
QuickTime File Format Specification

2007-09-04

Apple Inc.
© 2004, 2007 Apple Inc.
All rights reserved.

No part of this publication may be
reproduced, stored in a retrieval system, or
transmitted, in any form or by any means,
mechanical, electronic, photocopying,
recording, or otherwise, without prior
written permission of Apple Inc., with the
following exceptions: Any person is hereby
authorized to store documentation on a
single computer for personal use only and
to print copies of documentation for
personal use provided that the
documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple
may constitute trademark infringement and
unfair competition in violation of federal
and state laws.

No licenses, express or implied, are granted
with respect to any of the technology
described in this document. Apple retains
all intellectual property rights associated
with the technology described in this
document. This document is intended to
assist application developers to develop
applications only for Apple-labeled or
Apple-licensed computers.

Every effort has been made to ensure that
the information in this document is
accurate. Apple is not responsible for
typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Chicago, ColorSync,
Mac, Mac OS, Macintosh, QuickDraw, and
QuickTime are trademarks of Apple Inc.,
registered in the United States and other
countries.

Aperture is a trademark of Apple Inc.

Intel and Intel Core are registered
trademarks of Intel Corportation or its
subsidiaries in the United States and other
countries.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

PowerPC and and the PowerPC logo are
trademarks of International Business
Machines Corporation, used under license
therefrom.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR
IMPLIED, WITH RESPECT TO THIS
DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
DOCUMENT IS PROVIDED “AS IS,” AND
YOU, THE READER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, even if
advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN,
EXPRESS OR IMPLIED. No Apple dealer, agent,
or employee is authorized to make any
modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal
rights, and you may also have other rights which
vary from state to state.

Contents

Introduction Introduction to QuickTime File Format Specification 15

Organization of This Document 16
Licensing Information 16
Special Fonts 16
Updates to This Specification 16
For More Information 17

Chapter 1 Overview of QTFF 19

Metadata 19
Atoms 19

Atom Layout 20
Atom Structure 21

QT Atoms and Atom Containers 23
QT Atom Containers 25

QuickTime Movie Files 27
The File Type Compatibility Atom 30
Free Space Atoms 31
Movie Data Atoms 31
Preview Atoms 32

Chapter 2 Movie Atoms 33

Overview of Movie Atoms 34
The Movie Atom 35
The Movie Profile Atom 37
Movie Header Atoms 38
Color Table Atoms 41
User Data Atoms 42

Track Atoms 46
Track Profile Atom 48
Track Header Atoms 48
Clipping Atoms 51
Clipping Region Atoms 52
Track Matte Atoms 52
Compressed Matte Atoms 53
Edit Atoms 54

3
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

Edit List Atoms 55
Track Load Settings Atoms 56
Track Reference Atoms 57
Track Input Map Atoms 59

Media Atoms 62
Media Header Atoms 63
Handler Reference Atoms 65
Media Information Atoms 66
Video Media Information Atoms 67
Video Media Information Header Atoms 67
Sound Media Information Atoms 68
Sound Media Information Header Atoms 69
Base Media Information Atoms 70
Base Media Information Header Atoms 71
Base Media Info Atoms 71
Data Information Atoms 73
Data Reference Atoms 74

Sample Atoms 75
Sample Table Atoms 76
Sample Description Atoms 78
Time-to-Sample Atoms 79
Sync Sample Atoms 81
Sample-to-Chunk Atoms 83
Sample Size Atoms 84
Chunk Offset Atoms 86
Using Sample Atoms 87

Compressed Movie Resources 88
Allowing QuickTime to Compress the Movie Resource 89
Structure of a Compressed Movie Resource 89

Reference Movies 89
Reference Movie Atom 91
Reference Movie Descriptor Atom 91
Data Reference Atom 92
Data Rate Atom 93
CPU Speed Atom 94
Version Check Atom 94
Component Detect Atom 95
Constants 96
Quality Atom 97

Chapter 3 Media Data Atom Types 99

Video Media 100
Video Sample Description 100
Video Sample Data 112

Sound Media 117

4
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

Sound Sample Descriptions 117
Sound Sample Data 124

Timecode Media 126
Timecode Sample Description 126
Timecode Media Information Atom 127

Text Media 129
Text Sample Description 129
Text Sample Data 131
Hypertext and Wired Text 132

Music Media 133
Music Sample Description 133
Music Sample Data 133

MPEG-1 Media 134
MPEG-1 Sample Description 134
MPEG-1 Sample Data 134

Sprite Media 134
Sprite Sample Description 134
Sprite Sample Data 134

Sprite Track Properties 136
Sprite Track Media Format 137

Sprite Media Format Atoms 139
Sprite Media Format Extensions 139
Sprite Track Property Atoms 139

Atom Types 140
Sprite Button Behaviors 144
QT Atom Container Description Key 145
Sprite Media Handler Track Properties QT Atom Container Format 146
Sprite Media Handler Sample QT Atom Container Formats 146
Wired Action Grammar 147
Flash Media 153
Tween Media 153

Tween Sample Description 154
Tween Sample Data 154
Tween Type Categories 155
Tween QT Atom Container 156

Modifier Tracks 163
Limitations of Spatial Modifier Tracks 163

Track References 164
Chapter Lists 164
3D Media 165

3D Sample Description 165
3D Sample Data 165

Streaming Media 165
Streaming Media Sample Description 165

Hint Media 166
Adding Hint Tracks to a Movie 167

5
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

Packetization Hint Media Header Atom 168
Hint Track User Data Atom 168
Movie Hint Info Atom 168

Finding an Original Media Track From a Hint Track 170
RTP Hint Tracks 170
Hint Sample Data Format 171
Packetization Hint Sample Data for Data Format 'rtp ' 173

No-Op Data Mode 177
Immediate Data Mode 177
Sample Mode 177
Sample Description Mode 179

VR Media 180
VR World Atom Container 181

Node Parent Atom 185
Node Location Atom Structure 185
Custom Cursor Atoms 186
Node Information Atom Container 186

Node Header Atom Structure 187
Hot Spot Parent Atom 188
Hot Spot Information Atom 188
Specific Information Atoms 190
Link Hot Spot Atom 190

URL Hot Spot Atom 192
Support for Wired Actions 192
QuickTime VR File Format 193

Single-Node Panoramic Movies 194
Single-Node Object Movies 195
Multinode Movies 196

QTVR Track 196
QuickTime VR Sample Description Structure 197

Panorama Tracks 197
Panorama Sample Atom Structure 198
Panorama Image Track 201
Cylindrical Panoramas 202

Cubic Panoramas 203
Image Tracks in Cubic Nodes 203

Panorama Tracks in Cubic Nodes 204
Nonstandard Cubes 205
Hot Spot Image Tracks 206

Low-Resolution Image Tracks 206
Track Reference Entry Structure 206

Object Tracks 207
Object Sample Atom Structure 207

Track References for Object Tracks 212
Movie Media 213

Movie Sample Description 213

6
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

Movie Media Sample Format 213

Chapter 4 Basic Data Types 219

Language Code Values 219
Macintosh Language Codes 219
ISO Language Codes 222

Calendar Date and Time Values 222
Matrices 222
Graphics Modes 223
RGB Colors 224
Balance 224

Chapter 5 Some Useful Examples and Scenarios 225

Creating, Copying, and Disposing of Atom Containers 226
Creating New Atoms 226
Copying Existing Atoms 228
Retrieving Atoms From an Atom Container 229
Modifying Atoms 231
Removing Atoms From an Atom Container 232

Creating an Effect Description 233
Structure of an Effect Description 233
Required Atoms of an Effects Description 233
Parameter Atoms of an Effects Description 234
Creating an Input Map 235

Creating Movies with Modifier Tracks 238
Authoring Movies with External Movie Targets 239

Target Atoms for Embedded Movies 240
Adding Wired Actions To a Flash Track 240

Extending the SWF Format 241
Creating Video Tracks at 30 Frames per Second 243
Creating Video Tracks at 29.97 Frames per Second 243
Creating Audio Tracks at 44.1 kHz 244
Creating a Timecode Track for 29.97 FPS Video 244
Playing with Edit Lists 248
Interleaving Movie Data 250
Referencing Two Data Files With a Single Track 251
Getting the Name of a QuickTime VR Node 252
Adding Custom Atoms in a QuickTime VR Movie 254
Adding Atom Containers in a QuickTime VR Movie 255
Optimizing QuickTime VR Movies for Web Playback 256

The QTVR Flattener 256
Sample Atom Container for the QTVR Flattener 257

7
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

Appendix A QuickTime Image File Format 259

Atom Types in QuickTime Image Files 259
Recommended File Type and Suffix 261

Appendix B Defining Media Data Layouts 263

Using QuickTime Files and Media Layouts 263

Appendix C Random Access 265

Seeking With a QuickTime File 265

Appendix D Metadata Handling 267

Digital Video File Formats 267
Digital Audio File Formats 268
Still Image File Formats 269
Animation and 3D File Formats 270

Appendix E Summary of VR World and Node Atom Types 273

C Summary 273
Constants 273
Data Types 275

Appendix F Profile Atom Guidelines 281

About This Appendix 281
Profile Atom Specification 282

Definition 282
Syntax 283
Semantics 284

Universal Features 284
Table of Features 285
Maximum Video Bitrate 286
Average Video Bitrate 287
Maximum Audio Bitrate 288
Average Audio Bitrate 289
QuickTime Video Codec Type 290
QuickTime Audio Codec Type 291
MPEG-4 Video Profile 292
MPEG-4 Video Codec 293
MPEG-4 Video Object Type 294
MPEG-4 Audio Codec 295
Maximum Video Size in a Movie 296

8
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

Maximum Video Size in a Track 298
Maximum Video Frame Rate in a Single Track 299
Average Video Frame Rate in a Single Track 300
Video Variable Frame Rate Indication 301
Audio Sample Rate for a Sample Entry 302
Audio Variable Bitrate Indication 303
Audio Channel Count 304

Document Revision History 305

Glossary 307

9
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

10
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C O N T E N T S

Figures, Tables, and Listings

Chapter 1 Overview of QTFF 19

Figure 1-1 A sample atom 21
Figure 1-2 Calculating atom sizes 23
Figure 1-3 QT atom layout 24
Figure 1-4 QT atom container with parent and child atoms 25
Figure 1-5 A QT atom container with two child atoms 26
Figure 1-6 The structure of a QuickTime movie file 29
Figure 1-7 The layout of a preview atom 32
Table 1-1 Basic atom types of a QuickTime file 29

Chapter 2 Movie Atoms 33

Figure 2-1 Sample organization of a one-track video movie 35
Figure 2-2 The layout of a movie atom 36
Figure 2-3 The layout of a movie header atom 39
Figure 2-4 The layout of a color table atom 41
Figure 2-5 The layout of a user data atom 42
Figure 2-6 The layout of a track atom 47
Figure 2-7 The layout of a track header atom 49
Figure 2-8 The layout of a clipping atom 51
Figure 2-9 The layout of a track matte atom 53
Figure 2-10 The layout of an edit atom 54
Figure 2-11 The layout of an edit list table entry 55
Figure 2-12 The layout of a track load settings atom 56
Figure 2-13 The layout of a track reference atom 58
Figure 2-14 The layout of a track input map atom 60
Figure 2-15 The layout of a media atom 63
Figure 2-16 The layout of a media header atom 64
Figure 2-17 The layout of a handler reference atom 65
Figure 2-18 The layout of a media information atom for video 67
Figure 2-19 The layout of a media information header atom for video 68
Figure 2-20 The layout of a media information atom for sound 69
Figure 2-21 The layout of a sound media information header atom 70
Figure 2-22 The layout of a base media information atom 71
Figure 2-23 The layout of a base media info atom 72
Figure 2-24 The layout of a data information atom 73
Figure 2-25 Samples in a media 76

11
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

Figure 2-26 The layout of a sample table atom 77
Figure 2-27 The layout of a sample description atom 78
Figure 2-28 The layout of a time-to-sample atom 80
Figure 2-29 The layout of a time-to-sample table entry 80
Figure 2-30 An example of a time-to-sample table 81
Figure 2-31 The layout of a sync sample atom 82
Figure 2-32 The layout of a sync sample table 82
Figure 2-33 The layout of a sample-to-chunk atom 83
Figure 2-34 The layout of a sample-to-chunk table entry 84
Figure 2-35 An example of a sample-to-chunk table 84
Figure 2-36 The layout of a sample size atom 85
Figure 2-37 An example of a sample size table 86
Figure 2-38 The layout of a chunk offset atom 86
Figure 2-39 An example of a chunk offset table 87
Figure 2-40 A movie atom containing a 'rmra' atom instead of a 'mvhd' atom 90
Figure 2-41 A 'rmra' atom with multiple 'rmda' atoms 91
Figure 2-42 Reference movie descriptor atom 92
Table 2-1 User data list entry types 43
Table 2-2 Track reference types 58
Table 2-3 Input types 61
Table 2-4 Data reference types 75
Table 2-5 Contents of complete compressed movie 89

Chapter 3 Media Data Atom Types 99

Figure 3-1 Color atom 105
Figure 3-2 Transfer between RGB and Y�CbCr color spaces 106
Figure 3-3 The normalized values are shown using the symbol E with a subscript for Y�,

Cb, or Cr: 107
Figure 3-4 Equations for stored Y�CbCr v alues of bit-depth of n in scheme A 107
Figure 3-5 Equations for stored Y�CbCr v alues of bit-depth n in scheme B 108
Figure 3-6 Equations for index code 1 109
Figure 3-7 Equations for index code 7 109
Figure 3-8 Matrix values for index code 1 110
Figure 3-9 Matrix values for index code 6 110
Figure 3-10 Matrix values for index code 7 110
Figure 3-11 Motion-JPEG A dual-field sample data 114
Figure 3-12 Motion-JPEG B dual-field sample data 116
Figure 3-13 A key frame sample atom container 137
Figure 3-14 Atoms that describe a sprite and its properties 138
Figure 3-15 Atoms that describe sprite images 138
Figure 3-16 Structure of the VR world atom container 182
Figure 3-17 Structure of the node information atom container 187
Figure 3-18 The structure of a single-node panoramic movie file 194
Figure 3-19 The structure of a single-node object movie file 195
Figure 3-20 The structure of a multinode movie file 196

12
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

Figure 3-21 Creating an image track for a panorama 201
Figure 3-22 Creating an image track for a panorama, with the image track oriented

horizontally 202
Figure 3-23 The structure of an image track for an object 213
Table 3-1 Some image compression formats 100
Table 3-2 Video sample description extensions 102
Table 3-3 Common pixel aspect ratios 104
Table 3-4 Table of primaries, index and values 108
Table 3-5 Table of transfer function index and values 109
Table 3-6 Table of matrix index and values 110
Table 3-7 Partial list of supported QuickTime audio formats. 118
Table 3-8 Text sample extensions 132
Table 3-9 Sprite properties 135
Table 3-10 Sprite track properties 136
Table 3-11 Tween type values 154
Table 3-12 The 'hinf' atom type containing child atoms 169
Table 3-13 Hint track sample description 171
Table 3-14 The structure of table entries 172
Table 3-15 Fields and their special values as represented in the pano sample data atom,

providing backward compatibility to QuickTime VR 2.2 204
Table 3-16 Values for min and max fields 205
Table 3-17 Values used for representing six square sides 205
Listing 3-1 Streaming media sample description 166

Chapter 4 Basic Data Types 219

Figure 4-1 How display matrices are used in QuickTime 223
Figure 4-2 Applying the transform 223
Table 4-1 QuickTime language code values 219
Table 4-2 5-bit values of UTF-8 characters 222
Table 4-3 QuickTime graphics modes 224

Chapter 5 Some Useful Examples and Scenarios 225

Figure 5-1 QT atom container after inserting an atom 227
Figure 5-2 QT atom container after inserting a second atom 227
Figure 5-3 Two QT atom containers, A and B 228
Figure 5-4 QT atom container after child atoms have been inserted 229
Figure 5-5 An example effect description for the Push effect 235
Figure 5-6 An example of an input map referencing two sources 237
Figure 5-7 Non-interleaved movie data 250
Figure 5-8 Interleaved movie data 250
Listing 5-1 Creating a new atom container 226
Listing 5-2 Disposing of an atom container 226
Listing 5-3 Creating a new QT atom container and calling QTInsertChild to add an

atom. 226

13
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

Listing 5-4 Inserting a child atom 227
Listing 5-5 Inserting a container into another container 229
Listing 5-6 Finding a child atom by index 230
Listing 5-7 Finding a child atom by ID 230
Listing 5-8 Modifying an atom’s data 231
Listing 5-9 Removing atoms from a container 232
Listing 5-10 Adding a kParameterWhatName atom to the atom container

effectDescription 234
Listing 5-11 Adding an input reference atom to an input map 237
Listing 5-12 Linking a modifier track to the track it modifies 238
Listing 5-13 Updating the input map 238
Listing 5-14 Getting a node’s name 252
Listing 5-15 Typical hot spot intercept procedure 254
Listing 5-16 Adding atom containers to a track 255
Listing 5-17 Using the flattener 256
Listing 5-18 Specifying a preview file for the flattener to use 257
Listing 5-19 Overriding the compression settings 258

Appendix A QuickTime Image File Format 259

Figure A-1 An 'idsc' atom followed by an 'idat' atom 259
Table A-1 A QuickTime image file containing JPEG-compressed data 260

Appendix F Profile Atom Guidelines 281

Figure F-1 The profile atom 283
Figure F-2 Layout of a typical feature 284
Table F-1 Universal features 285

14
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

F I G U R E S , T A B L E S , A N D L I S T I N G S

The QuickTime File Format (QTFF) is designed to accommodate the many kinds of data that need to
be stored in order to work with digital multimedia. The QTFF is an ideal format for the exchange of
digital media between devices, applications, and operating systems because it can be used to describe
almost any media structure.

The file format is object-oriented, consisting of a flexible collection of objects that is easily parsed and
easily expanded. Unknown objects can simply be ignored or skipped, allowing considerable forward
compatibility as new object types are introduced.

QuickTime itself provides a number of high-level functions that you can use to create and manipulate
QuickTime files, without requiring you to understand the actual file format. These functions serve
to insulate developers from the low-level details of operation. That said, not all kinds of QuickTime
files can be created without the information presented here.

Important: The QuickTime File Format has been used as the basis of the MPEG-4 standard and the
JPEG-2000 standard, developed by the International Organization for Standardization (ISO). While
these file types have similar structures and contain many functionally identical elements, they are
distinct file types.

Warning: Do not use one specification to interpret a file that conforms to a different specification,
however similar.

The QuickTime File Format Specification is intended primarily for application developers who need to
work with QuickTime files outside the context of the QuickTime environment. For example, if you
are developing a non-QuickTime application that imports QuickTime files or works with QuickTime
VR, you need to understand the material in this document. By reading the information provided here,
you should be able to create appropriate data structure specifications for your environment.

The document assumes that you are familiar with the basic concepts of digital video and audio, as
well as with programming QuickTime and the QuickTime API. Note that this iteration of the document
supersedes all previous versions of the QuickTime File Format Specification.

15
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to QuickTime File Format
Specification

Organization of This Document

This document begins with an overview of QuickTime atoms, then presents the structure of the
QuickTime file format in detail. This is followed by a series of code examples for manipulating a
QuickTime file using the QuickTime API. Finally, a number of related topics are described in a series
of appendixes. These include such topics as the QuickTime Image File format, the handling of metadata
when importing files into QuickTime, and details of the profile atom.

QuickTime files are described in general, rather than how they are supported on a specific computing
platform or in a specific programming language. As a result, the file format information is presented
in a tabular manner, rather than in coded data structures. Similarly, field names are presented in
English rather than as programming language tags. Furthermore, to the extent possible, data types
are described generically. For example, this book uses “32-bit signed integer” rather than “long” to
define a 32-bit integer value.

QuickTime files are used to store QuickTime movies, as well as other data. If you are writing an
application that parses QuickTime files, you should recognize that there may be non-movie data in
the files.

Licensing Information

The QuickTime File Format Specification is provided for informational purposes. Apple may have
patents, patent applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this document. The furnishing of this document does not give you a license to any
patents, trademarks, copyrights, or other intellectual property.

