

October 23, 2002 RealNetworks, Inc Confidential 1

8
9

Combo Decoder Summary

Video and Audio Technologies

 Codec Group
RealNetworks, Inc

October 23, 2002

Version 1.0

Summary
This document a summary of the RealVideo 8 and RealVideo 9 Codec.
RealVideo 8 and 9 achieves new levels of compression performance at low
as well as high data rates. The improvements are due in part to 1/3 and
1/4 pixel interpolation for motion estimation, the addition of 16x16,
16x8, 8x16 and 8x8 pixel motion compensated blocks, 4x4 pixel block
transforms, 16x16 “double” transforms, use of smart in-loop filters,
efficient coding of 4x4 intra prediction modes, run length coding of
MB-Types, and more efficient variable length coding of residual
transform coefficients. RealVideo 9 doesn’t need a post filter, while
RealVideo 8 does take advantage of one. RealVideo 9 adds new Interlace
capability to the Codec. The RealVideo 8+9 Combo Decoder is able to
decode both RealVideo 8 and RealVideo 9 content. This decoder has
built in CPU scalability to ensure best possible video experience
various hardware configurations.

RealNetworks, Inc CONFIDENTIAL INFORMATION
Copyright © 2002 RealNetworks, Inc. All rights reserved.
RealNetworks, Inc CONFIDENTIAL INFORMATION

Copyright © 1999-2002 RealNetworks, Inc. All rights reserved.

October 23, 2002 RealNetworks, Inc Confidential 2

Revision History:

Revision Date Comment
1.0 10/23/02 Initial Decoder Summary

May 31, 2000 RealNetworks, Inc Confidential 3

Table of Content

Table of Content 3

1 High Level Overview 4

2 Requirements, Objectives 5

3 Algorithm Descriptions 5

3.1 Overview 5
3.1.1 Picture Types 6
3.1.2 Picture Structure 7
3.1.3 Macroblock Structure 8

3.2 Core Compression Algorithm 8
3.2.1 Macroblock Types 8
3.2.2 Block sizes for Motion Compensated prediction 8
3.2.3 1/3 sub-pel prediction 9
3.2.4 1/4 sub-pel prediction 11
3.2.5 4x4 Intra Prediction 12
3.2.6 16x16 Intra Prediction 13
3.2.7 4x4 Transform 13

3.2.7.1 Exact integer transform instead of DCT 13
3.2.7.2 Double Transform 13

3.2.8 Quantization 13
3.2.9 RealVideo 8 Deblocking filter 14
3.2.10 RealVideo 9 Deblocking filter 15

3.3 B Frames 15

3.4 Interlaced Mode 15

3.5 Reference Picture Resampling (RPR) 15

3.6 CPU Scalability 15

May 31, 2000 RealNetworks, Inc Confidential 4

1 High Level Overview
RealVideo 8 and RealVideo 9 represents major advances in compression
performance. The RealVideo 8+9 Combo Decoder is a singe decoder
implementation able to decode both RealVideo 8 and RealVideo 9 content.
RealVideo 8 and RealVideo 9 achieves new levels of compression
performance at low as well as high data rates. The improvements are due
in part to

• 4x4 pixel block transforms

• 16x16 “double” transforms

• 1/3 and 1/4 pixel interpolation for motion compensation

• the addition of 16x16, 16x8, 8x16 and 8x8 pixel motion
compensated blocks

• 4x4 and 16x16 spatial prediction for intra-coded macroblocks

• smart in-loop deblocking filter

• run length coding of some macroblock types
• more efficient variable length coding of residual transform

coefficients

RealVideo 9 doesn’t need a post filter, while RealVideo 8 does take
advantage of one. RealVideo 9 adds new Interlace capability to the
Codec. The RealVideo 8+9 Combo Decoder has built in CPU scalability to
ensure best possible video experience various hardware configurations.

RealNetworks, Inc CONFIDENTIAL INFORMATION
Copyright © 1999-2002 RealNetworks, Inc. All rights reserved.

May 31, 2000 RealNetworks, Inc Confidential 5

2 Requirements, Objectives
Minimum Decode Platform: 160x120 pixel, 7.5 fps decode on a Pentium™
200 MHz with 16 MB of memory.

Target bit rates: < 20 kbps, 30 kbps, 100 kbps, 500 kbps, 1-2 Mbps DVD
quality bit rates, HDTV bit rates, and above.

