index
is robust to channel errors because an error in the index changes only the sign of one of the basis vectors.
Most importantly, the gains associated with each of the vectors contributing to the excitation vector are
jointly optimized and quantized.

TMS320C5x Real-Time Implementation

The DSPSE implementation of VSELP on the TMS320C5x is written entirely in assembly code so that it
can fit on one ’C5x running at 20 MIPS. The two main functions, analysis and synthesis, are completely
modular and C callable. The memory and MIPS requirements are listed below.

Processing Requirements

The table below lists the processor utilization requirements for the TMS320C5x VSELP vocoder software.

Table 3. VSELP Vocoder Processor Requirements
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Application

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

MIPS
Maximum

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Utilization at 
20 MIPS�

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

MIPS
Average

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Utilization at 
20 MIPS�

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Analysis
ÁÁÁÁÁ
ÁÁÁÁÁ

16.10
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

81%
ÁÁÁÁÁ
ÁÁÁÁÁ

15.30
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

77%
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Synthesis
ÁÁÁÁÁ
ÁÁÁÁÁ

3.60
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

18%
ÁÁÁÁÁ
ÁÁÁÁÁ

3.32
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

17%
† Values reflect execution from zero-wait-state external SRAM and use of TMS320C5x internal RAM.

Memory Requirements

The table below lists the memory requirements for the TMS320C5x VSELP vocoder software. All memory
specifications are in units of 16-bit words.

Table 4. VSELP Vocoder Memory Requirements
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁFunction

ÁÁÁÁÁ
ÁÁÁÁÁROM

ÁÁÁÁÁ
ÁÁÁÁÁOn-Chip RAM

ÁÁÁÁÁÁ
ÁÁÁÁÁÁExternal RAM

ÁÁÁÁÁ
ÁÁÁÁÁTotal RAMÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁAnalyzer
ÁÁÁÁÁ
ÁÁÁÁÁ8.2K

ÁÁÁÁÁ
ÁÁÁÁÁ1.5K

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0.23K

ÁÁÁÁÁ
ÁÁÁÁÁ1.73KÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁSynthesizer
ÁÁÁÁÁ
ÁÁÁÁÁ3.32K

ÁÁÁÁÁ
ÁÁÁÁÁ1.1K

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0.23K

ÁÁÁÁÁ
ÁÁÁÁÁ1.33KÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁFull Duplex VSELP
ÁÁÁÁÁ
ÁÁÁÁÁ9.0K

ÁÁÁÁÁ
ÁÁÁÁÁ1.55K

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0.42K

ÁÁÁÁÁ
ÁÁÁÁÁ1.97K

The three on-chip memory blocks are b0, b1, and b2 and are used as follows:

Block b0 is a special block in that it is the only segment of RAM that can be switched into program memory.
This feature is useful for filtering operations such as the MACD instruction. Because this memory is
dynamically switched as program or data memory, no static variables reside in this block. However, this
block is used as temporary memory in the code book searches.

Block b1 is used in two ways. The first 350 locations are used as temporary scratch-pad memory. The
remaining locations are used for time-critical buffers such as the intermediate weighted excitation vectors
and the stack.
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Block b2 is used to overlay local temporary variables. This strategy not only saves memory but also allows
all local variables to be placed in fast dual-access RAM for maximum DSP performance.

Speech Coder Quality

Quality measures were used to compare the speech output of the fixed point VSELP (TMS320C5x) with
a C model of the TIA reference synthesizer. The input bitstream for each of five speakers (three male and
two female) produced five reference files, both postfiltered and nonpostfiltered. This same bitstream was
used as input to the ’C5x implementations of the VSELP coder. The resulting speech files were compared
to the reference files using the SNR measure described below.

SNR Measurements

To track the progress of algorithmic modification, the  segmental SNR measure was used.  The segmental
SNR is the average of the each subframe’s SNR over some segment of speech.

SegSNR = 1
L
�

i = L –1

i = 0

10 * log10(

�
NSF – 1

n= 0

si(n)2

�
NSF–1

n= 0

(si(n)–sp(n))2

) (59)

where L is the length of the speech segment in subframes, si is the input speech, and sp is the synthetic
speech. This measure is used in testing vocoder implementations against the reference vocoder. For the five
reference files, the output of the synthesizer was compared to the output of the reference vocoder’s
synthesizer. All the SNR values for the fixed-point implementation were distributed between 25 and 30 dB.

DTMF Performance

The VSELP algorithm must pass the dual-tone multifrequency (DTMF) signals to allow for remote
signaling and dialing. Several DTMF files were recorded and processed through the algorithm. The Fourier
spectra were analyzed for proper frequency content. In addition, the resulting files were used to signal the
central office and correctly initiate a telephone connection.

A Typical Digital Cellular Vocoder Configuration

Figure 4 illustrates a possible digital cellular system configuration. Analog speech sampled by the A/D
converter is processed by the TMS320C51 digital signal processor to produce a VSELP coded bitstream.
This bitstream is passed through the error-coding block to protect the data against channel errors. Finally,
the error-coded VSELP bitstream is modulated and transmitted to the cellular base station. Since the digital
cellular telephone is full duplex, incoming RF data is simultaneously processed in the reverse order to
produce speech. The incoming signal is demodulated and error corrected before the VSELP synthesis
processing and D/A conversion.
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Figure 4. Possible Digital Cellular System Configuration
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Code Availability

The associated software is available for licensing  from DSP Software Engineering Incorporated, 165
Middlesex Turnpike, Suite 206, Bedford, MA 01730
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