Important: For more information about licensing the QuickTime File Format, contact: Apple, Inc.,
Software Licensing Department, 12545 Riata Vista Circle, MS 198 3-SWL, Austin, TX 78727. Email
Address: sw.license@apple.com

Special Fonts

All code listings, reserved words, and the names of actual data structures, constants, fields, parameters,
and routines are shown in Letter Gothic (this is Letter Gothic).

Words that appear in boldface are key terms or concepts and are defined in the glossary.

Updates to This Specification

For updates or changes to this specification, go to the QuickTime documentation site at

QuickTime Reference Library

16 Organization of This Document
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to QuickTime File Format Specification

http://developer.apple.com/referencelibrary/QuickTime/index.html

and click the File Format Specification link.

For More Information

For information about membership in Apple’s developer program and developer technical support,
you should go to this URL:

Apple Developer Connection

For information on registering signatures, file types, and other technical information, contact

Apple Developer Technical Support (DTS
Apple, Inc.
1 Infinite Loop, M/S 303-2T
Cupertino, CA 95014

For More Information 17
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to QuickTime File Format Specification

http://developer.apple.com/referencelibrary/QuickTime/idxFileFormatSpecification-date.html
http://developer.apple.com/

18 For More Information
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

I N T R O D U C T I O N

Introduction to QuickTime File Format Specification

QuickTime movies are stored on disk, using two basic structures for storing information: atoms (also
known as simple atoms or classic atoms), and QT atoms. To understand how QuickTime movies are
stored, you need to understand the basic atom structures described in this chapter. Most atoms you
encounter in the QuickTime File Format are simple or classic atoms. Both simple atoms and QT atoms,
however, allow you to construct arbitrarily complex hierarchical data structures. Both also allow your
application to ignore data they don’t understand.

Metadata

A QuickTime file stores the description of its media separately from the media data. The description,
or metadata, is called the movie resource, movie atom, or simply the movie, and contains information
such as the number of tracks, the video compression format, and timing information. The movie
resource also contains an index describing where all the media data is stored.

The media data is the actual sample data, such as video frames and audio samples, used in the movie.
The media data may be stored in the same file as the QuickTime movie, in a separate file, in multiple
files, in alternate sources such as databases or real-time streams, or in some combination of these.

Atoms

The basic data unit in a QuickTime file is the atom. Each atom contains size and type fields that
precede any other data. The size field indicates the total number of bytes in the atom, including the
size and type fields. The type field specifies the type of data stored in the atom and, by implication,
the format of that data. In some cases, the size and type fields are followed by a version field and a
flags field. An atom with these version and flags fields is sometimes called a full atom.

Metadata 19
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

Note: An atom, as described in this document, is functionally identical to a box, as described in the
ISO specifications for MPEG-4 and JPEG-2000. An atom that includes version and flags fields is
functionally identical to a full box as defined in those specifications.

Atom types are specified by a 32-bit unsigned integer, typically interpreted as a four-character ASCII
code. Apple, Inc. reserves all four-character codes consisting entirely of lowercase letters. Unless
otherwise stated, all data in a QuickTime movie is stored in big-endian byte ordering, also known as
network byte ordering, in which the most significant bytes are stored and transmitted first.

Atoms are hierarchical in nature. That is, one atom can contain other atoms, which can contain still
others, and so on. This hierarchy is sometimes described in terms of a parent, children, siblings,
grandchildren, and so on. An atom that contains other atoms is called a container atom. The parent
atom is the container atom exactly one level above a given atom in the heirarchy.

For example, a movie atom contains several different kinds of atoms, including one track atom for
each track in the movie. The track atoms, in turn, contain one media atom each, along with other
atoms that define other track characteristics. The movie atom is the parent atom of the track atoms.
The track atoms are siblings. The track atoms are parent atoms of the media atoms. The movie atom
is not the parent of the media atoms, because it is more than one layer above them in the hierarchy.

An atom that does not contain other atoms is called a leaf atom, and typically contains data as one
or more fields or tables. Some leaf atoms act as flags or placeholders, however, and contain no data
beyond their size and type fields.

The format of the data stored within a given atom cannot always be determined by the type field of
the atom alone; the type of the parent atom may also be significant. In other words, a given atom type
can contain different kinds of information depending on its parent atom. For example, the profile
atom inside a movie atom contains information about the movie, while the profile atom inside a track
atom contains information about the track. This means that all QuickTime file readers must take into
consideration not only the atom type, but also the atom’s containment hierarchy.

Atom Layout

Figure 1-1 (page 21) shows the layout of a sample atom. Each atom carries its own size and type
information as well as its data. Throughout this document, the name of a container atom (an atom
that contains other atoms, including other container atoms) is printed in a gray box, and the name of
a leaf atom (an atom that contains no other atoms) is printed in a white box. Leaf atoms contain data,
usually in the form of tables.

20 Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

Figure 1-1 A sample atom

Container atom

Atom size
Atom type

Container atom

Leaf atom

Atom size
Atom type

Atom data

Atom size
Atom type

.

.

.

A leaf atom, as shown in Figure 1-1 (page 21), simply contains a series of data fields accessible by
offsets.

Atoms within container atoms do not generally have to be in any particular order, unless such an
order is specifically called out in this document. One such example is the handler description atom,
which must come before the data being handled. For example, a media handler description atom
must come before a media information atom, and a data handler description atom must come before
a data information atom.

Atom Structure

Atoms consist of a header, followed by atom data. The header contains the atom’s size and type fields,
giving the size of the atom in bytes and its type. It may also contain an extended size field, giving the
size of a large atom as a 64-bit integer. If an extended size field is present, the size field is set to 1. The
actual size of an atom cannot be less than 8 bytes (the minimum size of the type and size fields).

Some atoms also contain version and flags fields. These are sometimes called full atoms. The flag and
version fields are not treated as part of the atom header in this document; they are treated as data
fields specific to each atom type that contains them. Such fields must always be set to zero, unless
otherwise specified.

An atom header consists of the following fields:

Atom size
A 32-bit integer that indicates the size of the atom, including both the atom header and the
atom’s contents, including any contained atoms. Normally, the size field contains the actual
size of the atom, in bytes, expressed as a 32-bit unsigned integer. However, the size field can
contain special values that indicate an alternate method of determining the atom size. (These
special values are normally used only for media data ('mdat') atoms.) If the size field is set
to 0, which is allowed only for a top-level atom, this is the last atom in the file and it extends

Atoms 21
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

to the end of the file. If the size field is set to 1, then the actual size is given in the extended
size field, an optional 64-bit field that follows the type field. This accommodates media data
atoms that contain more than 2^32 bytes. Figure 1-2 (page 23) shows how to calculate the size
of an atom.

Type
A 32-bit integer that contains the type of the atom. This can often be usefully treated as a
four-character field with a mnemonic value, such as 'moov' (0x6D6F6F76) for a movie atom,
or 'trak' (0x7472616B) for a track atom, but non-ASCII values (such as 0x00000001) are
also used. Knowing an atom's type allows you to interpret its data. An atom's data can be
arranged as any arbitrary collection of fields, tables, or other atoms. The data structure is
specific to the atom type. An atom of a given type has a defined data structure. If your
application encounters an atom of an unknown type, it should not attempt to interpret the
atom's data. Use the atom's size field to skip this atom and all of its contents. This allows a
degree of forward compatibility with extensions to the QuickTime file format.

Warning: The internal structure of a given type of atom can change when a new version is
introduced. Always check the version field, if one exists. Never attempt to interpret data that
falls outside of the atom, as defined by the Size or Extended Size fields.

Extended Size
If the size field of an atom is set to 1, the type field is followed by a 64-bit extended size
field, which contains the actual size of the atom as a 64-bit unsigned integer. This is used when
the size of a media data atom exceeds 2^32 bytes.

When the size field contains the actual size of the atom, the extended size field is not present. This
means that when a QuickTime atom is modified by adding data, and its size crosses the 2^32 byte
limit, there is no extended size field in which to record the new atom size. Consequently, it is not
always possible to enlarge an atom beyond 2^32 bytes without copying its contents to a new atom.

To prevent this inconvenience, media data atoms are typically created with a 64-bit placeholder atom
immediately preceding them in the movie file. The placeholder atom has a type of
kWideAtomPlaceholderType ('wide'). Much like a 'free' or 'skip' atom, the 'wide' atom is
reserved space, but in this case the space is reserved for a specific purpose. If a 'wide' atom
immediately precedes a second atom, the second atom can be extended from a 32-bit size to a 64-bit
size simply by starting the atom header 8 bytes earlier (overwriting the 'wide' atom), setting the
size field to 1, and adding an extended size field. This way the offsets for sample data do not need
to be recalculated.

The 'wide' atom is exactly 8 bytes in size, and consists solely of its size and type fields. It contains
no other data.

22 Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

Note: A common error is thinking that the 'wide' atom contains the extended size. The 'wide' atom
is merely a placeholder that can be overwritten if necessary, by an atom header containing an extended
size field.

Figure 1-2 Calculating atom sizes

Size = 1

Size

Type

Extended size
(if size = 1)

Size

Size = 0

Type

Size

Size

Type

End
of file

Implied

QT Atoms and Atom Containers

QT atoms are an enhanced data structure that provide a more general-purpose storage format and
remove some of the ambiguities that arise when using simple atoms. A QT atom has an expanded
header; the size and type fields are followed by fields for an atom ID and a count of child atoms.

This allows multiple child atoms of the same type to be specified through identification numbers. It
also makes it possible to parse the contents of a QT atom of unknown type, by walking the tree of its
child atoms.

QT atoms are normally wrapped in an atom container, a data structure with a header containing a
lock count. Each atom container contains exactly one root atom, which is the QT atom. Atom containers
are not atoms, and are not found in the hierarchy of atoms that makes up a QuickTime movie file.
Atom containers may be found as data structures inside some atoms, however. Examples include
media input maps and media property atoms.

Important: An atom container is not the same as a container atom. An atom container is a container,
not an atom.

Figure 1-3 (page 24) depicts the layout of a QT atom. Each QT atom starts with a QT atom container
header, followed by the root atom. The root atom’s type is the QT atom’s type. The root atom contains
any other atoms that are part of the structure.

Each container atom starts with a QT atom header followed by the atom’s contents. The contents are
either child atoms or data, but never both. If an atom contains children, it also contains all of its
children’s data and descendents. The root atom is always present and never has any siblings.

QT Atoms and Atom Containers 23
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

Figure 1-3 QT atom layout

Reserved
Lock count

QT atom container header

QT atom header

Size
Type

Atom ID
Reserved

Child count
Reserved

Size

Type

Size

Type

Size

Type

Child atom

Size

Type

Child atom

A QT atom container header contains the following data:

Reserved
A 10-byte element that must be set to 0.

Lock count
A 16-bit integer that must be set to 0.

Each QT atom header contains the following data:

Size
A 32-bit integer that indicates the size of the atom in bytes, including both the QT atom header
and the atom’s contents. If the atom is a leaf atom, then this field contains the size of the single
atom. The size of container atoms includes all of the contained atoms. You can walk the atom
tree using the size and child count fields.

Type
A 32-bit integer that contains the type of the atom. If this is the root atom, the type value is set
to 'sean'.

24 QT Atoms and Atom Containers
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

Atom ID
A 32-bit integer that contains the atom’s ID value. This value must be unique among its siblings.
The root atom always has an atom ID value of 1.

Reserved
A 16-bit integer that must be set to 0.

Child count
A 16-bit integer that specifies the number of child atoms that an atom contains. This count only
includes immediate children. If this field is set to 0, the atom is a leaf atom and only contains
data.

Reserved
A 32-bit integer that must be set to 0.

QT Atom Containers

A QuickTime atom container is a basic structure for storing information in QuickTime. An atom
container is a tree-structured hierarchy of QT atoms. You can think of a newly created QT atom
container as the root of a tree structure that contains no children.

An atom container is a container, not an atom. It has a reserved field and a lock count in its header,
not a size field and type field. Atom containers are not found in the atom hierarchy of a QuickTime
movie file, because they are not atoms. They may be found as data inside some atoms, however, such
as in media input maps, media property atoms, video effects sample data, and tween sample data.

A QT atom container contains QT atoms, as shown in Figure 1-4 (page 25). Each QT atom contains
either data or other atoms. If a QT atom contains other atoms, it is a parent atom and the atoms it
contains are its child atoms. Each parent’s child atom is uniquely identified by its atom type and atom
ID. A QT atom that contains data is called a leaf atom.

Figure 1-4 QT atom container with parent and child atoms

Atom type

Atom ID

Atom type

Atom ID

Atom type

Atom ID

QT atom
container

Atom data

Atom type

Atom ID

Atom data

Child atoms

Parent atom

QT Atoms and Atom Containers 25
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

Each QT atom has an offset that describes the atom’s position within the QT atom container. In
addition, each QT atom has a type and an ID. The atom type describes the kind of information the
atom represents. The atom ID is used to differentiate child atoms of the same type with the same
parent; an atom’s ID must be unique for a given parent and type. In addition to the atom ID, each
atom has a 1-based index that describes its order relative to other child atoms of the same parent with
the same atom type. You can uniquely identify a QT atom in one of three ways:

 ■ By its offset within its QT atom container

 ■ By its parent atom, type, and index

 ■ By its parent atom, type, and ID

You can store and retrieve atoms in a QT atom container by index, ID, or both. For example, to use a
QT atom container as a dynamic array or tree structure, you can store and retrieve atoms by index.
To use a QT atom container as a database, you can store and retrieve atoms by ID. You can also create,
store, and retrieve atoms using both ID and index to create an arbitrarily complex, extensible data
structure.

Warning: Since QT atoms are offsets into a data structure, they can be changed during editing
operations on QT atom containers, such as inserting or deleting atoms. For a given atom, editing
child atoms is safe, but editing sibling or parent atoms invalidates that atom’s offset.

Note: For cross-platform purposes, all data in a QT atom is expected to be in big-endian format.
However, leaf data can be little-endian if it is custom to an application.

Figure 1-5 (page 26) shows a QT atom container that has two child atoms. The first child atom (offset
= 10) is a leaf atom that has an atom type of 'abcd', an ID of 1000, and an index of 1. The second child
atom (offset = 20) has an atom type of 'abcd', an ID of 900, and an index of 2. Because the two child
atoms have the same type, they must have different IDs. The second child atom is also a parent atom
of three atoms.

Figure 1-5 A QT atom container with two child atoms

'abcd'

900

Index = 1
Offset = 10

Index = 2
Offset = 20

Index = 1
Offset = 30

Index = 1
Offset = 40

Index = 2
Offset = 50

QT atom
container

'abcd'

100

'abcd'

1000

'word'

100

"Hello"

'abcd'

1000

Data

26 QT Atoms and Atom Containers
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

The first child atom (offset = 30) has an atom type of 'abcd', an ID of 100, and an index of 1. It does
not have any children, nor does it have data. The second child atom (offset = 40) has an atom type of
'word', an ID of 100, and an index of 1. The atom has data, so it is a leaf atom. The second atom (offset
= 40) has the same ID as the first atom (offset = 30), but a different atom type. The third child atom
(offset = 50) has an atom type of 'abcd', an ID of 1000, and an index of 2. Its atom type and ID are
the same as that of another atom (offset = 10) with a different parent.

Note: If you are working with the QuickTime API, you do not need to parse QT atoms. Instead, the
QT atom functions can be used to create atom containers, add atoms to and remove atoms from atom
containers, search for atoms in atom containers, and retrieve data from atoms in atom containers.

Most QT atom functions take two parameters to specify a particular atom: the atom container that
contains the atom, and the offset of the atom in the atom container data structure. You obtain an
atom’s offset by calling either QTFindChildByID or QTFindChildByIndex. An atom’s offset may be
invalidated if the QT atom container that contains it is modified.

When calling any QT atom function for which you specify a parent atom as a parameter, you can
pass the constant kParentAtomIsContainer as an atom offset to indicate that the specified parent
atom is the atom container itself. For example, you would call the QTFindChildByIndex function and
pass kParentAtomIsContainer constant for the parent atom parameter to indicate that the requested
child atom is a child of the atom container itself.

QuickTime Movie Files

The QuickTime file format describes the characteristics of QuickTime movie files. A QuickTime movie
file contains a QuickTime movie resource, or else points to one or more external sources using movie
references. The media samples used by the movie (such as video frames or groups of audio samples)
may be included in the movie file, or may be external to the movie file in one or more files, streams,
or other sources.

A QuickTime movie is not limited to video and audio; it may use any subset or combination of media
types that QuickTime supports, including video, sound, still images, text, Flash, 3D models, and
virtual reality panoramas. It supports both time-based and nonlinear interactive media.

In file systems that support filename extensions, QuickTime movie files should have an extension of
.mov. On the Macintosh platform, QuickTime files have a Mac OS file type of 'MooV'. QuickTime
movie files should always be associated with the MIME type "video/quicktime", whether or not
the movie contains video.

Note: In file systems that support both a resource fork and a data fork, the movie resource may be
contained in the resource fork. The default, however, is for the movie resource to be contained in the
data fork for all file systems. If media sample data is included in the movie file, it is always in the
data fork.

A QuickTime movie file is structured as a collection of atoms that together identify the file as a
QuickTime movie, describe the structure of the movie, and may contain the sample data needed to
play the movie. Not all atoms are required.

QuickTime Movie Files 27
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

The file format is extensible, and from time to time new atom types are introduced. If your application
encounters an unknown atom type in a QuickTime file, it should simply ignore it. This allows the file
format to be extended without breaking existing applications, and provides a measure of forward
compatibility. Because the first field in any atom contains its size, including any contained atoms, it
is easy to skip to the end of an unknown atom type and continue parsing the file.

Generally speaking, atoms can be present in any order. Do not conclude that a particular atom is not
present until you have parsed all the atoms in the file.

An exception is the file type atom, which typically identifies the file as a QuickTime movie. If present,
this atom precedes any movie atom, movie data, preview, or free space atoms. If you encounter one
of these other atom types prior to finding a file type atom, you may assume the file type atom is not
present. (This atom is introduced in the QuickTime File Format Specification for 2004, and is not present
in QuickTime movie files created prior to 2004).

While other atoms can be in any order, unless specified in this document, for practical reasons there
is a recommended order you should use when creating a QuickTime movie file. For example, the
atom containing the movie resource should precede any atoms containing the movie's sample data.
If you follow this recommended atom order, it is possible to play a movie over a network while the
movie file is in the process of downloading.

A QuickTime movie file must contain a movie atom, which contains either the movie structure or a
reference to one or more alternate movie sources external to the file. Generally speaking, these alternate
sources will be QuickTime movie files that contain movie structures.

A QuickTime movie file typically contains one or more movie data atoms, which contain media
sample data such as video frames and groups of audio samples. There may be no movie data atoms
in the file, however, as the movie may depend on sample data external to the movie file, such as
external data files or live streams on the Internet. A single movie data atom may contain sample data
for a variety of different media. Generally speaking, it is possible to contain all the media samples
used by a movie in a single movie data atom. Movie data atoms can be quite large, and sometimes
exceed 2^32 bytes.

Figure 1-6 (page 29) shows the essential atom types in a QuickTime movie file within which other
atoms are stored. In addition, the file may contain free space atoms, preview atoms, and other atoms
not enumerated in this file format specification. Unknown atom types should be ignored.

28 QuickTime Movie Files
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

Figure 1-6 The structure of a QuickTime movie file

Atom size

Data

Type = 'mdat'

4

4

Variable

Movie data atom

.

.

.

Atom size

Data

Type = 'ftyp'

Bytes

4

4

Variable

4

4

Variable

Type = 'moov'

Data

Atom size

Movie atom

File Type

.

.

.

Table 1-1 (page 29) lists the basic atom types.

Table 1-1 Basic atom types of a QuickTime file

UseAtom type

File type compatibility—identifies the file type and differentiates it from similar file
types, such as MPEG-4 files and JPEG-2000 files.

'ftyp'

Movie resource metadata about the movie (number and type of tracks, location of sample
data, and so on). Describes where the movie data can be found and how to interpret it.

'moov'

Movie sample data—media samples such as video frames and groups of audio samples.
Usually this data can be interpreted only by using the movie resource.

'mdat'

Unused space available in file.'free'

Unused space available in file.'skip'

Reserved space—can be overwritten by an extended size field if the following atom
exceeds 2^32 bytes, without displacing the contents of the following atom.