Target frame sizes: minimum frame size is 32x32, with particular
attention to the range CIF (352 x 288) to VGA Resolution (640 x 480).
HDTV resolutions (e.g. 1080i, 720p) are also supported, and there is no
maximum supported frame size.

Video quality requirements: A noticeable improvement in video quality
over standards-based codecs at comparable data rates.

3 Algorithm Descriptions

RealVideo 8 and RealVideo 9 consist of a set of coding tools including:

• 4x4 pixel block transforms

• 16x16 “double” transforms for intra-coded macroblocks

• sub-pixel accurate interpolation for motion compensation

• 16x16 and 8x8 pixel motion compensated blocks
• in-loop deblocking filter

• 4x4 and 16x16 spatial prediction for intra-coded macroblocks

• more efficient variable length coding of residual transform
coefficients

In addition RealVideo 9 adds the following additional coding tools:

• Improved Intra mode coding
• Advanced Deblocking Filter
• 1/4 Pel Motion Estimation (includes the Funny position)
• Addition 16x8 and 8x16 motion compensation
• Double Transform for Inter 16x16
• New QP Matrix for Double Transform
• Optimized Entropy coding through explicit Super VLC quantizer.
• Adaptive MB Types coding
• Run length encoding of Skipped macroblocks
• Better B Frame motion vector prediction
• Bidirectional MB Type for B frames
• Interlaced Coding

3.1 Overview

RealVideo 8 and 9 is a hybrid predictive coder that uses temporal
prediction (motion compensation) and spatial prediction (intra-
prediction), transform-based residual coding and an inloop deblocking
filter. Figure 3.1 provides a high-level block diagram of the
algorithm.

May 31, 2000 RealNetworks, Inc Confidential 6

Figure 3.1: Block diagram of the RealVideo 8 and 9 decoder algorithm

The Incoming Bitstream describes how to reconstruct pictures in groups
of non-overlapping 16x16 pixels (macroblocks). For each macroblock,
the bitstream indicates whether Spatial Prediction or Temporal
Prediction is to be used. Once a prediction is formed, the image
residual is formed through the Coefficient Decoding, Dequantization and
Inverse Transform process. The prediction and residual are added and
stored in memory for use in future spatial prediction. Once the entire
picture has been reconstructed, an inloop deblocking filter is used to
remove blocking artifacts. This filtered image is then ready to be
rendered and, in addition, used for future temporal prediction.

The RealVideo 8 and 9 decoding algorithm is defined to reconstruct video
images in YUV 4:2:0 format. It is the function of the video renderer
(or equivalent player module) to format the picture to the appropriate
color space for display.

3.1.1 Picture Types

There are 3 picture types in RealVideo 8 and 9 – I-Pictures, P-Pictures
and B-Pictures.

I-Pictures are also referred to as Intra-Frames or Key Frames. They do
not use temporal prediction and, therefore, do not require other
decoded reference frames to be in the decoder for proper
reconstruction. I-Pictures provide entry or access points to the video
sequence.

P-Pictures use both spatial and temporal prediction. The temporal
prediction always uses one reference frame. That reference frame shall
always be the most previous reconstructed I-Picture or P-Picture.

B-Pictures use both spatial and temporal prediction. However, temporal
prediction uses up to 2 reference frames. These reference frames shall
always be the 2 most previous reconstructed I-Pictures or P-Pictures
that were found in the bitstream (i.e. in “bitstream” order, not
display order). Because the display time of one reference picture is
always before the B-Picture and the other is always after the B-
Picture, the placement of B-Pictures in the bitstream is not in display
order. Figure 3.2 provides an example of display and bitstream
ordering of I, P and B Pictures.

Temporal
Prediction

Spatial
Prediction

Dequantization Inverse
Transform

Coefficient
Decoding

Reconstructed
Frame Buffer

Deblocking
Filter

Incoming
Bitstream

Frame
Store

Decoded
Frame

May 31, 2000 RealNetworks, Inc Confidential 7

(a)

(b)

Figure 3.2: (a) Display Order. (b) Bitstream and Decode Order

3.1.2 Picture Structure

Pictures are divided into non-overlapping 16x16 group of pixels called
macroblocks. For instance, a QCIF picture (176x144 pixels) is divided
into 99 macroblocks as indicated in Figure 3.3.

Figure 3.3: A picture with 11 x 9 macroblocks (QCIF picture)

When parsing and decoding the video bitstream macroblocks are scanned
from left to right starting at the top left of the picture. Once an
entire row of macroblocks are decoded the next row down proceeds.

I0 B1 B2 B3 P4 B5 B6 B7 P8

I0 B1 B2 B3 P4 B5 B6 B7 P8

9 macroblocks

11 macroblocks

176 pixels

144 pixels

Bitstream/Decode Order

Display Time

May 31, 2000 RealNetworks, Inc Confidential 8

3.1.3 Macroblock Structure

The basic transform used for residual coding is a 4x4 2-D transform.
Figure 3.4 below indicate how a macroblock is divided into 4x4 regions
and the scanning order of these regions.

Figure 3.4: Macroblock scanning order of 4x4 blocks

3.2 Core Compression Algorithm

3.2.1 Macroblock Types
Each macroblock is given a categorization (macroblock type) that
indicates both the way prediction is done for that macroblock (e.g.
spatial or temporal) and the way residual transform is done (e.g.
single 4x4 transforms or a double transforms). The complete list of
macroblock types is given below in Table 3.1.

TABLE 3.1: List of macroblock types
MB Types Description I-Pic P-Pic B-Pic
INTRA Intra, 16 4x4 predictions X X X
INTRA_16x16 Intra, 16x16 prediction, Dbl Xfm X X X
INTER Inter, 1MV X
INTER_16x16 Inter, 1MV, Dbl Xfrm X
INTER_16x8V Inter, 2MVs for 2 16x8 blocks X
INTER_8x16V Inter, 2MVs for 2 8x16 blocks X
INTER_4V Inter, 4MVs for 4 8x8 blocks X
SKIPPED Inter, no residual, MV=(0,0) X
FORWARD Fwd MV, 1MV X
BACKWARD Bwd MV, 1MV X
DIRECT Direct, Derived 2MV for 16x16

block
 X

BIDIR Fwd & Bwd MV for 16x16 block X
SKIPPED Direct, no residual, Derived MV

for 16x16 block
 X

3.2.2 Block sizes for Motion Compensated prediction

In this model it is possible to estimate motion and compensate motion
on 16x16, 16x8, 8x16 and 8x8 pixel block sizes. The encoder chooses one
motion compensation mode for each macroblock. Motion vectors off the
edge of the frame are allowed and used. The luma frame data is padded
by 16 on each side. Interpolation filter Taps Lengths of 6, 2, and 12

Y U V

1

5

2 3 4

6 7 8

9 10 11 12

13 14 15 16

17 18

19 20

21 22

23 24

May 31, 2000 RealNetworks, Inc Confidential 9

exist for RV9. A valid MV is defined such that the interpolation of that
MV is possible within the padded image.

 INTER INTER_16X8V INTER_8X16V INTER_4V
 INTER_16X16
 FORWARD
 BACKWARD
 DIRECT
 BIDIR

Figure 3.5: Motion compensation block sizes for Inter macroblocks

3.2.3 1/3 sub-pel prediction

Motion vectors in RealVideo 8 are transmitted in 1/3 pixel units. When
the motion vectors for a macroblock have been decoded the full-pixel
offset can be obtained by dividing by 3.

MVx_int = (MVx_luma / 3)
MVy_int = (MVy_luma / 3).

The “phase” or sub-pixel location can be obtained as follows.

MVx_sub = (MVx_luma – MVx_int*3)
MVy_sub = (MVy_luma - MVy_int*3).

For luma sub-pixel interpolation is calculated with a 4-tap filter. For
chroma, a 2-tap filter is used. In addition, one of the 9 interpolated
pixels, MVx_sub = 2, MVy_sub = 2, in the luma plane is created using a
stronger filter. Thus, using 1/3–pel prediction instead of ½-pel
prediction has two advantages

� more accurate motion estimation
� automatic adaptation of, and a larger variation in filter strength

The different horizontal and vertical filters are illustrated in Table
3.2.