'wide'

Reference to movie preview data.'pnot'

QuickTime Movie Files 29
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

The following sections describe these basic atom types (except for the movie atom) in more detail,
including descriptions of other atoms that each basic atom may contain. The movie atom is described
separately in “Movie Atoms” (page 33)

The File Type Compatibility Atom

The file type atom allows the reader to determine whether this is a type of file that the reader
understands. Specifically, the file type atom identifies the file type specifications the file is compatible
with. This allows the reader to distinguish among closely related file types, such as QuickTime movie
files, MPEG-4, and JPEG-2000 files (all of which may contain file type atoms, movie atoms, and movie
data atoms).

When a file is compatible with more than one specification, the file type atom lists all the compatible
types and indicates the preferred brand, or best use, among the compatible types. For example, a
music player using a QuickTime-compatible file format might identify a file’s best use as a music file
for that player but also identify it as a QuickTime movie.

The file type atom serves a further purpose of distinguishing among different versions or specifications
of the same file type, allowing it to convey more information than the file extension or MIME type
alone. The file type atom also has the advantage of being internal to the file, where it is less subject
to accidental alteration than a file extension or MIME type.

Note: The file type atom described here is functionally identical to the file type box defined in the
ISO specifications for MPEG-4 and JPEG-2000.

The file type atom is optional, but strongly recommended. If present, it must be the first significant
atom in the file, preceding the movie atom (and any free space atoms, preview atom, or movie data
atoms).

The file type atom has an atom type value of 'ftyp' and contains the following fields:

Size
A 32-bit unsigned integer that specifies the number of bytes in this atom.

Type
A 32-bit unsigned integer that identifies the atom type, typically represented as a four-character
code; this field must be set to 'ftyp'.

Major_Brand
A 32-bit unsigned integer that should be set to 'qt ' (note the two trailing ASCII space
characters) for QuickTime movie files. If a file is compatible with multiple brands, all such
brands are listed in the Compatible_Brands fields, and the Major_Brand identifies the preferred
brand or best use.

Minor_Version
A 32-bit field that indicates the file format specification version. For QuickTime movie files,
this takes the form of four binary-coded decimal values, indicating the century, year, and
month of the QuickTime File Format Specification, followed by a binary coded decimal zero. For
example, for the June 2004 minor version, this field is set to the BCD values 20 04 06 00.

30 QuickTime Movie Files
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

Compatible_Brands[]
A series of unsigned 32-bit integers listing compatible file formats. The major brand must
appear in the list of compatible brands. One or more “placeholder” entries with value zero are
permitted; such entries should be ignored.

If none of the Compatible_Brands fields is set to 'qt ', then the file is not a QuickTime movie file
and is not compatible with this specification. Applications should return an error and close the file,
or else invoke a file importer appropriate to one of the specified brands, preferably the major brand.
QuickTime currently returns an error when attempting to open a file whose file type, file extension,
or MIME type identifies it as a QuickTime movie, but whose file type atom does not include the 'qt
' brand.

Note: A common source of this error is an MPEG-4 file incorrectly named with the .mov file extension
or with the MIME type incorrectly set to “video/quicktime”. MPEG-4 files are automatically imported
by QuickTime only when they are correctly identified as MPEG-4 files using the Mac OS file type,
file extension, or MIME type.

If you are creating a file type that is fully compatible with the QuickTime file format, one of the
Compatible_Brand fields must be set to 'qt '; otherwise QuickTime will not recognize the file as a
QuickTime movie.

Warning: Use of the QuickTime file format in this manner is subject to license from Apple, Inc.

Free Space Atoms

Both free and skip atoms designate unused space in the movie data file. These atoms consist of only
an atom header (size and type fields), followed by the appropriate number of bytes of free space.
When reading a QuickTime movie, your application may safely skip these atoms. When writing or
updating a movie, you may reuse the space associated with these atom types.

A wide atom typically precedes a movie data atom. The wide atom consists only of a type and size
field. This occupies 8 bytes—enough space to add an extended size field to the header of the atom
that follows, without displacing the contents of that atom. If an atom grows to exceed 2^32 bytes in
size, and it is preceded by a wide atom, you may create a new atom header containing an extended
size field by overwriting the existing atom header and the preceding wide atom.

Movie Data Atoms

As with the free and skip atoms, the movie data atom is structured quite simply. It consists of an atom
header (atom size and type fields), followed by the movie’s media data. Your application can
understand the data in this atom only by using the metadata stored in the movie atom. This atom can
be quite large, and may exceed 2^32 bytes, in which case the size field will be set to 1, and the header
will contain a 64-bit extended size field.

QuickTime Movie Files 31
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

Preview Atoms

The preview atom contains information that allows you to find the preview image associated with a
QuickTime movie. The preview image, or poster, is a representative image suitable for display to the
user in, for example, Open dialog boxes. Figure 1-7 (page 32) depicts the layout of the preview atom.

Figure 1-7 The layout of a preview atom

Bytes

4

4

4

2

4

2

Atom size

Type = 'pnot'

Modification date

Atom type

Atom index

Version number

Preview atom

The preview atom has an atom type value of 'pnot' and, following its atom header, contains the
following fields:

Size
A 32-bit integer that specifies the number of bytes in this preview atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'pnot'.

Modification date
A 32-bit unsigned integer containing a date that indicates when the preview was last updated.
The data is in standard Macintosh format.

Version number
A 16-bit integer that must be set to 0.

Atom type
A 32-bit integer that indicates the type of atom that contains the preview data. Typically, this
is set to 'PICT' to indicate a QuickDraw picture.

Atom index
A 16-bit integer that identifies which atom of the specified type is to be used as the preview.
Typically, this field is set to 1 to indicate that you should use the first atom of the type specified
in the atom type field.

Note: This specification defines the preview atom primarily for backward compatibility. Current
practice is normally to define movie previews by placing information in the movie header atom. See
“Movie Header Atoms” (page 38).

32 QuickTime Movie Files
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 1

Overview of QTFF

This chapter provides a general introduction to QuickTime movie atoms, as well as specific details
on the layout and usage of these atoms. Each atom type discussed in this chapter is shown with an
accompanying illustration that contains offset information, followed by field descriptions.

This chapter is divided into the following major sections:

 ■ “Overview of Movie Atoms” (page 34) discusses QuickTime movie atoms, which act as containers
for information that describes a movie’s data. A conceptual illustration is provided that shows
the organization of a simple, one-track QuickTime movie. Profile atoms, color table atoms, and
user data atoms are also discussed.

 ■ “Track Atoms” (page 46) describes track atoms, which define a single track of a movie. Track
profile atoms, track user data atoms, and hint tracks are also discussed.

 ■ “Media Atoms” (page 62) discusses media atoms, which define a track’s movie data, such as the
media type and media time scale.

 ■ “Sample Atoms” (page 75) discusses sample table atoms, which specify where media samples
are located, their duration, and so on. The section also includes examples of how you use these
atoms.

Note: Media atoms and sample atoms do not contain actual sample data, such as video frames
or audio samples. They contain metadata used to locate and interpret such samples.

 ■ “Compressed Movie Resources” (page 88) discusses compressed movie resources, in which a
lossless compression algorithm is used to compress the contents of the movie atom, including
any track, media, or sample atoms. The contents must be decompressed before the movie atom
can be parsed.

 ■ “Reference Movies” (page 89) discusses movies that contain a reference movie atom (a list of
references to alternate movies, as well as the criteria for selecting the correct movie from a list of
alternates). Movie atoms that contain a reference movie atom do not necessarily contain track,
media, or sample atoms.

33
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Overview of Movie Atoms

QuickTime movie atoms have an atom type of 'moov'. These atoms act as a container for the
information that describes a movie’s data. This information, or metadata, is stored in a number of
different types of atoms. Generally speaking, only metadata is stored in a movie atom. Sample data
for the movie, such as audio or video samples, are referenced in the movie atom, but are not contained
in it.

The movie atom is essentially a container of other atoms. These atoms, taken together, describe the
contents of a movie. At the highest level, movie atoms typically contain track atoms, which in turn
contain media atoms. At the lowest level you find the leaf atoms, which contain non-atom data,
usually in the form of a table or a set of data elements. For example, a track atom contains an edit
atom, which in turn contains an edit list atom, a leaf atom which contains data in the form of an edit
list table. All of these atoms are discussed later in this document.

Figure 2-1 (page 35) provides a conceptual view of the organization of a simple, one-track QuickTime
movie. Each nested box in the illustration represents an atom that belongs to its parent atom. The
figure does not show the data regions of any of the atoms. These areas are described in the sections
that follow.

Note that this figure shows the organization of a standard movie atom. It is possible to compress the
movie metadata using a lossless compression algorithm. In such cases, the movie atom contains only
a single child atom—the compressed movie atom ('cmov'). When this child atom is uncompressed,
its contents conform to the structure shown in the following illustration. For details, see “Compressed
Movie Resources” (page 88)

It is also possible to create a reference movie, a movie that refers to other movies; in this case the
movie atom may contain only a reference movie atom ('rmra'). For details, see “Reference Movies”.
Ultimately, the chain must end in either a standard movie atom, such as the one in the following
illustration, or a compressed movie atom, which can be uncompressed to obtain the same structure.

34 Overview of Movie Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-1 Sample organization of a one-track video movie

Movie atom

Atom size
Type = 'mvhd'

Atom size
Type = User defined

Atom size
Type ='moov'

Movie user dataMovie header atom

Atom size
Type = 'prfl'

Profile atom

Track atom

Atom size
Type = 'matt'

Atom size
Type = 'edts'

Atom size
Type = 'clip'

Track clipping atom Track matte atom

Atom size
Type = 'kmat'

Atom size
Type = 'elst'

Atom size
Type = 'crgn'

Atom size
Type = 'tkhd'

Track header atom Compressed matte atom Edit list atomClipping region atom

Atom size
Type ='trak'

Atom size
Type = 'udta'

Atom size
Type = 'crgn'

Clipping region atom

Atom size
Type = 'clip'

Movie clipping atom

Edit atom

Media atom

Atom size
Type ='mdia'

Atom size
Type = 'mdhd'

Media header atom Media handler reference atom

Atom size
Type = 'hdlr'

Atom size
Type ='minf'

Video media information atom

Atom size
Type = 'dinf'

Atom size
Type = 'hdlr'

Atom size
Type = 'vmhd'

Data information atom

Atom size
Type = 'dref'
Data references...

Video media information
header atom Data handler reference atom

Data reference atom

Atom size
Type ='stbl'

Atom size
Type ='stts'

Atom size
Type = 'stsd'

Atom size
Type = 'stsz'

Atom size
Type = 'stsc'

Atom size
Type ='stss'

Atom size
Type = 'stco'

Sample-to-chunk atom

Chunk offset atomSample description atom Sample size atomSync sample atom

Time-to-sample atom

Sample table atom

User data atom

The Movie Atom

You use movie atoms to specify the information that defines a movie—that is, the information that
allows your application to interpret the sample data that is stored elsewhere. The movie atom may
contain a movie profile atom, which summarizes the main features of the movie, such as the necessary
codecs and maximum bitrate, and it usually contains a movie header atom, which defines the time
scale and duration information for the entire movie, as well as its display characteristics. In addition,
the movie atom contains a track atom for each track in the movie.

Overview of Movie Atoms 35
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

The movie atom has an atom type of 'moov'. It contains other types of atoms, including at least one
of three possible atoms—the movie header atom ('mvhd'), the compressed movie atom ('cmov'), or
a reference movie atom ('rmra'). An uncompressed movie atom can contain both a movie header
atom and a reference movie atom, but it must contain at least one of the two. It can also contain several
other atoms, such as a profile atom ('prfl'), clipping atom ('clip'), one or more track atoms ('trak'),
a color table atom ('ctab'), and a user data atom ('udta').

Compressed movie atoms and reference movie atoms are discussed separately. This section describes
normal uncompressed movie atoms.

Note: The movie profile atom is introduced in the QuickTime File Format Specification for 2004.

Figure 2-2 (page 36) shows the layout of a typical movie atom.

Note: As previously mentioned, leaf atoms are shown as white boxes, while container atoms are
shown as gray boxes.

Figure 2-2 The layout of a movie atom

Atom size
Type = 'moov'

'trak'

'cmov'

'clip'

Movie atom

Clipping atom

One or more track atoms

Compressed movie atom

'rmra'Reference movie atom

'udta'User data atom

'ctab'Color table atom

'mvhd'‡Movie header atom

‡ Required atom

'prfl'Profile atom

A movie atom may contain the following fields:

Size
The number of bytes in this movie atom.

Type
The type of this movie atom; this field must be set to 'moov'.

Profile atom
See “The Movie Profile Atom” (page 37) for more information.

36 Overview of Movie Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Movie header atom
See “Movie Header Atoms” (page 38) for more information.

Movie clipping atom
See “Clipping Atoms” (page 51) for more information.

Track atoms
See “Track Atoms” (page 46) for details on track atoms and their associated atoms.

User data atom
See “User Data Atoms” (page 42) for more information about user data atoms.

Color table atom
See “Color Table Atoms” (page 41) for a discussion of the color table atom.

Compressed movie atom
See “Compressed Movie Resources” (page 88) for a discussion of compressed movie atoms.

Reference movie atom
See “Reference Movies” (page 89) for a discussion of reference movie atoms.

The Movie Profile Atom

The movie profile atom summarizes the features and complexity of a movie, such as the required
codecs and maximum bitrate, in order to help player applications or devices quickly determine
whether they have the necessary resources to play the movie.

Features for a movie typically include the movie’s maximum video and audio bitrate, a list of audio
and video codec types, the movie’s video dimensions, and any applicable MPEG-4 profiles and levels.
This is all information that can also be obtained by examining the contents of the movie file in more
detail. This summary is intended to allow applications or devices to quickly determine whether they
can play the movie. It is not intended as a container for information that is not found elsewhere in
the movie, and should not be used as one.

Note: The fact that a feature does not appear in the profile atom does not mean it is not present in the
movie. The profile atom itself may not be present, or may list only a subset of movie features. The
features listed in the profile atom are all present, but the list is not necessarily complete.

When creating a profile atom, it is permissible to omit some features that are present in the movie,
but it is required to fully specify any features that are included in the profile. For example, a movie
containing video may or may not have a video codec type feature in the profile atom, but if any video
codec type feature is included in the profile atom, every required video codec must be listed in the
profile atom.

The movie profile atom is a profile atom ('prfl') whose parent is a movie atom. This is distinct from
the track profile atom, whose parent is a track atom. The structure of the profile atom is identical in
both cases, but the contents of a movie profile atom describe the movie as a whole, while the contents
of a track profile atom are specific to a particular track.

The movie profile atom is a new feature of the QuickTime File Format Specification for 2004.

The profile atom contains a list of features. In a movie profile atom, these features summarize the
movie as a whole. In a track profile atom, these features describe a particular track.

Overview of Movie Atoms 37
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Each entry in the feature list consists of four 32-bit fields:

 ■ The first field is reserved and must be set to zero.

 ■ The second field is the part-ID, which defines the feature as being either brand-specific or universal.
Brand-specific features are particular to a specific brand. Universal features are can be found in
any file type that uses the profile atom. Universal features have a part-ID of four ASCII spaces
(0x20202020). Brand-specific features have a part-ID that is one of the Compatible_Brand codes
for that file type, as specified in the file type atom ('ftyp'). For example, the part-ID for
QuickTime-specific features is 'qt '. All features described in this document, however, are
universal.

 ■ The third field is the feature code, or name, a 32-bit unsigned integer that is usually best interpreted
as four ASCII characters. Example: the maximum video bitrate feature has a feature code or name
of 'mvbr'. It is permissible to use a feature code value of zero (0x00000000, not four ASCII zero
characters) as a placeholder in one or more name-value pairs. The reader should ignore feature
codes of value zero.

 ■ The fourth field is the value, which is also a 32-bit field. The value may be a signed or unsigned
integer, or a fixed-point value, or contain sub-fields, or consist of a packed array; it can be
interpreted only in relation to the specific feature.

For details on the structure and contents of profile atoms, see “Profile Atom Guidelines” (page 281).

Movie Header Atoms

You use the movie header atom to specify the characteristics of an entire QuickTime movie. The data
contained in this atom defines characteristics of the entire QuickTime movie, such as time scale and
duration. It has an atom type value of 'mvhd'.

Figure 2-3 (page 39) shows the layout of the movie header atom. The movie header atom is a leaf
atom.

38 Overview of Movie Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-3 The layout of a movie header atom

Atom size

Type = 'mvhd'

Version

Flags

Creation time

Modification time

Time scale

Duration

Preferred rate

Preferred volume

Reserved

Matrix structure

Preview time

Preview duration

Poster time

Selection time

Selection duration

Current time

Next track ID

Movie header atom

4

4

Bytes

a u

c d v

x y w

b
a
b
u
c
d
v
x
y
w

1

3

4

4

4

4

4

2

10

36

4

4

4

4

4

4

4

You define a movie header atom by specifying the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this movie header atom.

Type
A 32-bit integer that identifies the atom type; must be set to 'mvhd'.

Version
A 1-byte specification of the version of this movie header atom.

Flags
Three bytes of space for future movie header flags.

Creation time
A 32-bit integer that specifies the calendar date and time (in seconds since midnight, January
1, 1904) when the movie atom was created. It is strongly recommended that this value should
be specified using coordinated universal time (UTC).

Overview of Movie Atoms 39
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Modification time
A 32-bit integer that specifies the calendar date and time (in seconds since midnight, January
1, 1904) when the movie atom was changed. BooleanIt is strongly recommended that this value
should be specified using coordinated universal time (UTC).

Time scale
A time value that indicates the time scale for this movie—that is, the number of time units that
pass per second in its time coordinate system. A time coordinate system that measures time
in sixtieths of a second, for example, has a time scale of 60.

Duration
A time value that indicates the duration of the movie in time scale units. Note that this property
is derived from the movie’s tracks. The value of this field corresponds to the duration of the
longest track in the movie.

Preferred rate
A 32-bit fixed-point number that specifies the rate at which to play this movie. A value of 1.0
indicates normal rate.

Preferred volume
A 16-bit fixed-point number that specifies how loud to play this movie’s sound. A value of 1.0
indicates full volume.

Reserved
Ten bytes reserved for use by Apple. Set to 0.

Matrix structure
The matrix structure associated with this movie. A matrix shows how to map points from one
coordinate space into another. See “Matrices” (page 222) for a discussion of how display matrices
are used in QuickTime.

Preview time
The time value in the movie at which the preview begins.

Preview duration
The duration of the movie preview in movie time scale units.

Poster time
The time value of the time of the movie poster.

Selection time
The time value for the start time of the current selection.

Selection duration
The duration of the current selection in movie time scale units.

Current time
The time value for current time position within the movie.

Next track ID
A 32-bit integer that indicates a value to use for the track ID number of the next track added
to this movie. Note that 0 is not a valid track ID value.

40 Overview of Movie Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Note: The creation and modification date should be set using coordinated universal time (UTC). In
prior versions of the QuickTime file format, this was not specified, and these fields were commonly
set to local time for the time zone where the movie was created.

Color Table Atoms

Color table atoms define a list of preferred colors for displaying the movie on devices that support
only 256 colors. The list may contain up to 256 colors. These optional atoms have a type value of
'ctab'. The color table atom contains a Macintosh color table data structure.

Figure 2-4 (page 41) shows the layout of the color table atom.

Figure 2-4 The layout of a color table atom

Atom size

Type = 'ctab'

Color table atom

Color table seed

Color table flags

Color table size

Color array

Bytes

4

4

4

2

2

n

The color table atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this color table atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'ctab'.

Color table seed
A 32-bit integer that must be set to 0.

Color table flags
A 16-bit integer that must be set to 0x8000.

Color table size
A 16-bit integer that indicates the number of colors in the following color array. This is a
zero-relative value; setting this field to 0 means that there is one color in the array.

Color array
An array of colors. Each color is made of four unsigned 16-bit integers. The first integer must
be set to 0, the second is the red value, the third is the green value, and the fourth is the blue
value.

Overview of Movie Atoms 41
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

User Data Atoms

User data atoms allow you to define and store data associated with a QuickTime object, such as a
movie, track, or media. This includes both information that QuickTime looks for, such as copyright
information or whether a movie should loop, and arbitrary information—provided by and for your
application—that QuickTime simply ignores.

A user data atom whose immediate parent is a movie atom contains data relevant to the movie as a
whole. A user data atom whose parent is a track atom contains information relevant to that specific
track. A QuickTime movie file may contain many user data atoms, but only one user data atom is
allowed as the immediate child of any given movie atom or track atom.

The user data atom has an atom type of 'udta'. Inside the user data atom is a list of atoms describing
each piece of user data. User data provides a simple way to extend the information stored in a
QuickTime movie. For example, user data atoms can store a movie’s window position, playback
characteristics, or creation information.

This section describes the data atoms that QuickTime recognizes. You may create new data atom
types that your own application recognizes. Applications should ignore any data atom types they do
not recognize.

Figure 2-5 (page 42) shows the layout of a user data atom.

Figure 2-5 The layout of a user data atom

User data atom

Bytes

4

4

4

4

Atom size

Type = 'udta'

Atom size

Type = user data types

User data list

User data list

‡ Required atom

‡

The user data atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this user data atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'udta'.

42 Overview of Movie Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

User data list
A user data list that is formatted as a series of atoms. Each data element in the user data list
contains size and type information along with its data. For historical reasons, the data list is
optionally terminated by a 32-bit integer set to 0. If you are writing a program to read user
data atoms, you should allow for the terminating 0. However, if you are writing a program to
create user data atoms, you can safely leave out the trailing 0.

Table 2-1 (page 43) lists the currently defined list entry types.

Table 2-1 User data list entry types

For
Sorting

DescriptionList entry type

Name of arranger'©arg'

XKeyword(s) for arranger'©ark'

XKeyword(s) for composer'©cok'

Name of composer'©com'

Copyright statement'©cpy'

Date the movie content was created'©day'

Name of movie’s director'©dir'

Edit dates and descriptions'©ed1' to '©ed9'

Indication of movie format (computer-generated, digitized, and so on)'©fmt'

Information about the movie'©inf'

ISRC code'©isr'

Name of record label'©lab'

URL of record label'©lal'

Name of file creator or maker'©mak'

URL of file creator or maker'©mal'

XTitle keyword(s) of the content'©nak'

Title of the content'©nam'

XKeyword(s) for producer'©pdk'

Recording copyright statement, normally preceded by the symbol P'©phg'

Name of producer'©prd'

Names of performers'©prf'

Overview of Movie Atoms 43
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

For
Sorting

DescriptionList entry type

XKeyword(s) of main artist and performer'©prk'

URL of main artist and performer'©prl'

Special hardware and software requirements'©req'

XSub-title keyword(s) of the content'©snk'

Sub-title of content'©snm'

Credits for those who provided movie source content'©src'

Name of songwriter'©swf'

XKeyword(s) for songwriter'©swk'

Name and version number of the software (or hardware) that generated
this movie

'©swr'

Name of movie’s writer'©wrt'

Play all frames—byte indicating that all frames of video should be
played, regardless of timing

'AllF'

Hint track information—statistical data for real-time streaming of a
particular track. For more information, see “Hint Track User Data
Atom” (page 168).

'hinf'

Hint info atom—data used for real-time streaming of a movie or a
track. For more information, see “Movie Hint Info Atom” (page 168)
and “Hint Track User Data Atom” (page 168).

'hnti'

Name of object'name'

Long integer indicating looping style. This atom is not present unless
the movie is set to loop. Values are 0 for normal looping, 1 for
palindromic looping.

'LOOP'

Print to video—display movie in full screen mode. This atom contains
a 16-byte structure, described in “Print to Video (Full Screen
Mode)” (page 45).

'ptv '

Play selection only—byte indicating that only the selected area of the
movie should be played

'SelO'

Default window location for movie—two 16-bit values, {x,y}'WLOC'

The user-data items labelled “keywords” and marked as “For Sorting” are for use when the display
text does not have a pre-determined sorting order (for example, in oriental languages when the sorting
depends on the contextual meaning). These keywords can be sorted algorithmically to place the
corresponding items in correct order.

44 Overview of Movie Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

The window location, looping, play selection only, play all frames, and print to video atoms control
the way QuickTime displays a movie. These atoms are interpreted only if the user data atom’s
immediate parent is a movie atom ('moov'). If they are included as part of a track atom’s user data,
they are ignored.

User Data Text Strings and Language Codes

All user data list entries whose type begins with the © character (ASCII 169) are defined to be
international text. These list entries must contain a list of text strings with associated language codes.
By storing multiple versions of the same text, a single user data text item can contain translations for
different languages.

The list of text strings uses a small integer atom format, which is identical to the QuickTime atom
format except that it uses 16-bit values for size and type instead of 32-bit values. The first value is the
size of the string, including the size and type, and the second value is the language code for the string.

User data text strings may use either Macintosh text encoding or Unicode text encoding. The format
of the language code determines the text encoding format. Macintosh language codes are followed
by Macintosh-encoded text. If the language code is specified using the ISO language codes listed in
specification ISO 639-2/T, the text uses Unicode text encoding. Multiple versions of the same text
may use different encoding schemes. When Unicode is used, the text is in UTF-8 unless it starts with
a byte-order-mark (BOM, 0xFEFF.), whereupon the text is in UTF-16. Both the BOM and the UTF-16
text should be big-endian.

Important: Language code values less than 0x800 are Macintosh language codes; larger values are
ISO language codes.

ISO language codes are three-character codes. In order to fit inside a 16-bit field, the characters must
be packed into three 5-bit sub-fields. This packing is described in ISO Language Codes (page 222).

Print to Video (Full Screen Mode)

A movie atom’s user data atom may contain a print to video atom ('ptv ') . If a print to video atom
is present, QuickTime plays the movie in full-screen mode, with no window and no visible controller.
Any portion of the screen not occupied by the movie is cleared to black. The user must press the esc
key to exit full-screen mode.

This atom is often added and removed transiently to control the display mode of a movie for a single
presentation, but it can also be stored as part of the permanent movie file.

The print to video atom consists of the following data.

Size
A 32-bit integer that specifies the number of bytes in this user data item.

Type
A 32-bit integer that identifies the item type; this field must be set to 'ptv '. Note that the
fourth character is an ASCII blank (0x20).

Display size
A 16-bit little-endian integer indicating the display size for the movie: 0 indicates that the movie
should be played at its normal size; 1 indicates that the movie should be played at double size;

Overview of Movie Atoms 45
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

2 indicates that the movie should be played at half size; 3 indicates that the movie should be
scaled to fill the screen; 4 indicates that the movie should be played at its current size (this last
value is normally used when the print to video atom is inserted transiently and the movie has
been temporarily resized).

Reserved1
A 16-bit integer whose value should be 0.

Reserved2
A 16-bit integer whose value should be 0.

Slide show
An 8-bit Boolean whose value is 1 for a slide show. In slide show mode, the movie advances
one frame each time the right-arrow key is pressed. Audio is muted.

Play on open
An 8-bit Boolean whose value is normally 1, indicating that the movie should play when
opened. Since there is no visible controller in full-screen mode, applications should always set
this field to 1 to prevent user confusion.

Track Atoms

Track atoms define a single track of a movie. A movie may consist of one or more tracks. Each track
is independent of the other tracks in the movie and carries its own temporal and spatial information.
Each track atom contains its associated media atom.

Tracks are used specifically for the following purposes:

 ■ To contain media data references and descriptions (media tracks).

 ■ To contain modifier tracks (tweens, and so forth).

 ■ To contain packetization information for streaming protocols (hint tracks). Hint tracks may contain
references to media sample data or copies of media sample data. For more information about
hint tracks, refer to “Hint Media” (page 166).

Note that a QuickTime movie cannot consist solely of hint tracks or modifier tracks; there must be at
least one media track. Furthermore, media tracks cannot be deleted from a hinted movie, even if the
hint tracks contain copies of the media sample data—in addition to the hint tracks, the entire unhinted
movie must remain.

Figure 2-6 (page 47) shows the layout of a track atom. Track atoms have an atom type value of 'trak'.
The track atom requires a track header atom ('tkhd') and a media atom ('mdia'). Other child atoms
are optional, and may include a track profile atom ('prfl'), a track clipping atom ('clip'), a track
matte atom ('matt'), an edit atom ('edts'), a track reference atom ('tref'), a track load settings
atom ('load'), a track input map atom ('imap'), and a user data atom ('udta').

46 Track Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-6 The layout of a track atom

Atom size
Type = 'trak'

'udta'

'clip'

Movie atom

‡ Required atom

Clipping atom

'matt'Track matte atom

'edts'Edit atom

'tref'Track reference atom

'load'Track load settings atom

'imap'Track input map atom

'mdia'Media atom

User data atom

'prfl'Track profile atom

‡

'tkhd'Track header atom ‡

Track atoms contain the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this track atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'trak'.

Track profile atom
See “Track Profile Atom” (page 48) for details.

Track header atom
See “Track Header Atoms” (page 48) for details.

Clipping atom
See “Clipping Atoms” (page 51) for more information.

Track matte atom
See “Track Matte Atoms” (page 52) for more information.

Edit atom
See “Edit Atoms” (page 54) for details.

Track reference atom
See “Track Reference Atoms” (page 57)” for details.

Track load settings atom
See “Track Load Settings Atoms” (page 56) for details.

Track input map atom
See “Track Input Map Atoms” (page 59)” for details.

Track Atoms 47
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Media atom
See “Media Atoms” (page 62) for details.

User-defined data atom
See “User Data Atoms” (page 42) for more information.

Track Profile Atom

Profile atoms can be children of movie atoms or track atoms. For details on profile atoms, see “The
Movie Profile Atom” (page 37).

Track Header Atoms

The track header atom specifies the characteristics of a single track within a movie. A track header
atom contains a size field that specifies the number of bytes and a type field that indicates the format
of the data (defined by the atom type 'tkhd').

Figure 2-7 (page 49) shows the structure of the track header atom.

48 Track Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-7 The layout of a track header atom

Atom size

Type = 'tkhd'

Version

Flags

Creation time

Modification time

Track ID

Reserved

Duration

Reserved

Layer

Alternate group

Volume

Reserved

Matrix structure

Track width

Track height

Track header atom

1

3

4

4

4

4

4

8

2

2

2

2

36

4

4

4

4

Bytes

The track header atom contains the track characteristics for the track, including temporal, spatial, and
volume information.

Track header atoms contain the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this track header atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'tkhd'.

Version
A 1-byte specification of the version of this track header.

Track Atoms 49
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Flags
Three bytes that are reserved for the track header flags. These flags indicate how the track is
used in the movie. The following flags are valid (all flags are enabled when set to 1).

Track enabled

Indicates that the track is enabled. Flag value is 0x0001.

Track in movie

Indicates that the track is used in the movie. Flag value is 0x0002.

Track in preview

Indicates that the track is used in the movie’s preview. Flag value is 0x0004.

Track in poster

Indicates that the track is used in the movie’s poster. Flag value is 0x0008.

Creation time
A 32-bit integer that indicates the calendar date and time (expressed in seconds since midnight,
January 1, 1904) when the track header was created. It is strongly recommended that this value
should be specified using coordinated universal time (UTC).

Modification time
A 32-bit integer that indicates the calendar date and time (expressed in seconds since midnight,
January 1, 1904) when the track header was changed. It is strongly recommended that this
value should be specified using coordinated universal time (UTC).

Track ID
A 32-bit integer that uniquely identifies the track. The value 0 cannot be used.

Reserved
A 32-bit integer that is reserved for use by Apple. Set this field to 0.

Duration
A time value that indicates the duration of this track (in the movie’s time coordinate system).
Note that this property is derived from the track’s edits. The value of this field is equal to the
sum of the durations of all of the track’s edits. If there is no edit list, then the duration is the
sum of the sample durations, converted into the movie timescale.

Reserved
An 8-byte value that is reserved for use by Apple. Set this field to 0.

Layer
A 16-bit integer that indicates this track’s spatial priority in its movie. The QuickTime Movie
Toolbox uses this value to determine how tracks overlay one another. Tracks with lower layer
values are displayed in front of tracks with higher layer values.

Alternate group
A 16-bit integer that specifies a collection of movie tracks that contain alternate data for one
another. QuickTime chooses one track from the group to be used when the movie is played.
The choice may be based on such considerations as playback quality, language, or the
capabilities of the computer.

50 Track Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Volume
A 16-bit fixed-point value that indicates how loudly this track’s sound is to be played. A value
of 1.0 indicates normal volume.

Reserved
A 16-bit integer that is reserved for use by Apple. Set this field to 0.

Matrix structure
The matrix structure associated with this track. See Figure 2-8 (page 51) for an illustration of
a matrix structure.

Track width
A 32-bit fixed-point number that specifies the width of this track in pixels.

Track height
A 32-bit fixed-point number that indicates the height of this track in pixels.

Clipping Atoms

Clipping atoms specify the clipping regions for movies and for tracks. The clipping atom has an atom
type value of 'clip'.

Figure 2-8 (page 51) shows the layout of a clipping atom.

Figure 2-8 The layout of a clipping atom

Atom size

Type = 'clip'

Clipping atom

Atom size

Type = 'crgn'

Region size

Region boundary box

Clipping region data

4

4

Bytes

4

4

2

8

Variable

Clipping region atom

Clipping atoms contain the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this clipping atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'clip'.

Track Atoms 51
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Clipping region atom
See “Clipping Region Atoms” (page 52).

Clipping Region Atoms

The clipping region atom contains the data that specifies the clipping region, including its size,
bounding box, and region. Clipping region atoms have an atom type value of 'crgn'.

The layout of the clipping region atom is shown in Figure 2-8 (page 51).

Clipping region atoms contain the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this clipping region atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'crgn'.

Region size
The region size, region boundary box, and clipping region data fields constitute a QuickDraw
region.

Region boundary box
The region size, region boundary box, and clipping region data fields constitute a QuickDraw
region.

Clipping region data
The region size, region boundary box, and clipping region data fields constitute a QuickDraw
region.

Track Matte Atoms

Track matte atoms are used to visually blend the track’s image when it is displayed.

Track matte atoms have an atom type value of 'matt'.

Figure 2-9 (page 53) shows the layout of track matte atoms.

52 Track Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-9 The layout of a track matte atom

Bytes

4

4

4

4

3

Variable

Atom size

Type = 'matt'

Track matte atom

Atom size

Type = 'kmat'

Matte image
description structure

Matte data

1

Variable

Compressed matte atom

Version

Flags

Track matte atoms contain the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this track matte atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'matt'.

Compressed matte atom
The actual matte data.

See “Compressed Matte Atoms” (page 53) for details.

Compressed Matte Atoms

The compressed matte atom specifies the image description structure and the matte data associated
with a particular matte atom. Compressed matte atoms have an atom type value of 'kmat'.

The layout of the compressed matte atom is shown in Figure 2-9 (page 53).

Compressed matte atoms contain the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this compressed matte atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'kmat'.

Version
A 1-byte specification of the version of this compressed matte atom.

Track Atoms 53
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Flags
Three bytes of space for flags. Set this field to 0.

Matte image description structure
An image description structure associated with this matte data. The image description contains
detailed information that governs how the matte data is used. See “Video Sample
Description” (page 100) for more information about image descriptions.

Matte data
The compressed matte data, which is of variable length.

Edit Atoms

You use edit atoms to define the portions of the media that are to be used to build up a track for a
movie. The edits themselves are contained in an edit list table, which consists of time offset and
duration values for each segment. Edit atoms have an atom type value of 'edts'.

Figure 2-10 (page 54) shows the layout of an edit atom.

In the absence of an edit list, the presentation of a track starts immediately. An empty edit is used to
offset the start time of a track.

Note: If the edit atom or the edit list atom is missing, you can assume that the entire media is used
by the track.

Figure 2-10 The layout of an edit atom

Bytes

4

4

4

4

1

4

Atom size

Type = 'edts'

Edit atom

Atom size

Type = 'elst'

Number of entries

Edit list table

Edit list atom

3

Variable

Version

Flags

Edit atoms contain the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this edit atom.

54 Track Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Type
A 32-bit integer that identifies the atom type; this field must be set to 'edts'.

Edit list atom
See “Edit List Atoms” (page 55).

Edit List Atoms

You use the edit list atom, also shown in Figure 2-10 (page 54), to map from a time in a movie to a
time in a media, and ultimately to media data. This information is in the form of entries in an edit list
table, shown in Figure 2-11 (page 55). Edit list atoms have an atom type value of 'elst'.

Edit list atoms contain the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this edit list atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'elst'.

Version
A 1-byte specification of the version of this edit list atom.

Flags
Three bytes of space for flags. Set this field to 0.

Number of entries
A 32-bit integer that specifies the number of entries in the edit list atom that follows.

Edit list table
An array of 32-bit values, grouped into entries containing 3 values each. Figure 2-11 (page 55)
shows the layout of the entries in this table.

Figure 2-11 The layout of an edit list table entry

Bytes

Field

4 4 4

Track duration Media time Media rate

An edit list table entry contains the following elements.

Track duration
A 32-bit integer that specifies the duration of this edit segment in units of the movie’s time
scale.

Media time
A 32-bit integer containing the starting time within the media of this edit segment (in media
timescale units). If this field is set to –1, it is an empty edit. The last edit in a track should never
be an empty edit. Any difference between the movie’s duration and the track’s duration is
expressed as an implicit empty edit.

Track Atoms 55
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Media rate
A 32-bit fixed-point number that specifies the relative rate at which to play the media
corresponding to this edit segment. This rate value cannot be 0 or negative.

Track Load Settings Atoms

Track load settings atoms contain information that indicates how the track is to be used in its movie.
Applications that read QuickTime files can use this information to process the movie data more
efficiently. Track load settings atoms have an atom type value of 'load'.

Figure 2-12 The layout of a track load settings atom

Bytes

4

4

4

4

4

4

Atom size

Type = 'load'

Preload start time

Preload flags

Default hints

Preload duration

Track load settings atom

Track load settings atoms contain the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this track load settings atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'load'.

Preload start time
A 32-bit integer specifying the starting time, in the movie’s time coordinate system, of a segment
of the track that is to be preloaded. Used in conjunction with the preload duration.

Preload duration
A 32-bit integer specifying the duration, in the movie’s time coordinate system, of a segment
of the track that is to be preloaded. If the duration is set to –1, it means that the preload segment
extends from the preload start time to the end of the track. All media data in the segment of
the track defined by the preload start time and preload duration values should be loaded into
memory when the movie is to be played.

Preload flags
A 32-bit integer containing flags governing the preload operation. Only two flags are defined,
and they are mutually exclusive. If preload flags is set to 1, the track is to be preloaded regardless
of whether it is enabled. If preload flags is set to 2, the track is to be preloaded only if it is
enabled.

56 Track Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Default hints
A 32-bit integer containing playback hints. More than one flag may be enabled. Flags are
enabled by setting them to 1. The following flags are defined.

Double buffer

This flag indicates that the track should be played using double-buffered I/O. This flag’s value
is 0x0020.

High quality

This flag indicates that the track should be displayed at highest possible quality, without regard
to real-time performance considerations. This flag’s value is 0x0100.

Track Reference Atoms

Track reference atoms define relationships between tracks. Track reference atoms allow one track to
specify how it is related to other tracks. For example, if a movie has three video tracks and three sound
tracks, track references allow you to identify the related sound and video tracks. Track reference
atoms have an atom type value of 'tref'.

Track references are unidirectional and point from the recipient track to the source track. For example,
a video track may reference a time code track to indicate where its time code is stored, but the time
code track would not reference the video track. The time code track is the source of time information
for the video track.

A single track may reference multiple tracks. For example, a video track could reference a sound track
to indicate that the two are synchronized and a time code track to indicate where its time code is
stored.

A single track may also be referenced by multiple tracks. For example, both a sound and video track
could reference the same time code track if they share the same timing information.

If this atom is not present, the track is not referencing any other track in any way. Note that the array
of track reference type atoms is sized to fill the track reference atom. Track references with a reference
index of 0 are permitted. This indicates no reference.

Figure 2-13 (page 58) shows the layout of a track reference atom.

Track Atoms 57
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-13 The layout of a track reference atom

Track reference atom

Atom size

Type = 'tref'

Bytes

4

4

4

4

Variable

Atom size

Type = (see table)

Track IDs

Track reference type atom

A track reference atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this track reference atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'tref'.

Track reference type atoms
A list of track reference type atoms containing the track reference information. These atoms
are described next.

Each track reference atom defines relationships with tracks of a specific type. The reference type
implies a track type. Table 2-2 (page 58) shows the track reference types and their descriptions.