TABLE 3.2: Luma Horizontal and vertical motion compensation filters
(MVx_sub,
MVy_sub)

Horizontal, Vertical Filter pi,j = inter pixels,
ti,j = temporary buffer, yi,j = interpolated image
Note: (i,j) = coordinates x,y pair and not row,column pair

(0,0) ti,j = pi,j
yi,j = ti,j

(0,1) ti,j = pi,j
yi,j = (–1ti,j-1 + 12ti,j + 6ti,j+1 – 1ti,j+2 + 8) >> 4

(0,2) ti,j = pi,j

16 16

16
8

8

8

8

8 8 8 8

16

May 31, 2000 RealNetworks, Inc Confidential 10

yi,j = (-1ti,j-1 + 6ti,j + 12ti,j+1 – 1ti,j+2 + 8) >> 4
(1,0) ti,j = (–1pi-1,j + 12pi,j + 6pi+1,j – 1pi+2,j + 8) >> 4

yi,j = ti,j
(1,1) ti,j = (-1pi-1,j + 12pi,j + 6pi+1,j – 1pi+2,j)

yi,j = (–1ti,j-1 + 12ti,j + 6ti,j+1 – 1ti,j+2 + 128) >> 8
(1,2) ti,j = (–1pi-1,j + 12pi,j + 6pi+1,j – 1pi+2,j)

yi,j = (-1ti,j-1 + 6ti,j + 12ti,j+1 – 1ti,j+2 + 128) >> 8
(2,0) ti,j = (–1pi-1,j + 6pi,j + 12pi+1,j – 1pi+2,j + 8) >> 4

yi,j = ti,j
(2,1) ti,j = (–1pi-1,j + 6pi,j + 12pi+1,j – 1pi+2,j)

yi,j = (–1ti,j-1 + 12ti,j + 6ti,j+1 – 1ti,j+2 + 128) >> 8
(2,2) ti,j = (-0pi-1,j + 6pi,j + 9pi+1,j +1pi+2,j)

yi,j = (-0ti,j-1 + 6ti,j + 9ti,j+1 +1ti,j+2 + 128) >> 8

The final value of y clipped to 0-255.

Motion vectors for chroma motion compensation are derived from the
motion vectors for the luma. Specifically, the chroma MVs are
calculated as

 MVx_chroma = MVx_luma >> 1
 MVy_chroma = MVy_luma >> 1

Then the integer offset and sub-pixel location can be obtained by

MVx_chroma_int = (MVx_chroma / 3)
MVy_chroma_int = (MVy_chroma / 3).

MVx_chroma_sub = (MVx_chroma – MVx_chroma_int*3)
MVy_chroma_sub = (MVy_chroma – MVy_chroma_int*3).

Additionally, the size of motion compensation blocks are half the size,
horizontally and vertically, from those used in luma. Thus, motion
compensation block sizes for chroma include 8x8, 8x4, 4x8 and 4x4.
Chroma motion compensation filters are given in Table 3.3.

TABLE 3.3: Chroma Horizontal and vertical motion compensation filters
(MVx_chroma_sub,
MVy_chroma_sub)

Filter (input py,x, output fy,x)

(0,0) fi,j = pi,j
(0,1) fi,j = (3pi,j + 5pi,j+1 + 4) >> 3
(0,2) fi,j = (5pi,j + 3pi,j+1 + 4) >> 3
(1,0) fi,j = (5pi,j + 3pi+1,j + 4) >> 3
(1,1) fi,j = (25pi,j + 15pi+1,j + 15pi,j+1 + 9pi+1,j+1 + 32) >> 6
(1,2) fi,j = (15pi,j + 9pi+1,j + 25pi,j+1 + 15pi+1,j+1 + 32) >> 6
(2,0) fi,j = (3pi,j + 5pi+1,j + 4) >> 3
(2,1) fi,j = (15pi,j + 25pi+1,j + 9i,j+1 + 15pi+1,j+1 + 32) >> 6
(2,2) fi,j = (9pi,j + 15pi+1,j + 15pi,j+1 + 25pi+1,j+1 + 32) >> 6

The final value of f clipped to 0-255.

May 31, 2000 RealNetworks, Inc Confidential 11

3.2.4 1/4 sub-pel prediction
Motion vectors in RealVideo 9 are transmitted in 1/4 pixel units. When
the motion vectors for a macroblock have been decoded the full-pixel
offset can be obtained by shifting right by 2 bits.

MVx_int = (MVx_luma >> 2)
MVy_int = (MVy_luma >> 2).

The “phase” or sub-pixel location can be obtained by extracting the 2
least significant bits.