Table 2-2 Track reference types

DescriptionReference type

Time code. Usually references a time code track.'tmcd'

Chapter or scene list. Usually references a text track.'chap'

Synchronization. Usually between a video and sound track. Indicates that the two
tracks are synchronized. The reference can be from either track to the other, or there
may be two references.

'sync'

Transcript. Usually references a text track.'scpt'

Nonprimary source. Indicates that the referenced track should send its data to this
track, rather than presenting it. The referencing track will use the data to modify
how it presents its data. See “Track Input Map Atoms” (page 59) for more
information.

'ssrc'

The referenced tracks contain the original media for this hint track.'hint'

58 Track Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Each track reference type atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this track reference type atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to one of the values shown
in Table 2-2 (page 58).

Track IDs
A list of track ID values (32-bit integers) specifying the related tracks. Note that this is one case
where track ID values can be set to 0. Unused entries in the atom may have a track ID value
of 0. Setting the track ID to 0 may be more convenient than deleting the reference.

You can determine the number of track references stored in a track reference type atom by subtracting
its header size from its overall size and then dividing by the size, in bytes, of a track ID.

Track Input Map Atoms

Track input map atoms define how data being sent to this track from its nonprimary sources is to be
interpreted. Track references of type 'ssrc' define a track’s secondary data sources. These sources
provide additional data that is to be used when processing the track. Track input map atoms have
an atom type value of 'imap'.

Figure 2-14 (page 60) shows the layout of a track input atom. This atom contains one or more track
input atoms. Note that the track input map atom is a QT atom structure.

Track Atoms 59
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-14 The layout of a track input map atom

Track input map atom

Atom size

Type = 'imap'

Track input atom

Bytes

4

4

4

4

4

4

4

4

4

4

4

4

2

2

Atom size

Atom size

Input type

Atom ID

Reserved

Child count

Type = ' in'

Type = ' ty'

Atom size

Object ID

Type = 'obid'

Reserved

Object ID atom

Input type atom ‡

‡ Required atom

Each track input map atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this track input map atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'imap'.

Track input atoms
A list of track input atoms specifying how to use the input data.

The input map defines all of the track’s secondary inputs. Each secondary input is defined using a
separate track input atom.

Each track input atom contains the following data elements.

60 Track Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Size
A 32-bit integer that specifies the number of bytes in this track input atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to ' in' (note that the two
leading bytes must be set to 0x00).

Atom ID
A 32-bit integer relating this track input atom to its secondary input. The value of this field
corresponds to the index of the secondary input in the track reference atom. That is, the first
secondary input corresponds to the track input atom with an atom ID value of 1; the second
to the track input atom with an atom ID of 2, and so on.

Reserved
A 16-bit integer that must be set to 0.

Child count
A 16-bit integer specifying the number of child atoms in this atom.

Reserved
A 32-bit integer that must be set to 0.

The track input atom, in turn, may contain two other types of atoms: input type atoms and object ID
atoms. The input type atom is required; it specifies how the data is to be interpreted.

The input type atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this input type atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to ' ty' (note that the two
leading bytes must be set to 0x00).

Input type
A 32-bit integer that specifies the type of data that is to be received from the secondary data
source. Table 2-3 (page 61) lists valid values for this field.

Table 2-3 Input types

DescriptionValueInput identifier

A 3 x 3 transformation matrix to transform the track’s
location, scaling, and so on.

1kTrackModifierTypeMatrix

A QuickDraw clipping region to change the track’s
shape.

2kTrackModifierTypeClip

An 8.8 fixed-point value indicating the relative sound
volume. This is used for fading the volume.

3kTrackModifierTypeVolume

A 16-bit integer indicating the sound balance level. This
is used for panning the sound location.

4kTrackModifierTypeBalance

Track Atoms 61
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

DescriptionValueInput identifier

A graphics mode record (32-bit integer indicating
graphics mode, followed by an RGB color) to modify
the track’s graphics mode for visual fades.

5kTrackModifierType-
GraphicsMode

A 3x3 transformation matrix to transform an object
within the track’s location, scaling, and so on.

6kTrackModifierObjectMatrix

A graphics mode record (32-bit integer indicating
graphics mode, followed by an RGB color) to modify an
object within the track’s graphics mode for visual fades.

7kTrackModifierObject-
GraphicsMode

Compressed image data for an object within the track.
Note that this was kTrackModifierTypeSpriteImage.

'vide’kTrackModifierTypeImage

If the input is operating on an object within the track (for example, a sprite within a sprite track), an
object ID atom must be included in the track input atom to identify the object.

The object ID atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this object ID atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'obid'.

Object ID
A 32-bit integer identifying the object.

Media Atoms

Media atoms describe and define a track’s media type and sample data. The media atom contains
information that specifies the media type, such as sound or video, the media handler component used
to interpret the sample data, the media timescale and track duration, and media-and-track-specific
information such as sound volume or graphics mode. It also contains the media data references, which
typically specify the file where the sample data is stored, and the sample table atoms, which specify
the sample description, duration, and byte offset from the data reference for each media sample.

The media atom has an atom type of 'mdia'. It must contain a media header atom ('mdhd'), and it
can contain a handler reference ('hdlr') atom, media information ('minf') atom, and user data
('udta') atom.

Note: Do not confuse the media atom ('mdia') with the media data atom ('mdat'). The media atom
contains only references to media data; the media data atom contains the actual media samples.

Figure 2-15 (page 63) shows the layout of a media atom.

62 Media Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-15 The layout of a media atom

'minf'

'udta'

Atom size
Type = 'mdia'

Media atom

'hdlr'

'mdhd'Media header atom

Handler reference atom

Media information atom

User data atom

‡

‡ Required atom

Media atoms contain the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this media atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'mdia'.

Media header atom
This atom contains the standard media information. See “Media Header Atoms” (page 63).

Handler reference atom
This atom identifies the media handler component that is to be used to interpret the media
data. See “Handler Reference Atoms” (page 65) for more information.

Note that the handler reference atom tells you the kind of media this media atom contains—for
example, video or sound. The layout of the media information atom is specific to the media
handler that is to interpret the media. “Media Information Atoms” (page 66) discusses how
data may be stored in a media, using the video media format defined by Apple as an example.

Media information atom
This atom contains data specific to the media type for use by the media handler component.
See “Media Information Atoms” (page 66).

User data atom
See “User Data Atoms” (page 42).

Media Header Atoms

The media header atom specifies the characteristics of a media, including time scale and duration.
The media header atom has an atom type of 'mdhd'.

Figure 2-16 (page 64) shows the layout of the media header atom.

Media Atoms 63
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-16 The layout of a media header atom

Atom size

Type = 'mdhd'

Version

 Flags

Creation time

Modification time

Time scale

Duration

Language

Quality

3

4

4

4

4

2

2

4

4

1

Bytes

Media header atom

Media header atoms contain the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this media header atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'mdhd'.

Version
One byte that specifies the version of this header atom.

Flags
Three bytes of space for media header flags. Set this field to 0.

Creation time
A 32-bit integer that specifies (in seconds since midnight, January 1, 1904) when the media
atom was created. It is strongly recommended that this value should be specified using
coordinated universal time (UTC).

Modification time
A 32-bit integer that specifies (in seconds since midnight, January 1, 1904) when the media
atom was changed. It is strongly recommended that this value should be specified using
coordinated universal time (UTC).

Time scale
A time value that indicates the time scale for this media—that is, the number of time units that
pass per second in its time coordinate system.

Duration
The duration of this media in units of its time scale.

64 Media Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Language
A 16-bit integer that specifies the language code for this media. See “Language Code
Values” (page 219) for valid language codes.

Quality
A 16-bit integer that specifies the media’s playback quality—that is, its suitability for playback
in a given environment.

Handler Reference Atoms

The handler reference atom specifies the media handler component that is to be used to interpret the
media’s data. The handler reference atom has an atom type value of 'hdlr'.

Historically, the handler reference atom was also used for data references. However, this use may
now be ignored.

The handler atom within a media atom declares the process by which the media data in the stream
may be presented, and thus, the nature of the media in a stream. For example, a video handler would
handle a video track.

Figure 2-17 (page 65) shows the layout of a handler reference atom.

Figure 2-17 The layout of a handler reference atom

Bytes

4

3

4

4

4

Variable

4

4

Type = 'hdlr'

Atom size

Component type

Component subtype

Component manufacturer

Component flags

Component flags mask

Component name

Handler reference atom

Version

Flags

4

1

Handler reference atoms contain the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this handler reference atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'hdlr'.

Media Atoms 65
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Version
A 1-byte specification of the version of this handler information.

Flags
A 3-byte space for handler information flags. Set this field to 0.

Component type
A four-character code that identifies the type of the handler. Only two values are valid for this
field: 'mhlr' for media handlers and 'dhlr' for data handlers.

Component subtype
A four-character code that identifies the type of the media handler or data handler. For media
handlers, this field defines the type of data—for example, 'vide' for video data or 'soun' for
sound data.

For data handlers, this field defines the data reference type—for example, a component subtype
value of 'alis' identifies a file alias.

Component manufacturer
Reserved. Set to 0.

Component flags
Reserved. Set to 0.

Component flags mask
Reserved. Set to 0.

Component name
A (counted) string that specifies the name of the component—that is, the media handler used
when this media was created. This field may contain a zero-length (empty) string.

Media Information Atoms

Media information atoms (defined by the 'minf' atom type) store handler-specific information for
a track’s media data. The media handler uses this information to map from media time to media data
and to process the media data.

These atoms contain information that is specific to the type of data defined by the media. Further,
the format and content of media information atoms are dictated by the media handler that is responsible
for interpreting the media data stream. Another media handler would not know how to interpret this
information.

This section describes the atoms that store media information for the video ('vmhd'), sound ('smhd'),
and base ('gmhd') portions of QuickTime movies.

66 Media Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Note: “Using Sample Atoms” (page 87) discusses how the video media handler locates samples in a
video media.

Video Media Information Atoms

Video media information atoms are the highest-level atoms in video media. These atoms contain a
number of other atoms that define specific characteristics of the video media data. Figure 2-18 (page
67) shows the layout of a video media information atom.

Figure 2-18 The layout of a media information atom for video

'stbl'

Data information atom

Atom size
Type = 'minf'

'dinf'

Sample table atom

Video media information atom

'vmhd'Video media information atom

'hdlr'Handler reference atom

‡ Required atom

‡

‡

The video media information atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this video media information atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'minf'.

Video media information atom
See “Video Media Information Header Atoms” (page 67).

Handler reference atom
See “Handler Reference Atoms” (page 65).

Data information atom
See “Data Information Atoms” (page 73).

Sample table atom
See “Sample Table Atoms” (page 76).

Video Media Information Header Atoms

Video media information header atoms define specific color and graphics mode information.

Figure 2-19 (page 68) shows the structure of a video media information header atom.

Media Atoms 67
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-19 The layout of a media information header atom for video

4

4

1

3

2

Bytes

Atom size

Version

Flags

Graphics mode

Opcolor

Type = 'vmhd'

6

Video media information header atom

The video media information header atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this video media information header
atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'vmhd'.

Version
A 1-byte specification of the version of this video media information header atom.

Flags
A 3-byte space for video media information flags. There is one defined flag.

No lean ahead

This is a compatibility flag that allows QuickTime to distinguish between movies created with
QuickTime 1.0 and newer movies. You should always set this flag to 1, unless you are creating
a movie intended for playback using version 1.0 of QuickTime. This flag’s value is 0x0001.

Graphics mode
A 16-bit integer that specifies the transfer mode. The transfer mode specifies which Boolean
operation QuickDraw should perform when drawing or transferring an image from one location
to another. See “Graphics Modes” (page 223) for a list of graphics modes supported by
QuickTime.

Opcolor
Three 16-bit values that specify the red, green, and blue colors for the transfer mode operation
indicated in the graphics mode field.

Sound Media Information Atoms

Sound media information atoms are the highest-level atoms in sound media. These atoms contain a
number of other atoms that define specific characteristics of the sound media data. Figure 2-20 (page
69) shows the layout of a sound media information atom.

68 Media Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-20 The layout of a media information atom for sound

'dinf'Data information atom

Sample table atom

Atom size
Type = 'minf'

'stbl'

Sound media information atom

'smhd'Sound media information header atom

‡ Required atom

‡

'hdlr'Handler reference atom ‡

The sound media information atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this sound media information atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'minf'.

Sound media information header atom
See “Sound Media Information Header Atoms” (page 69).

Handler reference atom
See “Handler Reference Atoms” (page 65).

Data information atom
See “Data Information Atoms” (page 73).

Sample table atom
See “Sample Table Atoms” (page 76).

Sound Media Information Header Atoms

The sound media information header atom (shown in Figure 2-21 (page 70)) stores the sound media’s
control information, such as balance.

Media Atoms 69
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-21 The layout of a sound media information header atom

Bytes

4

4

1

2

2

Atom size

Version

Flags

Balance

Reserved

Sound media information
header atom

3

Type = 'smhd'

The sound media information header atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this sound media information header
atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'smhd'.

Version
A 1-byte specification of the version of this sound media information header atom.

Flags
A 3-byte space for sound media information flags. Set this field to 0.

Balance
A 16-bit integer that specifies the sound balance of this sound media. Sound balance is the
setting that controls the mix of sound between the two speakers of a computer. This field is
normally set to 0. See “Balance” (page 224) for more information about balance values.

Reserved
Reserved for use by Apple. Set this field to 0.

Base Media Information Atoms

The base media information atom (shown in Figure 2-22 (page 71)) stores the media information for
media types such as text, MPEG, time code, and music.

Media types that are derived from the base media handler may add other atoms within the base
media information atom, as appropriate. At present, the only media type that defines any additional
atoms is the timecode media. See “Timecode Media Information Atom” (page 127) for more information
about timecode media.

70 Media Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-22 The layout of a base media information atom

'gmhd'

Base media information atom

Atom size
Type = 'minf'

‡

‡ Required atom

Base media information header atom

'gmin' ‡Base media info atom

The base media information atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this base media information atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'minf'.

Base media information header atom
See “Base Media Information Header Atoms” (page 71).

Base media info atom
See “Base Media Info Atoms” (page 71).

Base Media Information Header Atoms

The base media information header atom indicates that this media information atom pertains to a
base media.

The base media information header atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this base media information header atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'gmhd'.

Base Media Info Atoms

The base media info atom, contained in the base media information atom, defines the media’s control
information, including graphics mode and balance information.

Figure 2-23 (page 72) shows the layout of the base media info atom.

Media Atoms 71
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-23 The layout of a base media info atom

Bytes

4

4

1

3

2

6

2

2

Atom size

Type = 'gmin'

Version

Graphics mode

Opcolor

Balance

Reserved

Flags

Base media info atom

The base media info atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this base media info atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'gmin'.

Version
A 1-byte specification of the version of this base media information header atom.

Flags
A 3-byte space for base media information flags. Set this field to 0.

Graphics mode
A 16-bit integer that specifies the transfer mode. The transfer mode specifies which Boolean
operation QuickDraw should perform when drawing or transferring an image from one location
to another. See “Graphics Modes” (page 223) for more information about graphics modes
supported by QuickTime.

Opcolor
Three 16-bit values that specify the red, green, and blue colors for the transfer mode operation
indicated in the graphics mode field.

Balance
A 16-bit integer that specifies the sound balance of this media. Sound balance is the setting
that controls the mix of sound between the two speakers of a computer. This field is normally
set to 0. See “Balance” (page 224) for more information about balance values.

Reserved
Reserved for use by Apple. Set this field to 0.

72 Media Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Data Information Atoms

The handler reference atom (described in “Handler Reference Atoms” (page 65)) contains information
specifying the data handler component that provides access to the media data. The data handler
component uses the data information atom to interpret the media’s data. Data information atoms
have an atom type value of 'dinf'.

Figure 2-24 (page 73) shows the layout of the data information atom.

Figure 2-24 The layout of a data information atom

Data information atom

4

4

4

4

3

1

Bytes

Atom size

Type = 'dref'

Number of entries

Version

Flags

Atom size

Type = 'dinf'

Data references

Size

 Type

 Version

Flags

Data

4

4

4

3

1

Variable

4

4

3

1

Variable

Size

 Type

 Version

Flags

Data

.

.

.

Data reference atom

The data information atom contains the following data elements.

Media Atoms 73
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Size
A 32-bit integer that specifies the number of bytes in this data information atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'dinf'.

Data reference atom
See “Data Reference Atoms” (page 74).

Data Reference Atoms

Data reference atoms contain tabular data that instructs the data handler component how to access
the media’s data. Figure 2-24 (page 73) shows the data reference atom.

The data reference atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this data reference atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'dref'.

Version
A 1-byte specification of the version of this data reference atom.

Flags
A 3-byte space for data reference flags. Set this field to 0.

Number of entries
A 32-bit integer containing the count of data references that follow.

Data references
An array of data references.

Each data reference is formatted like an atom and contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in the data reference.

Type
A 32-bit integer that specifies the type of the data in the data reference. Table 2-4 (page 75)
lists valid type values.

Version
A 1-byte specification of the version of the data reference.

Flags
A 3-byte space for data reference flags. There is one defined flag.

Self reference

This flag indicates that the media’s data is in the same file as the movie atom. On the Macintosh,
and other file systems with multifork files, set this flag to 1 even if the data resides in a different
fork from the movie atom. This flag’s value is 0x0001.

74 Media Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Data
The data reference information.

Table 2-4 (page 75) shows the currently defined data reference types that may be stored in a header
atom.

Table 2-4 Data reference types

DescriptionData reference type

Data reference is a Macintosh alias. An alias contains information about the
file, including its full path name.

'alis'

Data reference is a Macintosh alias. Appended to the end of the alias is the
resource type (stored as a 32-bit integer) and ID (stored as a 16-bit signed
integer) to use within the specified file.

'rsrc'

A C string that specifies a URL. There may be additional data after the C string.'url '

Sample Atoms

QuickTime stores media data in samples. A sample is a single element in a sequence of time-ordered
data. Samples are stored in the media, and they may have varying durations.

Samples are stored in a series of chunks in a media. Chunks are a collection of data samples in a media
that allow optimized data access. A chunk may contain one or more samples. Chunks in a media may
have different sizes, and the individual samples within a chunk may have different sizes from one
another, as shown in Figure 2-25 (page 76).

Sample Atoms 75
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-25 Samples in a media

Data stream

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6

Sample 7

Sample 8

Sample 9

Chunk 1

Chunk 2

Chunk 3

Chunk 5

Chunk 4

One way to describe a sample is to use a sample table atom. The sample table atom acts as a storehouse
of information about the samples and contains a number of different types of atoms. The various
atoms contain information that allows the media handler to parse the samples in the proper order.
This approach enforces an ordering of the samples without requiring that the sample data be stored
sequentially with respect to movie time in the actual data stream.

The next section discusses the sample table atom. Subsequent sections discuss each of the atoms that
may reside in a sample table atom.

Sample Table Atoms

The sample table atom contains information for converting from media time to sample number to
sample location. This atom also indicates how to interpret the sample (for example, whether to
decompress the video data and, if so, how). This section describes the format and content of the sample
table atom.

The sample table atom has an atom type of 'stbl'. It can contain the sample description atom, the
time-to-sample atom, the sync sample atom, the sample-to-chunk atom, the sample size atom, the
chunk offset atom, and the shadow sync atom.

The sample table atom contains all the time and data indexing of the media samples in a track. Using
tables, it is possible to locate samples in time, determine their type, and determine their size, container,
and offset into that container.

If the track that contains the sample table atom references no data, then the sample table atom does
not need to contain any child atoms (not a very useful media track).

76 Sample Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

If the track that the sample table atom is contained in does reference data, then the following child
atoms are required: sample description, sample size, sample to chunk, and chunk offset. All of the
subtables of the sample table use the same total sample count.

The sample description atom must contain at least one entry. A sample description atom is required
because it contains the data reference index field that indicates which data reference atom to use to
retrieve the media samples. Without the sample description, it is not possible to determine where the
media samples are stored. The sync sample atom is optional. If the sync sample atom is not present,
all samples are implicitly sync samples.

Figure 2-26 (page 77) shows the layout of the sample table atom.

Figure 2-26 The layout of a sample table atom

Type ='stbl'
Atom size

Sample-to-chunk atom

Sample size atom

Chunk offset atom

Sample description atom

Time-to-sample atom

Sync sample atom

Sample table atom

'stsd'

'stts'

'stss'

'stsc'

'stsz'

'stco'

Shadow sync atom 'stsh'

The sample table atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this sample table atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'stbl'.

Sample description atom
See “Sample Description Atoms” (page 78).

Time-to-sample atom
See “Time-to-Sample Atoms” (page 79).

Sync sample atom
See “Sync Sample Atoms” (page 81).

Sample-to-chunk atom
See “Sample-to-Chunk Atoms” (page 83).

Sample size atom
See “Sample Size Atoms” (page 84).

Chunk offset atom
See “Chunk Offset Atoms” (page 86).

Sample Atoms 77
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Shadow sync atom
Reserved for future use.

Sample Description Atoms

The sample description atom stores information that allows you to decode samples in the media. The
data stored in the sample description varies, depending on the media type. For example, in the case
of video media, the sample descriptions are image description structures. The sample description
information for each media type is explained in “Media Data Atom Types” (page 99)

Figure 2-27 (page 78) shows the layout of the sample description atom.

Figure 2-27 The layout of a sample description atom

Bytes

4

1

3

VariableSample description table

Sample description atom

4

4

Atom size

Type = 'stsd'

Flags

Version

Number of entries

The sample description atom has an atom type of 'stsd'. The sample description atom contains a
table of sample descriptions. A media may have one or more sample descriptions, depending upon
the number of different encoding schemes used in the media and on the number of files used to store
the data. The sample-to-chunk atom identifies the sample description for each sample in the media
by specifying the index into this table for the appropriate description (see “Sample-to-Chunk
Atoms” (page 83)).

The sample description atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this sample description atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'stsd'.

Version
A 1-byte specification of the version of this sample description atom.

Flags
A 3-byte space for sample description flags. Set this field to 0.

Number of entries
A 32-bit integer containing the number of sample descriptions that follow.

78 Sample Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Sample description table
An array of sample descriptions. For details, see “General Structure of a Sample
Description” (page 79).

General Structure of a Sample Description

While the exact format of the sample description varies by media type, the first four fields of every
sample description are the same.

Sample description size
A 32-bit integer indicating the number of bytes in the sample description.

Data format
A 32-bit integer indicating the format of the stored data. This depends on the media type, but
is usually either the compression format or the media type.

Reserved
Six bytes that must be set to 0.

Data reference index
A 16-bit integer that contains the index of the data reference to use to retrieve data associated
with samples that use this sample description. Data references are stored in data reference
atoms.

These four fields may be followed by additional data specific to the media type and data format. See
“Media Data Atom Types” (page 99) for additional details regarding specific media types and media
formats.

Time-to-Sample Atoms

Time-to-sample atoms store duration information for a media’s samples, providing a mapping from
a time in a media to the corresponding data sample. The time-to-sample atom has an atom type of
'stts'.

You can determine the appropriate sample for any time in a media by examining the time-to-sample
atom table, which is contained in the time-to-sample atom.

The atom contains a compact version of a table that allows indexing from time to sample number.
Other tables provide sample sizes and pointers from the sample number. Each entry in the table gives
the number of consecutive samples with the same time delta, and the delta of those samples. By
adding the deltas, a complete time-to-sample map can be built.

The atom contains time deltas: DT(n+1) = DT(n) + STTS(n) where STTS(n) is the (uncompressed)
table entry for sample n and DT is the display time for sample (n). The sample entries are ordered by
time stamps; therefore, the deltas are all nonnegative. The DT axis has a zero origin; DT(i) = SUM
(for j=0 to i-1 of delta(j)), and the sum of all deltas gives the length of the media in the track
(not mapped to the overall time scale, and not considering any edit list). The edit list atom provides
the initial DT value if it is nonempty (nonzero).

Figure 2-28 (page 80) shows the layout of the time-to-sample atom.

Sample Atoms 79
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-28 The layout of a time-to-sample atom

Bytes

4

1

3

Variable

Atom size

Type = 'stts'

Version

Number of entries

Time-to-sample atom

4

Time-to-sample table

Flags

4

The time-to-sample atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this time-to-sample atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'stts'.

Version
A 1-byte specification of the version of this time-to-sample atom.

Flags
A 3-byte space for time-to-sample flags. Set this field to 0.

Number of entries
A 32-bit integer containing the count of entries in the time-to-sample table.

Time-to-sample table
A table that defines the duration of each sample in the media. Each table entry contains a count
field and a duration field. The structure of the time-to-sample table is shown in Figure 2-29 (page
80).

Figure 2-29 The layout of a time-to-sample table entry

Bytes

Field

4 4

Sample count Sample duration

You define a time-to-sample table entry by specifying these fields:

Sample count
A 32-bit integer that specifies the number of consecutive samples that have the same duration.

Sample duration
A 32-bit integer that specifies the duration of each sample.

80 Sample Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Entries in the table describe samples according to their order in the media and their duration. If
consecutive samples have the same duration, a single table entry can be used to define more than one
sample. In these cases, the count field indicates the number of consecutive samples that have the same
duration. For example, if a video media has a constant frame rate, this table would have one entry
and the count would be equal to the number of samples.

Figure 2-30 (page 81) presents an example of a time-to-sample table that is based on the chunked
media data shown in Figure 2-25 (page 76). That data stream contains a total of nine samples that
correspond in count and duration to the entries of the table shown here. Even though samples 4, 5,
and 6 are in the same chunk, sample 4 has a duration of 3, and samples 5 and 6 have a duration of 2.

Figure 2-30 An example of a time-to-sample table

Sample
count

Sample
duration

4

2

3

3

1

2

Sync Sample Atoms

The sync sample atom identifies the key frames in the media. In a media that contains compressed
data, key frames define starting points for portions of a temporally compressed sequence. The key
frame is self-contained—that is, it is independent of preceding frames. Subsequent frames may depend
on the key frame.

The sync sample atom provides a compact marking of the random access points within a stream. The
table is arranged in strictly increasing order of sample number. If this table is not present, every
sample is implicitly a random access point.

Sync sample atoms have an atom type of 'stss'. The sync sample atom contains a table of sample
numbers. Each entry in the table identifies a sample that is a key frame for the media. If no sync
sample atom exists, then all the samples are key frames.

Figure 2-31 (page 82) shows the layout of a sync sample atom.

Sample Atoms 81
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-31 The layout of a sync sample atom

Bytes

4

1

3

VariableSync sample table

Sync sample atom

4

4

Atom size

Type = 'stss'

Flags

Version

Number of entries

The sync sample atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this sync sample atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'stss'.

Version
A 1-byte specification of the version of this sync sample atom.

Flags
A 3-byte space for sync sample flags. Set this field to 0.

Number of entries
A 32-bit integer containing the count of entries in the sync sample table.

Sync sample table
A table of sample numbers; each sample number corresponds to a key frame. Figure 2-32 (page
82) shows the layout of the sync sample table.

Figure 2-32 The layout of a sync sample table

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Number

Number

Number

Number

Number

82 Sample Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Sample-to-Chunk Atoms

As samples are added to a media, they are collected into chunks that allow optimized data access. A
chunk contains one or more samples. Chunks in a media may have different sizes, and the samples
within a chunk may have different sizes. The sample-to-chunk atom stores chunk information for the
samples in a media.

Sample-to-chunk atoms have an atom type of 'stsc'. The sample-to-chunk atom contains a table
that maps samples to chunks in the media data stream. By examining the sample-to-chunk atom, you
can determine the chunk that contains a specific sample.

Figure 2-33 (page 83) shows the layout of the sample-to-chunk atom.

Figure 2-33 The layout of a sample-to-chunk atom

Bytes

4

1

3

Variable

Version

Sample-to-chunk table

Sample-to-chunk atom

4Number of entries

Flags

Atom size

Type = 'stsc' 4

The sample-to-chunk atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this sample-to-chunk atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'stsc'.

Version
A 1-byte specification of the version of this sample-to-chunk atom.

Flags
A 3-byte space for sample-to-chunk flags. Set this field to 0.

Number of entries
A 32-bit integer containing the count of entries in the sample-to-chunk table.

Sample-to-chunk table
A table that maps samples to chunks. Figure 2-34 (page 84) shows the structure of an entry in
a sample-to-chunk table. Each sample-to-chunk atom contains such a table, which identifies
the chunk for each sample in a media. Each entry in the table contains a first chunk field, a
samples per chunk field, and a sample description ID field. From this information, you can
ascertain where samples reside in the media data.

Sample Atoms 83
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-34 The layout of a sample-to-chunk table entry

Bytes

FieldsFirst chunk Samples per chunk Sample description ID

4 4 4

You define a sample-to-chunk table entry by specifying the following data elements.

First chunk
The first chunk number using this table entry.

Samples per chunk
The number of samples in each chunk.

Sample description ID
The identification number associated with the sample description for the sample. For details
on sample description atoms, see “Sample Description Atoms” (page 78).

Figure 2-35 (page 84) shows an example of a sample-to-chunk table that is based on the data stream
shown in Figure 2-25 (page 76).

Figure 2-35 An example of a sample-to-chunk table

First
chunk

Samples
per chunk

Sample
description ID

1 3 23

3 1 23

5 1 24

Each table entry corresponds to a set of consecutive chunks, each of which contains the same number
of samples. Furthermore, each of the samples in these chunks must use the same sample description.
Whenever the number of samples per chunk or the sample description changes, you must create a
new table entry. If all the chunks have the same number of samples per chunk and use the same
sample description, this table has one entry.

Sample Size Atoms

You use sample size atoms to specify the size of each sample in the media. Sample size atoms have
an atom type of 'stsz'.

The sample size atom contains the sample count and a table giving the size of each sample. This allows
the media data itself to be unframed. The total number of samples in the media is always indicated
in the sample count. If the default size is indicated, then no table follows.

Figure 2-36 (page 85) shows the layout of the sample size atom.

84 Sample Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-36 The layout of a sample size atom

Bytes

4

1

3

VariableSample size table

Sample size atom

Sample size 4

4

4

Atom size

Type = 'stsz'

Flags

Version

Number of entries

The sample size atom contains the following data elements.

Size
A 32-bit integer that specifies the number of bytes in this sample size atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'stsz'.

Version
A 1-byte specification of the version of this sample size atom.

Flags
A 3-byte space for sample size flags. Set this field to 0.

Sample size
A 32-bit integer specifying the sample size. If all the samples are the same size, this field contains
that size value. If this field is set to 0, then the samples have different sizes, and those sizes are
stored in the sample size table.

Number of entries
A 32-bit integer containing the count of entries in the sample size table.

Sample size table
A table containing the sample size information. The sample size table contains an entry for
every sample in the media’s data stream. Each table entry contains a size field. The size field
contains the size, in bytes, of the sample in question. The table is indexed by sample
number—the first entry corresponds to the first sample, the second entry is for the second
sample, and so on.

Figure 2-37 (page 86) shows a sample size table.

Sample Atoms 85
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-37 An example of a sample size table

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Size

Size

Size

Size

Size

Chunk Offset Atoms

Chunk offset atoms identify the location of each chunk of data in the media’s data stream. Chunk
offset atoms have an atom type of 'stco'.

The chunk-offset table gives the index of each chunk into the containing file. There are two variants,
permitting the use of 32-bit or 64-bit offsets. The latter is useful when managing very large movies.
Only one of these variants occurs in any single instance of a sample table atom.

Note that offsets are file offsets, not the offset into any atom within the file (for example, a 'mdat'
atom). This permits referring to media data in files without any atom structure. However, be careful
when constructing a self-contained QuickTime file with its metadata (movie atom) at the front because
the size of the movie atom affects the chunk offsets to the media data.

Note: The sample table atom can contain a 64-bit chunk offset atom (STChunkOffset64AID = 'co64').
When this atom appears, it is used in place of the original chunk offset atom, which can contain only
32-bit offsets. When QuickTime writes movie files, it uses the 64-bit chunk offset atom only if there
are chunks that use the high 32-bits of the chunk offset. Otherwise, the original 32-bit chunk offset
atom is used to ensure compatibility with previous versions of QuickTime.

Figure 2-38 (page 86) shows the layout of a chunk offset atom.

Figure 2-38 The layout of a chunk offset atom

Bytes

4

4

1

Atom size

Type = 'stco'

Version

4

Variable

Number of entries

Chunk offset table

Flags 3

Chunk offset atom

The chunk offset atom contains the following data elements.

86 Sample Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Size
A 32-bit integer that specifies the number of bytes in this chunk offset atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'stco'.

Version
A 1-byte specification of the version of this chunk offset atom.

Flags
A 3-byte space for chunk offset flags. Set this field to 0.

Number of entries
A 32-bit integer containing the count of entries in the chunk offset table.

Chunk offset table
A chunk offset table consisting of an array of offset values. There is one table entry for each
chunk in the media. The offset contains the byte offset from the beginning of the data stream
to the chunk. The table is indexed by chunk number—the first table entry corresponds to the
first chunk, the second table entry is for the second chunk, and so on.

Figure 2-39 (page 87) shows an example of a chunk offset table.

Figure 2-39 An example of a chunk offset table

Chunk 1

Chunk 2

Chunk 3

Chunk 4

Chunk 5

Offset

Offset

Offset

Offset

Offset

Using Sample Atoms

This section presents examples using the atoms just described. These examples are intended to help
you understand the relationships between these atoms.

The first section, “Finding a Sample” (page 87), describes the steps that the video media handler uses
to find the sample that contains the media data for a particular time in a media. The second section,
“Finding a Key Frame” (page 88), describes the steps that the video media handler uses to find an
appropriate key frame for a specific time in a movie.

Finding a Sample

When QuickTime displays a movie or track, it “tells” the appropriate media handler to access the
media data for a particular time. The media handler must correctly interpret the data stream to retrieve
the requested data. In the case of video media, the media handler traverses several atoms to find the
location and size of a sample for a given media time.

The media handler performs the following steps:

Sample Atoms 87
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

1. Determines the time in the media time coordinate system.

2. Examines the time-to-sample atom to determine the sample number that contains the data for
the specified time.

3. Scans the sample-to-chunk atom to discover which chunk contains the sample in question.

4. Extracts the offset to the chunk from the chunk offset atom.

5. Finds the offset within the chunk and the sample’s size by using the sample size atom.

Finding a Key Frame

Finding a key frame for a specified time in a movie is slightly more complicated than finding a sample
for a specified time. The media handler must use the sync sample atom and the time-to-sample atom
together in order to find a key frame.

The media handler performs the following steps:

1. Examines the time-to-sample atom to determine the sample number that contains the data for
the specified time.

2. Scans the sync sample atom to find the key frame that precedes the sample number chosen in
step 1.

3. Scans the sample-to-chunk atom to discover which chunk contains the key frame.

4. Extracts the offset to the chunk from the chunk offset atom.

5. Finds the offset within the chunk and the sample’s size by using the sample size atom.

Compressed Movie Resources

Most QuickTime movies have metadata in addition to their media data. Media data can be compressed
using a variety of video and sound compression algorithms. Beginning with QuickTime 3, it also
became possible to compress the metadata—more commonly known as the movie resource. However,
the movie resource cannot be compressed by means of a lossy compression algorithm because it
contains critical information, such as the video and audio compression types used, individual frame
offsets, and timing information. To compress the movie resource, therefore, lossless data compression
algorithms must be used.

Compressing movie resources using data compression typically reduces the size of the movie resource
by 50% or more. For QuickTime movies that are streamed over the Internet, this can substantially
reduce the startup latency of the movie, and therefore has a number of distinct advantages.

88 Compressed Movie Resources
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Allowing QuickTime to Compress the Movie Resource

Most application developers won’t need to know the details of how movie resources are compressed.
The Movie Toolbox FlattenMovie and FlattenMovieData functions compress the movie resource
if so requested by the application. To accomplish this, applications only need to set the
flattenCompressMovieResource flag when calling either function. The QuickTime movie export
component also provides users with the option of compressing the movie resource when exporting
or creating a new movie through export.

Structure of a Compressed Movie Resource

A compressed movie resource, similar to an uncompressed movie resource, is made up of a group
of QuickTime atoms arranged in a hierarchy.

Like an uncompressed movie resource, the outermost atom is a movie atom. Within the movie atom,
there is a single compressed movie atom, which contains all other required atoms. The compressed
movie atom has two subatoms. The first is a data compression atom, which contains a single 32-bit
integer that identifies what lossless data compression algorithm was used to compress the movie
resource. The second child atom is the compressed movie data, which contains the compressed movie
resource itself. The first 32-bit integer in the compressed movie data atom indicates the uncompressed
size of the movie resource, and then the compressed movie resource data follows.

The contents of a complete compressed movie are shown in Table 2-5 (page 89). The constants that
define the atom types are defined in MoviesFormat.h. The four-character codes for each atom type
are also shown.

Table 2-5 Contents of complete compressed movie

Four-character codeAtom type

'moov'Movie

'cmov'Compressed movie

'dcom'Data compression atom

'cmvd'Compressed movie data

Uncompressed size32-bit integer

Reference Movies

A QuickTime movie can act as a container for a set of alternate movies that should be displayed under
specified conditions. One of these movies may be contained within the same file; any others are
included by reference.

For example, a QuickTime movie can contain a list of references to movies having different data rates,
allowing an application to choose the best-looking movie that can play smoothly as it downloads
over the Internet, based on the user’s connection speed.

Reference Movies 89
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

A movie that contains references to alternate movies is called a reference movie.

A reference movie contains a reference movie atom ('rmra') at the top level of the movie atom. The
movie atom may also contain a movie header atom, or it may contain the reference movie atom alone.

Figure 2-40 A movie atom containing a 'rmra' atom instead of a 'mvhd' atom

Atom size
Type = 'moov'

'rmra'Reference movie atom

Movie atom

The reference movie atom contains one or more reference movie descriptor atoms, each of which
describes an alternate movie.

Each reference movie descriptor atom contains a data reference atom, which specifies the location of
a movie.

Note: Movie locations are specified using QuickTime data references. QuickTime supports multiple
types of data reference, but alternate movies are generally specified using data reference types of
either url ('url ') or file alias ('alis').

A reference movie descriptor atom may contain other atoms that specify the movie’s system
requirements and the movie quality. If so, there will be an atom of an appropriate type for each
requirement that must be met for the movie to play, and there may be a quality atom as well.

Applications should play the highest-quality movie whose requirements are met by the user’s system.
If the data reference to the selected movie cannot be resolved—because the file cannot be found, for
example—the application should recursively attempt to play the next-highest-quality movie until it
succeeds or has exhausted the list of movies whose requirements are met.

If a movie contains both a reference movie atom and a movie header atom, applications should play
the appropriate movie indicated by the reference movie atom.

If the user’s system does not meet any of the alternate movies’ criteria, or none of the qualifying data
references can be resolved, applications should play the movie defined in the movie header atom.
(The movie defined in the movie header atom can also be indicated by one of the alternate movie
references.)

The movie header atom is sometimes used to provide a fallback movie for applications that can play
older QuickTime movies but do not understand reference movies.

When parsing a reference movie, the reader should treat the URL or file reference in the reference
movie atom as a new starting point, making no assumptions that the reference is a valid URL, or an
existing file, or a well-formed and playable QuickTime movie.

90 Reference Movies
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Reference Movie Atom

A reference movie atom contains references to one or more movies. It can optionally contain a list of
system requirements in order for each movie to play, and a quality rating for each movie. It is typically
used to specify a list of alternate movies to be played under different conditions.

A reference movie atom’s parent is always a movie atom ('moov'). Only one reference movie atom
is allowed in a given movie atom.

Figure 2-41 A 'rmra' atom with multiple 'rmda' atoms

Atom size
Type = 'rmra'

'rmda'Reference movie descriptor atom

Reference Movie atom

'rmda'Reference movie descriptor atom

'rmda'Reference movie descriptor atom

A reference movie atom may contain the following fields:

Size
The number of bytes in this reference movie atom.

Type
The type of this atom; this field must be set to 'rmra'.

Reference movie descriptor atom
A reference movie atom must contain at least one reference movie descriptor atom, and typically
contains more than one. See “Reference Movie Descriptor Atom” (page 91) for more
information.

Reference Movie Descriptor Atom

Each reference movie descriptor atom contains other atoms that describe where a particular movie
can be found, and optionally what the system requirements are to play that movie, as well as an
optional quality rating for that movie.

A reference movie descriptor atom’s parent is always a movie reference atom ('rmra'). Multiple
reference movie descriptor atoms are allowed in a given movie reference atom, and more than one
is usually present.