MVx_sub = (MVx_luma & 3)
MVy_sub = (MVy_luma & 3).

For luma sub-pixel interpolation is calculated with a 6-tap filter. For
chroma, a 2-tap filter is used. In addition, one of the 16 interpolated
pixels, MVx_sub = 3, MVy_sub = 3, in the luma plane is created using a
stronger filter. The different horizontal and vertical filters are
illustrated in Table 3.4.

TABLE 3.4: Luma Horizontal and vertical motion compensation filters
(MVx_sub,
MVy_sub)

Horizontal, Vertical Filter, p0 = integer pixels,
t0 = temporary buffer, v0 = interpolated image

(0,0) t0 = p0
v0 = h0

(0,1) t0 = p0
v0 = (t-2 – 5t-1 + 52t0 + 20t1 – 5t2 + t3 + 32) >> 6

(0,2) t0 = p0
v0 = (t-2 – 5t-1 + 20t0 + 20t1 – 5t2 + t3 + 16) >> 5

(0,3) t0 = p0
v0 = (t-2 – 5t-1 + 52t0 + 52t1 – 5t2 + t3 + 32) >> 6

(1,0) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6
v0 = t0

(1,1) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6
v0 = (t-2 – 5t-1 + 52t0 + 20t1 – 5t2 + t3 + 32) >> 6

(1,2) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6
v0 = (t-2 – 5t-1 + 20t0 + 20t1 – 5t2 + t3 + 16) >> 5

(1,3) t0 = (p-2 – 5p-1 + 52p0 + 52p1 – 5p2 + p3 + 32) >> 6
v0 = (t-2 – 5t-1 + 20t0 + 52t1 – 5t2 + t3 + 32) >> 6

(2,0) t0 = (p-2 – 5p-1 + 20p0 + 20p1 – 5p2 + p3 + 16) >> 5
v0 = t0

(2,1) t0 = (p-2 – 5p-1 + 20p0 + 20p1 – 5p2 + p3 + 16) >> 5
v0 = (t-2 – 5t-1 + 52t0 + 20t1 – 5t2 + t3 + 32) >> 6

(2,2) t0 = (p-2 – 5p-1 + 20p0 + 20p1 – 5p2 + p3 + 16) >> 5
v0 = (t-2 – 5t-1 + 20t0 + 20t1 – 5t2 + t3 + 16) >> 5

(2,3) t0 = (p-2 – 5p-1 + 20p0 + 20p1 – 5p2 + p3 + 16) >> 5
v0 = (t-2 – 5t-1 + 20t0 + 52t1 – 5t2 + t3 + 32) >> 6

(3,0) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6
v0 = t0

(3,1) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6
v0 = (t-2 – 5t-1 + 52t0 + 20t1 – 5t2 + t3 + 32) >> 6

(3,2) t0 = (p-2 – 5p-1 + 52p0 + 20p1 – 5p2 + p3 + 32) >> 6
v0 = (t-2 – 5t-1 + 20t0 + 20t1 – 5t2 + t3 + 16) >> 5

(3,3) t0 = p0 + p1
v0 = (t0 + t1 + 2) >> 2

May 31, 2000 RealNetworks, Inc Confidential 12

The value of t0 is clipped to 0-255 before calculating v0.The final
value of v0 is again clipped to the range 0-255.
Motion vectors for chroma motion compensation are derived from the
motion vectors for the luma. Specifically, the chroma MVs are
calculated as

 MVx_chroma = MVx_luma >> 1
 MVy_chroma = MVy_luma >> 1

Then the integer offset and sub-pixel location can be obtained by

MVx_chroma_int = (MVx_chroma >> 2)
MVy_chroma_int = (MVy_chroma >> 2).

MVx_chroma_sub = (MVx_chroma & 3)
MVy_chroma_sub = (MVy_chroma & 3).

Additionally, the size of motion compensation blocks are half the size,
horizontally and vertically, from those used in luma. Thus, motion
compensation block sizes for chroma include 8x8, 8x4, 4x8 and 4x4.
Chroma motion compensation filters are given in Table 3.5.

Note the rounding or addition factor for each sub-pixel location. In
addition, note that the (3,3) position is the same as the (2,2)
position.

TABLE 3.5: Chroma Horizontal and vertical motion compensation filters

(MVx_chroma_sub,
MVy_chroma_sub)

Filter (input py,x, output fy,x)

(0,0) f0,0 = p0,0
(0,1) f0,0 = (3p0,0 + p1,0 + 2) >> 2
(0,2) f0,0 = (p0,0 + p1,0) >> 1
(0,3) f0,0 = (p0,0 + 3p1,0 + 2) >> 2
(1,0) f0,0 = (3p0,0 + p0,1 + 1) >> 2
(1,1) f0,0 = (9p0,0 + 3p0,1 + 3p1,0 + p1,1 + 7) >> 4
(1,2) f0,0 = (3p0,0 + p0,1 + 3p1,0 + p1,1 + 4) >> 3
(1,3) f0,0 = (3p0,0 + p0,1 + 9p1,0 + 3p1,1 + 7) >> 4
(2,0) f0,0 = (p0,0 + p0,1 + 1) >> 1
(2,1) f0,0 = (3p0,0 + 3p0,1 + p1,0 + p1,1 + 4) >> 3
(2,2) f0,0 = (p0,0 + p0,1 + p1,0 + p1,1 + 1) >> 2
(2,3) f0,0 = (p0,0 + p0,1 + 3p1,0 + 3p1,1 + 4) >> 3
(3,0) f0,0 = (p0,0 + 3p0,1 + 1) >> 2
(3,1) f0,0 = (3p0,0 + 9p0,1 + p1,0 + 3p1,1 + 7) >> 4
(3,2) f0,0 = (p0,0 + 3p0,1 + p1,0 + 3p1,1 + 4) >> 3
(3,3) f0,0 = (p0,0 + p0,1 + p1,0 + p1,1 + 1) >> 2

The final value of f is clipped to the range 0-255.

3.2.5 4x4 Intra Prediction

Spatial prediction for intra-coded macroblocks is used. This
prediction is 4x4 block based using one of nine prediction modes. DC
prediction (the average of the block above and to the left) mode is

May 31, 2000 RealNetworks, Inc Confidential 13

always allowed. Two modes use simple spatial prediction (1) column
based from above, and (2) row based from the left. Additional
prediction modes are diagonal.

3.2.6 16x16 Intra Prediction

For Intra16x16 macroblocks, one of four prediction modes are used to
form a 16x16 prediction for the entire macroblock. Three modes are
similar to modes 0 – 2 for 4x4 intra plus a new planar prediction mode.
The image residual of Intra16x16 macroblocks are Double Transformed.

3.2.7 4x4 Transform

3.2.7.1 Exact integer transform instead of DCT
A 4x4 integer transform is used for image residuals. By having an
exact definition of the inverse transform, there is no encoder/decoder
mismatch. The transformation of the pixels a,b,c,d into four transform
coefficients is defined by:

A = 13a + 13b + 13c + 13d
B = 17a + 7b - 7c - 17d
C = 13a - 13b – 13c + 13d
D = 7a - 17b + 17c - 7d

The inverse transform is defined by:

a' = 13A + 17B + 13C + 7D
b' = 13A + 7B - 13C – 17D
c' = 13A – 7B – 13C + 17D
d' = 13A – 17B + 13C - 7D

The relationship between the transform in one dimension without
normalization is a’ = 676 x a. This is used in the quantization step
(see below). The actual transform is 2D and since it is a separable
transform, it implemented as a horizontal 1D transform followed by a
vertical 1D transform.

3.2.7.2 Double Transform
An additional 4x4 transform is used for the 16 DC coefficients of the
16 4x4 transforms inside a macroblock. The coefficients of this second
transform are coded and transmitted as a block in addition to the 16
4x4 luma blocks (each then having only 15 coefficients). Since we use
the same integer transform to DC coefficients, we have to perform
additional normalization to those coefficients, which implies a
division by 676. To avoid the division we performed normalization by
49/215 on the encoder side and 48/215 on the decoder side, which gives
sufficient accuracy.