Reference Movies 91
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Figure 2-42 Reference movie descriptor atom

Atom size
Type = 'rmda'

'rdrf'Data reference atom

'rmcs'

'rmvc'

'rmdr'

Reference Movie Descriptor atom

Data rate atom

CPU speed atom

Version check atom

'rmcd'Component detect atom

'rmqu'Quality atom

A reference movie descriptor atom may contain the following fields:

Size
The number of bytes in this reference movie descriptor atom.

Type
The type of this atom; this field must be set to 'rmda'.

Data reference atom
Each reference movie atom must contain exactly one data reference atom. See “Data Reference
Atoms” (page 74) for more information.

Data rate atom
A reference movie atom may contain an optional data rate atom. Only one data rate atom can
be present. See “Data Rate Atom” (page 93) for more information.

CPU speed atom
A reference movie atom may contain an optional CPU speed atom. Only one CPU speed atom
can be present. See “CPU Speed Atom” (page 94) for more information.

Version check atom
A reference movie atom may contain an optional version check atom. Multiple version check
atoms can be present. See “Version Check Atom” (page 94) for more information.

Component detect atom
A reference movie atom may contain an optional component detect atom. Multiple component
detect atoms can be present. See “Component Detect Atom” (page 95) for more information.

Quality atom
A reference movie atom may contain an optional quality atom. Only one quality atom can be
present. See “Quality Atom” (page 97) for more information.

Data Reference Atom

A data reference atom contains the information necessary to locate a movie, or a stream or file that
QuickTime can play, typically in the form of a URL or a file alias.

92 Reference Movies
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Only one data reference atom is allowed in a given movie reference descriptor atom.

A data reference atom may contain the following fields:

Size
The number of bytes in this data reference atom.

Type
The type of this atom; this field must be set to 'rdrf'.

Flags
A 32-bit integer containing flags. One flag is currently defined: movie is self-contained. If the
least-significant bit is set to 1, the movie is self-contained. This requires that the parent movie
contain a movie header atom as well as a reference movie atom. In other words, the current
'moov' atom must contain both a 'rmra' atom and a 'mvhd' atom. To resolve this data
reference, an application uses the movie defined in the movie header atom, ignoring the
remainder of the fields in this data reference atom, which are used only to specify external
movies.

Data reference type
The data reference type. A value of 'alis' indicates a file system alias record. A value of 'url
' indicates a string containing a uniform resource locator. Note that the fourth character in
'url ' is an ASCII blank (0x20).

Data reference size
The size of the data reference in bytes, expressed as a 32-bit integer.

Data reference
A data reference to a QuickTime movie, or to a stream or file that QuickTime can play. If the
reference type is 'alis' this field contains the contents of an AliasHandle. If the reference
type is 'url ' this field contains a null-terminated string that can be interpreted as a URL.
The URL can be absolute or relative, and can specify any protocol that QuickTime supports,
including http://, ftp://, rtsp://, file:///, and data:.

Data Rate Atom

A data rate atom specifies the minimum data rate required to play a movie. This is normally compared
to the connection speed setting in the user’s QuickTime Settings control panel. Applications should
play the movie with the highest data rate less than or equal to the user’s connection speed. If the
connection speed is slower than any movie’s data rate, applications should play the movie with the
lowest data rate. The movie with the highest data rate is assumed to have the highest quality.

Only one data rate atom is allowed in a given reference movie descriptor atom.

A data rate atom may contain the following fields:

Size
The number of bytes in this data rate atom.

Type
The type of this atom; this field must be set to 'rmdr'.

Flags
A 32-bit integer that is currently always 0.

Reference Movies 93
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Data rate
The required data rate in bits per second, expressed as a 32-bit integer.

CPU Speed Atom

A CPU speed atom specifies the minimum computing power needed to display a movie. QuickTime
performs an internal test to determine the speed of the user’s computer.

This is not a simple measurement of clock speed—it is a measurement of performance for
QuickTime-related operations. Speed is expressed as a relative value between 100 and 2^31, in
multiples of 100.

Note: Typical scores might range from a minimum score of 100, which would describe a computer
as slow as, or slower than, a 166 MHz Pentium or 120 MHz PowerPC, to a maximum score of 600 for
a 500 MHz Pentium III or 400 MHz G4 PowerPC. A computer with a graphics accelerator and a
Gigahertz clock speed might score as high as 1000. Future computers will score higher.

Applications should play the movie with the highest specified CPU speed that is less than or equal
to the user’s speed. If the user’s speed is lower than any movie’s CPU speed, applications should play
the movie with the lowest CPU speed requirement. The movie with the highest CPU speed is assumed
to be the highest quality.

Only one CPU speed atom is allowed in a given reference movie descriptor atom.

A CPU speed atom may contain the following fields:

Size
The number of bytes in this CPU speed atom.

Type
The type of this atom; this field must be set to 'rmcs'.

Flags
A 32-bit integer that is currently always 0.

CPU speed
A relative ranking of required computer speed, expressed as a 32-bit integer divisible by 100,
with larger numbers indicating higher speed.

Version Check Atom

A version check atom specifies a software package, such as QuickTime or QuickTime VR, and the
version of that package needed to display a movie. The package is specified using a Macintosh Gestalt
type, such a 'qtim' for QuickTime (QuickTime provides support for these Gestalt tests in the Windows
computing environment).

You can specify a minimum required version to be returned by the Gestalt check, or you can require
that a specific value be returned after performing a binary AND operation on the Gestalt bitfield and
a mask.

94 Reference Movies
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Multiple version check atoms are allowed within a given reference movie descriptor atom. Applications
should not attempt to play a movie unless all version checks are successful.

A version check atom may contain the following fields:

Size
The number of bytes in this version check atom.

Type
The type of this atom; this field must be set to 'rmvc'.

Flags
A 32-bit integer that is currently always 0.

Software package
A 32-bit Gestalt type, such as 'qtim', specifying the software package to check for.

Version
An unsigned 32-bit integer containing either the minimum required version or the required
value after a binary AND operation.

Mask
The mask for a binary AND operation on the Gestalt bitfield.

Check type
The type of check to perform, expressed as 16-bit integer. Set to 0 for a minimum version check,
set to 1 for a required value after a binary AND of the Gestalt bitfield and the mask.

Component Detect Atom

A component detect atom specifies a QuickTime component, such as a particular video decompressor,
required to play the movie. The component type, subtype, and other required attributes can be
specified, as well as a minimum version.

Multiple component detect atoms are allowed within a given reference movie descriptor atom.
Applications should not attempt to play a movie unless at least the minimum versions of all required
components are present.

A component detect atom may contain the following fields:

Size
The number of bytes in this component detect atom.

Type
The type of this atom; this field must be set to 'rmcd'.

Flags
A 32-bit integer that is currently always 0.

Component description
A component description record. For details, see “Component Description Record” (page 96).

Reference Movies 95
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Minimum version
An unsigned 32-bit integer containing the minimum required version of the specified
component.

Component Description Record

Describes a class of components by their attributes. Fields that are set to 0 are treated as “don’t care.”

struct ComponentDescription {
OSType componentType;
OSType componentSubType;
OSType componentManufacturer;
unsigned long componentFlags;
unsigned long componentFlagsMask;
};

componentType
A four-character code that identifies the type of component.

componentSubType
A four-character code that identifies the subtype of the component. For example, the subtype
of an image compressor component indicates the compression algorithm employed by the
compressor. A value of 0 matches any subtype.

componentManufacturer
A four-character code that identifies the manufacturer of the component. Components provided
by Apple have a manufacturer value of 'appl'. A value of 0 matches any manufacturer.

componentFlags
A 32-bit field that contains flags describing required component capabilities. The high-order
8 bits should be set to 0. The low-order 24 bits are specific to each component type. These flags
can be used to indicate the presence of features or capabilities in a given component.

componentFlagsMask
A 32-bit field that indicates which flags in the componentFlags field are relevant to this
operation. For each flag in the componentFlags field that is to be considered as a search criterion,
set the corresponding bit in this field to 1. To ignore a flag, set the bit to 0.

Constants

canMovieImportInPlace
Set this bit if a movie import component must be able to create a movie from a file without
having to write to a separate disk file. Examples include MPEG and AIFF import components.

movieImportSubTypeIsFileExtension
Set this bit if the component's subtype is a file extension instead of a Macintosh file type. For
example, if you require an import component that opens files with an extension of .doc, set
this flag and set your component subtype to 'DOC '.

canMovieImportFiles
Set this bit if a movie import component must import files.

96 Reference Movies
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

Quality Atom

A quality atom describes the relative quality of a movie. This acts as a tiebreaker if more than one
movie meets the specified requirements, and it is not otherwise obvious which movie should be
played.

This would be the case if two qualified movies have the same data rate and CPU speed requirements,
for example, or if one movie requires a higher data rate and another requires a higher CPU speed,
but both can be played on the current system. In these cases, applications should play the movie with
the highest quality, as specified in the quality atom.

Only one quality atom is allowed in a given reference movie descriptor atom.

A quality atom may contain the following fields:

Size
The number of bytes in this quality atom.

Type
The type of this atom; this field must be set to 'rmqu'.

Quality
The relative quality of the movie, expressed as a 32-bit integer. A larger number indicates
higher quality. A unique value should be given to each movie.

Reference Movies 97
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

98 Reference Movies
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 2

Movie Atoms

QuickTime uses atoms of different types to store different types of media data—video media atoms
for video data, sound media atoms for audio data, and so on. This chapter discusses in detail each of
these different media data atom types.

If you are a QuickTime application or tool developer, you’ll want to read this chapter in order to
understand the fundamentals of how QuickTime uses atoms for storage of different media data. For
the latest updates and postings, be sure to see Apple's QuickTime developer website.

This chapter is divided into the following major sections:

 ■ “Video Media” (page 100) describes video media, which is used to store compressed and
uncompressed image data in QuickTime movies.

 ■ “Sound Media” (page 117) discusses sound media used to store compressed and uncompressed
audio data in QuickTime movies.

 ■ “Timecode Media” (page 126) describes time code media used to store time code data in QuickTime
movies.

 ■ “Text Media” (page 129) discusses text media used to store text data in QuickTime movies.

 ■ “Music Media” (page 133) discusses music media used to store note-based audio data, such as
MIDI data, in QuickTime movies.

 ■ “MPEG-1 Media” (page 134) discusses MPEG-1 media used to store MPEG-1 video and MPEG-1
multiplexed audio/video streams in QuickTime movies.

 ■ “Sprite Media” (page 134) discusses sprite media used to store character-based animation data in
QuickTime movies.

 ■ “Tween Media” (page 153) discusses tween media used to store pairs of values to be interpolated
between in QuickTime movies.

 ■ “Modifier Tracks” (page 163) discusses the capabilities of modifier tracks.

 ■ “Track References” (page 164) describes a feature of QuickTime that allows you to relate a movie’s
tracks to one another.

 ■ “3D Media” (page 165) discusses briefly how QuickTime movies store 3D image data in a base
media.

 ■ “Hint Media” (page 166) describes the additions to the QuickTime file format for streaming
QuickTime movies over the Internet.

 ■ “VR Media” (page 180) describes the QuickTime VR world and node information atom containers,
as well as cubic panoramas, which are new to QuickTime VR 3.0.

99
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

http://developer.apple.com/referencelibrary/QuickTime/index.html

 ■ “Movie Media” (page 213) discusses movie media which is used to encapsulate embedded movies
within QuickTime movies.

Video Media

Video media is used to store compressed and uncompressed image data in QuickTime movies. It has
a media type of 'vide'.

Video Sample Description

The video sample description contains information that defines how to interpret video media data.
A video sample description begins with the four fields described in “General Structure of a Sample
Description” (page 79).

The data format field of a video sample description indicates the type of compression that was used
to compress the image data, or the color space representation of uncompressed video data. Table
3-1 (page 100) shows some of the formats supported. The list is not exhaustive, and is subject to
addition.

Table 3-1 Some image compression formats

DescriptionCompression type

Cinepak'cvid'

JPEG'jpeg'

Graphics'smc '

Animation'rle '

Apple video'rpza'

Kodak Photo CD'kpcd'

Portable Network Graphics'png '

Motion-JPEG (format A)'mjpa'

Motion-JPEG (format B)'mjpb'

Sorenson video, version 1'SVQ1'

Sorenson video 3'SVQ3'

MPEG-4 video'mp4v'

NTSC DV-25 video'dvc '

PAL DV-25 video'dvcp'

100 Video Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

DescriptionCompression type

Compuserve Graphics Interchange Format'gif '

H.263 video'h263'

Tagged Image File Format'tiff'

Uncompressed RGB'raw '

Uncompressed Y�CbCr , 8-bit-per-component 4:2:2'2vuY

Uncompressed Y�CbCr , 8-bit-per-component 4:2:2'yuv2'

Uncompressed Y�CbCr , 8-bit-per-component 4:4:4'v308'

Uncompressed Y�CbCr , 8-bit-per-component 4:4:4:4'v408'

Uncompressed Y�CbCr , 10, 12, 14, or 16-bit-per-component 4:2:2'v216'

Uncompressed Y�CbCr , 10-bit-per-component 4:4:4'v410'

Uncompressed Y�CbCr , 10-bit-per-component 4:2:2'v210'

The video media sample description adds the following fields to the general sample description.

Version
A 16-bit integer indicating the version number of the compressed data. This is set to 0, unless
a compressor has changed its data format.

Revision level
A 16-bit integer that must be set to 0.

Vendor
A 32-bit integer that specifies the developer of the compressor that generated the compressed
data. Often this field contains 'appl' to indicate Apple Computer, Inc.

Temporal quality
A 32-bit integer containing a value from 0 to 1023 indicating the degree of temporal compression.

Spatial quality
A 32-bit integer containing a value from 0 to 1024 indicating the degree of spatial compression.

Width
A 16-bit integer that specifies the width of the source image in pixels.

Height
A 16-bit integer that specifies the height of the source image in pixels.

Horizontal resolution
A 32-bit fixed-point number containing the horizontal resolution of the image in pixels per
inch.

Vertical resolution
A 32-bit fixed-point number containing the vertical resolution of the image in pixels per inch.

Video Media 101
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Data size
A 32-bit integer that must be set to 0.

Frame count
A 16-bit integer that indicates how many frames of compressed data are stored in each sample.
Usually set to 1.

Compressor name
A 32-byte Pascal string containing the name of the compressor that created the image, such as
"jpeg".

Depth
A 16-bit integer that indicates the pixel depth of the compressed image. Values of 1, 2, 4, 8 ,16,
24, and 32 indicate the depth of color images. The value 32 should be used only if the image
contains an alpha channel. Values of 34, 36, and 40 indicate 2-, 4-, and 8-bit grayscale,
respectively, for grayscale images.

Color table ID
A 16-bit integer that identifies which color table to use. If this field is set to –1, the default color
table should be used for the specified depth. For all depths below 16 bits per pixel, this indicates
a standard Macintosh color table for the specified depth. Depths of 16, 24, and 32 have no color
table.

If the color table ID is set to 0, a color table is contained within the sample description itself.
The color table immediately follows the color table ID field in the sample description. See
“Color Table Atoms” (page 41) for a complete description of a color table.

Video Sample Description Extensions

Video sample descriptions can be extended by appending other atoms. These atoms are placed after
the color table, if one is present. These extensions to the sample description may contain display hints
for the decompressor or may simply carry additional information associated with the images. Table
3-2 (page 102) lists the currently defined extensions to video sample descriptions.

Table 3-2 Video sample description extensions

DescriptionExtension
type

A 32-bit fixed-point number indicating the gamma level at which the image was
captured. The decompressor can use this value to gamma-correct at display time.

'gama'

102 Video Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

DescriptionExtension
type

Two 8-bit integers that define field handling. This information is used by applications
to modify decompressed image data or by decompressor components to determine
field display order. This extension is mandatory for all uncompressed Y�CbCr dat a
formats.The first byte specifies the field count, and may be set to 1 or 2. A value of 1
is used for progressive-scan images; a value of 2 indicates interlaced images. When
the field count is 2, the second byte specifies the field ordering: which field contains
the topmost scan-line, which field should be displayed earliest, and which is stored
first in each sample. Each sample consists of two distinct compressed images, each
coding one field: the field with the topmost scan-line, T, and the other field, B. The
following defines the permitted variants:0 – There is only one field. 1 – T is displayed
earliest, T is stored first in the file. 6 – B is displayed earliest, B is stored first in the
file.9 – B is displayed earliest, T is stored first in the file.14 – T is displayed earliest,
B is stored first in the file.

'fiel'

The default quantization table for a Motion-JPEG data stream.'mjqt'

The default Huffman table for a Motion-JPEG data stream.'mjht'

An MPEG-4 elementary stream descriptor atom. This extension is required for MPEG-4
video. For details, see “MPEG-4 Elementary Stream Descriptor ('esds') Atom” (page
104).

'esds'

Pixel aspect ratio. This extension is mandatory for video formats that use non-square
pixels. For details, see “Pixel Aspect Ratio ('pasp')” (page 103).

'pasp'

Color parameters—an image description extension required for all uncompressed
Y�CbCr video types. F or details, see “Color Parameter Atoms ('colr')” (page 105).

'colr'

Clean aperture—spatial relationship of Y�CbCr com ponents relative to a canonical
image center. This allows accurate alignment for compositing of video images
captured using different systems. This is a mandatory extension for all uncompressed
Y�CbCr dat a formats. For details, see “Clean Aperture ('clap')” (page 110).

'clap'

Pixel Aspect Ratio ('pasp')

This extension specifies the height-to-width ratio of pixels found in the video sample. This is a required
extension for MPEG-4 and uncompressed Y�CbCr video f ormats when non-square pixels are used.
It is optional when square pixels are used.

Size
An unsigned 32-bit integer holding the size of the pixel aspect ratio atom.

Type
An unsigned 32-bit field containing the four-character code 'pasp'.

hSpacing
An unsigned 32-bit integer specifying the horizontal spacing of pixels, such as luma sampling
instants for Y�CbCr or YUV video.

vSpacing
An unsigned 32-bit integer specifying the vertical spacing of pixels, such as video picture lines.

Video Media 103
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

The units of measure for the hSpacing and vSpacing parameters are not specified, as only the ratio
matters. The units of measure for height and width must be the same, however.

Table 3-3 Common pixel aspect ratios

vSpacinghSpacingDescription

114:3 square pixels (composite NTSC or PAL)

11104:3 non-square 525 (NTSC)

54594:3 non-square 625 (PAL)

3416:9 analog (composite NTSC or PAL)

334016:9 digital 525 (NTSC)

8111816:9 digital 625 (PAL)

1181131920x1035 HDTV (per SMPTE 260M-1992)

106210181920x1035 HDTV (per SMPTE RP 187-1995)

111920x1080 HDTV or 1280x720 HDTV

MPEG-4 Elementary Stream Descriptor Atom ('esds')

This atom contains an MPEG-4 elementary stream descriptor atom. This is a required extension to
the video sample description for MPEG-4 video. This extension appears in video sample descriptions
only when the codec type is 'mp4v'.

Note: The elementary stream descriptor which this atom contains is defined in the MPEG-4 specification
ISO/IEC FDIS 14496-1.

Size
An unsigned 32-bit integer holding the size of the elementary stream descriptor atom.

Type
An unsigned 32-bit field containing the four-character code 'esds'

Version
An unsigned 8-bit integer set to zero.

Flags
A 24-bit field reserved for flags, currently set to zero.

Elementary Stream Descriptor
An elementary stream descriptor for MPEG-4 video, as defined in the MPEG-4 specification
ISO/IEC 14496-1 and subject to the restrictions for storage in MPEG-4 files specified in ISO/IEC
14496-14.

104 Video Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Color Parameter Atoms ('colr')

This atom is a required extension for uncompressed Y�CbCr dat a formats. The 'colr' extension is
used to map the numerical values of pixels in the file to a common representation of color in which
images can be correctly compared, combined, and displayed. The common representation is the CIE
XYZ tristimulus values (defined in Publication CIE No. 15.2).

Use of a common representation also allows you to correctly map between Y�CbCr and R GB color
spaces and to correctly compensate for gamma on different systems.

The 'colr' extension supersedes the previously defined 'gama' Image Description extension. Writers
of QuickTime files should never write both into an Image Description, and readers of QuickTime files
should ignore 'gama' if 'colr' is present.

The 'colr' extension is designed to work for multiple imaging applications such as video and print.
Each application, driven by its own set of historical and economic realities, has its own set of parameters
needed to map from pixel values to CIE XYZ.