3.2.8 Quantization
Quantization is table-based and designed in such a way that the bit
usage as a function of the quantization parameter is fairly linear. In
the encoder and decoder, the QP range 0-31 is mapped into the tables
A[QP] and B[QP], respectively, where the relationship between A[] and
B[] is:

May 31, 2000 RealNetworks, Inc Confidential 14

A[QP] x B[QP] x 6762 = 234.

with

A(QP=0,..,31) = {620, 553, 492, 439, 391, 348, 310, 276, 246, 219, 195,
174, 155, 138, 123, 110, 98, 87, 78, 69, 62, 55, 49, 44, 39, 35,
31, 27, 24, 22, 19, 17}

B(QP=0,..,31) = {60, 67, 76, 85, 96, 108, 121, 136, 152, 171, 192, 216,

242, 272, 305, 341, 383, 432, 481, 544, 606, 683, 767, 854, 963,
1074, 1212, 1392, 1566, 1708, 1978, 2211}

Quantization of coefficient level K is performed as

LEVEL = (((K>>4) x A[QP]x32) >> 16) + f) >> 5,

where f is 5 for Inter macroblocks and 10 for Intra macroblocks.
Dequantization is defined as

K’ = ((LEVEL x B[QP]) + 8) >> 4.

For the coefficients of the second transform in INTRA_16x16 and
INTER_16x16 macroblocks quantization is performed as

LEVEL = (K x A[QP] + f)>>20,

where f is 0x55555.

Quantization is performed the same way for chroma as for luma, except
the QP value used is derived from the QP used for luma using the tables
below. The chroma DC coefficient (c0) is given an even lower QP than the
chroma AC coefficients (c1-c15).

chroma_QP_map_AC[32] =
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,17,18,19,20,20,21,22,
22,23,23,24,24,25,25};

chroma_QP_map_DC[32] =

{0,0,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,15,16,17,18,18,19,20,20
,21,21,22,22,23,23};

After inverse transformation, the pixel values will then be 210 too
high, and a 10 bit downshift is needed as a part of the frame
reconstruction. The definition of the transform and quantization is
designed so that no overflow will occur with the use of 32-bit
arithmetic.

3.2.9 RealVideo 8 Deblocking filter
The in-loop deblocking filter is similar to the in-loop deblocking
filter defined in annex J in H.263 version 2, but works on 4x4 edges
instead of 8x8 edges, and only one instead of two pixels on each side
of the edge is filtered.

The filter operations are performed across 4x4 block edges at the
encoder as well as on the decoder side. The reconstructed image data
(the sum of the prediction and the reconstructed prediction error) are
clipped to the range 0 to 255. Then the filtering is applied, which
alters the picture that is to be stored in the picture store for future
prediction. The filtering operation includes an additional clipping to
ensure the resulting pixel values stay in the range 0…255.

May 31, 2000 RealNetworks, Inc Confidential 15

3.2.10 RealVideo 9 Deblocking filter
For I, P and B Pictures an in-loop deblocking filter is used. (Note:
since B Picture are never used as reference frames, deblocking is
optional in the encoder & decoder)

After the reconstruction of a entire picture a conditional filtering of
this picture takes place, that effects the boundaries of the 4x4 block
structure. RealVideo 9 deblocking filter is designed to provide PSNR
improvement as well high visual quality. Thus there is no smoothing
post-filter required for RealVideo 9.

Since RealVideo 9 deblocking filter is highly complex and B-Frames are
not used for prediction, 2 Deblocking filters for B-frames are
provided. Only under conditions when CPU is unable to handle Full Frame
rate video should this simple filter be used.

3.3 B Frames

In B frames, there are five methods for motion compensating a
macroblock - forward, backward, direct, Bi-predictive and skipped.
Forward and backward macroblocks are estimated and differentially
encoded in a similar fashion to 16x16 MV's in a P frame, except the
reference picture that is used can be either the preceding or future P
frame, respectively.

3.4 Interlaced Mode
<incomplete>

3.5 Reference Picture Resampling (RPR)
Reference picture resampling allows an encoder and decoder to change
image dimensions on a frame-by-frame basis, without having to generate
a key frame. When a new image dimension is received the decoder simply
interpolates/decimates the previous reference image to the new size
before using it as a predictor for the next frame. The implementation
is exactly like H263+ spec annexes O, P, and Q with all Edge
displacement, Warping, and Fill parameters are zero.

At the slice level the Picture size is transmitted using a Variable
length and Fixed length scheme for I / P / B frames.

3.6 CPU Scalability
Based on experiments the following Decoder CPU scalability is allowed.

� Simpler In Loop Filter for B-Frames
� Disable De-Blocking in B-Frames.
� Snap to Integer Motion Vectors in B-frames.
� Dropping B-frames.