The CIE XYZ representation is mapped to various stored Y�CbCr f ormats using a common set of
transfer functions and matrixes. The transfer function coefficients and matrix values are stored as
indexes into a table of canonical references. This provides support for multiple video systems while
limiting the scope of possible values to a set of recognized standards.

The 'colr' atom contains four fields: a color parameter type and three indexes. The indexes are to
a table of primaries, a table of transfer function coefficients, and a table of matrixes.

Figure 3-1 Color atom

Atom size

Matrix index = 1

Type = 'colr'

Bytes

4

4

2

Transfer function index = 1 2

Primaries index = 1 2

Color parameter type = 'nclc' 4

Color atom

The table of matrixes specifies the matrix used during the translation, as shown in Figure 3-2 (page
106).

Video Media 105
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Color parameter type
A 32-bit field containing a four-character code for the color parameter type. The currently
defined types are 'nclc' for video, and 'prof' for print. The color parameter type
distinguishes between print and video mappings.

If the color parameter type is 'prof', then this field is followed by an ICC profile. This is the
color model used by Apple’s ColorSync. The contents of this type are not defined in this
document. Contact Apple Computer for more information on the 'prof' type 'colr' extension.

If the color parameter type is 'nclc' then this atom contains the following fields:

Primaries index
A 16-bit unsigned integer containing an index into a table specifying the CIE 1931 xy
chromaticity coordinates of the white point and the red, green, and blue primaries. The table
of primaries specifies the white point and the red, green, and blue primary color points for a
video system.

Transfer function index
A 16-bit unsigned integer containing an index into a table specifying the nonlinear transfer
function coefficients used to translate between RGB color space values and Y�CbCr v alues. The
table of transfer function coefficients specifies the nonlinear function coefficients used to
translate between the stored Y�CbCr v alues and a video capture or display system, as shown
in Figure 3-2 (page 106).

Matrix index
A 16-bit unsigned integer containing an index into a table specifying the transformation matrix
coefficients used to translate between RGB color space values and Y�CbCr v alues. The table of
matrixes specifies the matrix used during the translation, as shown in Figure 3-2 (page 106).

The transfer function and matrix are used as shown in the following diagram.

Figure 3-2 Transfer between RGB and Y CbCr color spaces

ER'

EG'

EB'

EY'

ECb

ECrEW' = f(W)

EW' = f(W)

EW' = f(W)Light
measured

by
camera
circuitry

Numerical
coding

in
QuickTime

file

Display
circuitry
emits
light

R

G

B

Matrix

ER'

EG'

EB'

EY'

ECb

ECr

W = g(EW')

W = g(EW')

W = g(EW')

Numerical
coding

in
QuickTime

file

R

G

B

Matrix-1

The Y�CbCr v alues stored in a file are normalized to a range of [0,1]for Y� and [-0.5, +0.5] f or Cb and
Cr when performing these operations. The normalized values are then scaled to the proper bit depth
for a particular Y�CbCr f ormat before storage in the file.

106 Video Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Figure 3-3 The normalized values are shown using the symbol E with a subscript for Y , Cb, or Cr:

Note: The symbols used for these values are not intended to correspond to the use of these same
symbols in other standards. In particular, "E" should not be interpreted as voltage.

These normalized values can be mapped onto the stored integer values of a particular compression
type's Y�, Cb, and Cr com ponents using two different schemes, which we will call Scheme A and
Scheme B.

Warning: Other, slightly different encoding/mapping schemes exist in the video industry, and
data encoded using these schemes must be converted to one of the QuickTime schemes defined
here.

Scheme A uses "Wide-Range" mapping (full scale) with unsigned Y� and tw os-complement Cb and
Cr values.

Figure 3-4 Equations for stored Y CbCr values of bit-depth of n in scheme A

This maps normalized values to stored values so that, for example, 8-bit unsigned values for Y� go
from 0-255 as the normalized value goes from 0 to 1, and 8-bit signed valued for Cb and Cr go from
-127 to +127 as the normalized values go from -0.5 to +0.5.

Warning: In specifications such as ITU-R BT.601-4, JFIF 1.02, and SPIFF (Rec. ITU-T T.84), the
symbols Cb and Cr are used to describe offset binary integers, not twos-complement signed
integers shown here.

Scheme B uses "Video-Range" mapping with unsigned Y� and of fset binary Cb and Cr values.

Video Media 107
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Note: Scheme B comes from digital video industry specifications such as Rec. ITU-R BT. 601-4. All
standard digital video tape formats (e.g., SMPTE D-1, SMPTE D-5) and all standard digital video
links (e.g., SMPTE 259M-1997 serial digital video) use this scheme. Professional video storage and
processing equipment from vendors such as Abekas, Accom, and SGI also use this scheme. MPEG-2,
DVC and many other codecs specify source Y�CbCr pix els using this scheme.

Figure 3-5 Equations for stored Y CbCr values of bit-depth n in scheme B

This maps the normalized values to stored values so that, for example, 8-bit unsigned values for Y�
go from 16–235 as the normalized value goes from 0 to1, and 8-bit unsigned valued for Cb and Cr go
from 16–240 as the normalized values go from -0.5 to +0.5.

For 10-bit samples, Y� has a r ange of 64 to 940 as the normalized value goes from 0 to 1, and Cb and
Cr have the range of 65–960 as the normalized values go from –0.5 to +0.5.

Y� is an unsigned int eger. Cb and Cr are offset binary integers.

Certain Y�, Cb, and Cr com ponent values v are reserved as synchronization signals and must not
appear in a buffer. For n = 8 bits, these are values 0 and 255. For n = 10 bits, these are values 0, 1, 2,
3, 1020, 1021, 1022, and 1023. The writer of a QuickTime image is responsible for omitting these values.
The reader of a QuickTime image may assume that they are not present.

The remaining component values that fall outside the mapping for scheme B (1-15 and 241-254 for n
= 8 bits and 4–63 and 961–1019 for n = 10 bits) accommodate occasional filter undershoot and overshoot
in image processing. In some applications, these values are used to carry other information (e.g.,
transparency). The writer of a QuickTime image may use these values and the reader of a QuickTime
image must expect these values.

The following tables show the primary values, transfer functions, and matrixes indicated by the index
entries in the 'colr' atom.

The R, G, and B values below are tristimulus values (such as candelas/meter^2), whose relationship
to CIE XYZ values can be derived from the primaries and white point specified in the table, using the
method described in SMPTE RP 177-1993. In this instance, the R, G, and B values are normalized to
the range [0,1].

Table 3-4 Table of primaries, index and values

ValuesIndex

Reserved0

Recommendation ITU-R BT.709-2, SMPTE 274M-1995, and SMPTE 296M-1997 white x =
0.3127 y = 0.3290 (CIE III. D65) red x=0.640 y = 0.330 green x = 0.300 y = 0.600 blue x =
0.150 y = 0.060

1

Primary values are unknown2

108 Video Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

ValuesIndex

Reserved3–4

SMPTE RP 145-1993, SMPTE170M-1994, 293M-1996, 240M-1995, and SMPTE 274M-1995
white x = 0.3127 y = 0.3290 (CIE III. D65) red x = 0.64 y = 0.33 green x = 0.29 y = 0.60 blue
x = 0.15 y = 0.06

5

ITU-R BT.709-2, SMPTE 274M-1995, and SMPTE 296M-1997 white x = 0.3127 y = 0.3290
(CIE III. D65) red x = 0.630 y = 0.340 green x = 0.310 y = 0.595 blue x = 0.155 y = 0.070

6

Reserved7–65535

The transfer functions below are used as shown in Figure 3-2 (page 106).

Table 3-5 Table of transfer function index and values

Video StandardsIndex

Reserved0

Recommendation ITU-R BT.709-2, SMPTE 274M-1995, 296M-1997, 293M-1996, 170M-1994
See below for transfer function equations.

1

Coefficient values are unknown2

Reserved3–6

Recommendation SMPTE 240M-1995 and 274M-1995 See below for transfer function
equations.

7

Reserved8–65535

The MPEG-2 sequence display extension transfer_characteristics defines a code 6 whose transfer
function is identical to that in code 1. QuickTime writers should map 6 to 1 when converting from
transfer_characteristics to transferFunction.

Recommendation ITU-R BT.470-4 specified an "assumed gamma value of the receiver for which the
primary signals are pre-corrected" as 2.2 for NTSC and 2.8 for PAL systems. This information is both
incomplete and obsolete. Modern 525- and 625-line digital and NTSC/PAL systems use the transfer
function with code 1 below.

Figure 3-6 Equations for index code 1

Figure 3-7 Equations for index code 7

Video Media 109
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

The matrix values are shown in Table 3-6 (page 110) and in Figure 3-8 (page 110), Figure 3-9 (page 110),
and Figure 3-10 (page 110). These figures show a formula for obtaining the normalized value of Y� in
the range [0,1]. You can derive the formula for normalized values of Cb and Cr as follows:

If the equation for normalized Y� has t he form:

Then the formulas for normalized Cb and Cr are:

Table 3-6 Table of matrix index and values

Video StandardIndex

Reserved0

Recommendation ITU-R BT.709-2 (1125/60/2:1 only), SMPTE 274M-1995, 296M-1997 See
below for matrix values.

1

Coefficient values are unknown2

Reserved3–5

Recommendation ITU-R BT.601-4 and BT.470-4 System B and G, SMPTE 170M-1994,
293M-1996 See below for matrix values

6

SMPTE 240M-1995, 274M-1995 See below for matrix values7

Reserved8–65535

Figure 3-8 Matrix values for index code 1

Figure 3-9 Matrix values for index code 6

Figure 3-10 Matrix values for index code 7

Clean Aperture ('clap')

The clean aperture extension defines the relationship between the pixels in a stored image and a
canonical rectangular region of a video system from which it was captured or to which it will be
displayed. This can be used to correlate pixel locations in two or more images—possibly recorded
using different systems—for accurate compositing. This is necessary because different video digitizer

110 Video Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

devices can digitize different regions of the incoming video signal, causing pixel misalignment between
images. In particular, a stored image may contain “edge” data outside the canonical display area for
a given system.

The clean aperture is either coincident with the stored image or a subset of the stored image; if it is a
subset, it may be centered on the stored image, or it may be offset positively or negatively from the
stored image center.

The clean aperture extension contains a width in pixels, a height in picture lines, and a horizontal
and vertical offset between the stored image center and a canonical image center for the given video
system. The width is typically the width of the canonical clean aperture for a video system divided
by the pixel aspect ratio of the stored data. The offsets also take into account any “overscan” in the
stored image. The height and width must be positive values, but the offsets may be positive, negative,
or zero.

These values are given as ratios of two 32-bit numbers, so that applications can calculate precise values
with minimum roundoff error. For whole values, the value should be stored in the numerator field
while the denominator field is set to 1.

Size
A 32-bit unsigned integer containing the size of the 'clap' atom.

Type
A 32-bit unsigned integer containing the four-character code 'clap'.

apertureWidth_N (numerator)
A 32-bit signed integer containing either the width of the clean aperture in pixels or the
numerator portion of a fractional width.

apertureWidth_D (denominator)
A 32-bit signed integer containing either the denominator portion of a fractional width or the
number 1.

apertureHeight_N (numerator)
A 32-bit signed integer containing either the height of the clean aperture in picture lines or the
numerator portion of a fractional height.

apertureHeight_D (denominator)
A 32-bit signed integer containing either the denominator portion of a fractional height or the
number 1.

horizOff_N (numerator)
A 32-bit signed integer containing either the horizontal offset of the clean aperture center minus
(width–1)/2 or the numerator portion of a fractional offset. This value is typically zero.

horizOff_D (denominator)
A 32-bit signed integer containing either the denominator portion of the horizontal offset or
the number 1.

vertOff_N (numerator)
A 32-bit signed integer containing either the vertical offset of the clean aperture center minus
(height–1)/2 or the numerator portion of a fractional offset. This value is typically zero.

vertOff_D (denominator)
A 32-bit signed integer containing either the denominator portion of the vertical offset or the
number 1.

Video Media 111
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Video Sample Data

The format of the data stored in video samples is completely dependent on the type of the compression
used, as indicated in the video sample description. The following sections discuss some of the video
encoding schemes supported by QuickTime.

Uncompressed RGB

Uncompressed RGB data is stored in a variety of different formats. The format used depends on the
depth field of the video sample description. For all depths, the image data is padded on each scan
line to ensure that each scan line begins on an even byte boundary.

 ■ For depths of 1, 2, 4, and 8, the values stored are indexes into the color table specified in the color
table ID field.

 ■ For a depth of 16, the pixels are stored as 5-5-5 RGB values with the high bit of each 16-bit integer
set to 0.

 ■ For a depth of 24, the pixels are stored packed together in RGB order.

 ■ For a depth of 32, the pixels are stored with an 8-bit alpha channel, followed by 8-bit RGB
components.

RGB data can be stored in composite or planar format. Composite format stores the RGB data for
each pixel contiguously, while planar format stores the R, G, and B data separately, so the RGB
information for a given pixel is found using the same offset into multiple tables. For example, the
data for two pixels could be represented in composite format as RGB-RGB or in planar format as
RR-GG-BB.

Uncompressed Y�CbCr (including yuv2)

The Y�CbCr color space is widel y used for digital video. In this data format, luminance is stored as a
single value (Y), and chrominance information is stored as two color-difference components (Cb and
Cr). Cb is the difference between the blue component and a reference value; Cr is the difference
between the red component and a reference value.

This is commonly referred to as “YUV” format, with “U” standing-in for Cb and “V” standing-in for
Cr. This usage is not strictly correct, as YUV, YIC, and Y�CbCr ar e distinct color models for PAL,
NTSC, and digital video, but most Y�CbCr dat a formats and codecs are described or even named as
some variant of “YUV.”

The values of Y, Cb, and Cr can be represented using a variety of bit depths, trading off accuracy for
file size. Similarly, the chrominance values can be sub-sampled, recording only one pixel’s color value
out of two, for example, or averaging the color value of adjacent pixels. This sub-sampling is a form
of compression, but if no additional lossy compression is performed on the sampled video, it is still
referred to as “uncompressed” Y�CbCr video. In addition, a f ourth component can be added to Y�CbCr
video to record an alpha channel.

The number of components (Y�CbCr wit h or without alpha) and any sub-sampling are denoted using
ratios of three or four numbers, such as 4:2:2 to indicate 4 bits of Y to 2 bits each of Cb and Cr (chroma
sub-sampling), or 4:4:4 for equal storage of Y, Cb, and Cr (no sub-sampling), or 4:4:4:4 for Y�CbCr
plus alpha with no sub-sampling. The ratios do not typically denote actual bit depths.

112 Video Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Uncompressed Y�CbCr video dat a is typically stored as follows:

 ■ Y�, Cb, and Cr com ponents of each line are stored spatially left to right and temporally from
earliest to latest.

 ■ The lines of a field or frame are stored spatially top to bottom and temporally earliest to latest.

 ■ Y� is an unsigned int eger. Cb and Cr are twos-complement signed integers.

The yuv2 stream, for example, is encoded in a series of 4-byte packets. Each packet represents two
adjacent pixels on the same scan line. The bytes within each packet are ordered as follows:

 y0 u y1 v

y0 is the luminance value for the left pixel; y1 the luminance for the right pixel. u and v are chromatic
values that are shared by both pixels.

Accurate conversion between RGB and Y�CbCr color spaces r equires a computation for each component
of each pixel. An example conversion from yuv2 into RGB is represented by the following equations:

r = 1.402 * v + y + .5

g = y - .7143 * v - .3437 * u + .5

b = 1.77 * u + y + .5

The r, g, and b values range from 0 to 255.

The coefficients in these equations are derived from matrix operations and depend on the reference
values used for the primary colors and for white. QuickTime uses canonical values for these reference
coefficients based on published standards. The sample description extension for Y�CbCr f ormats
includes a 'colr' atom, which contains indexes into a table of canonical references. This provides
support for multiple video standards without opening the door to data entry errors for stored coefficient
values. Refer to the published standards for the formulas and methods used to derive conversion
coefficients from the table entries.

JPEG

QuickTime stores JPEG images according to the rules described in the ISO JPEG specification, document
number DIS 10918-1.

MPEG-4 Video

MPEG-4 video uses the 'mp4v' data format. The sample description requires the elementary stream
descriptor ('esds') extension to the standard video sample description. If non-square pixels are used,
the pixel aspect ratio ('pasp') extension is also required. For details on these extensions, see “Pixel
Aspect Ratio ('pasp')” (page 103) and “MPEG-4 Elementary Stream Descriptor Atom ('esds')” (page
104).

MPEG-4 video conforms to ISO/IEC documents 14496-1/2000(E) and 14496-2:1999/Amd.1:2000(E).

Video Media 113
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Motion-JPEG

Motion-JPEG (M-JPEG) is a variant of the ISO JPEG specification for use with digital video streams.
Instead of compressing an entire image into a single bitstream, Motion-JPEG compresses each video
field separately, returning the resulting JPEG bitstreams consecutively in a single frame.

There are two flavors of Motion-JPEG currently in use. These two formats differ based on their use
of markers. Motion-JPEG format A supports markers; Motion-JPEG format B does not. The following
paragraphs describe how QuickTime stores Motion-JPEG sample data. Figure 3-11 (page 114) shows
an example of Motion-JPEG A dual-field sample data. Figure 3-12 (page 116) shows an example of
Motion- JPEG B dual-field sample data.

Figure 3-11 Motion-JPEG A dual-field sample data

First field
in sample

Second field
in sample

JPEG Start Of Image marker

(Other markers, for example JFIF)

Motion-JPEG APP1 marker

FF D8

FF E1

00 2A

00 00 00 00

6D 6A 70 67

Marker content length

Reserved, set to zero

Motion-JPEG tag 'mjpg'

Field size

Padded field size

Offset to next field

Quantization table offset

Huffman table offset

Start of Frame offset

Start of Scan offset (or zero)

Start of data offset (or zero)

Other markers

JPEG DQT marker

JPEG DHT marker

JPEG SOF marker

JPEG SOS marker

JPEG entropy-coded data

JPEG EOI marker

Optional padding with FFs

FF DB 00 84

FF C4 01 A2

FF C0 00 11

FF DA 00 0C

..

FF FF FF

FF D8

00 00 00 00

FF D9

JPEG Start of image marker

Motion-JPEG APP1 marker

Offset to next field, zero

Not in original
Motion-JPEG
A specification

Byte
offsets
from
start
of
field

114 Video Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Each field of Motion-JPEG format A fully complies with the ISO JPEG specification, and therefore
supports application markers. QuickTime uses the APP1 marker to store control information, as
follows (all of the fields are 32-bit integers):

Reserved
Unpredictable; should be set to 0.

Tag
Identifies the data type; this field must be set to 'mjpg'.

Field size
The actual size of the image data for this field, in bytes.

Padded field size
Contains the size of the image data, including pad bytes. Some video hardware may append
pad bytes to the image data; this field, along with the field size field, allows you to compute
how many pad bytes were added.

Offset to next field
The offset, in bytes, from the start of the field data to the start of the next field in the bitstream.
This field should be set to 0 in the last field’s marker data.

Quantization table offset
The offset, in bytes, from the start of the field data to the quantization table marker. If this field
is set to 0, check the image description for a default quantization table.

Huffman table offset
The offset, in bytes, from the start of the field data to the Huffman table marker. If this field is
set to 0, check the image description for a default Huffman table.

Start of frame offset
The offset from the start of the field data to the start of image marker. This field should never
be set to 0.

Start of scan offset
The offset, in bytes, from the start of the field data to the start of the scan marker. This field
should never be set to 0.

Start of data offset
The offset, in bytes, from the start of the field data to the start of the data stream. Typically,
this immediately follows the start of scan data.

Note: The last two fields have been added since the original Motion-JPEG specification, and so they
may be missing from some Motion-JPEG A files. You should check the length of the APP1 marker
before using the start of scan offset and start of data offset fields.

Motion-JPEG format B does not support markers. In place of the marker, therefore, QuickTime inserts
a header at the beginning of the bitstream. Again, all of the fields are 32-bit integers.

Video Media 115
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Figure 3-12 Motion-JPEG B dual-field sample data

First field in sample

Second field in sample

Motion-JPEG marker (no header)

Reserved, set to zero

Motion-JPEG tag 'mjpg'

00 00 00 00

6D 6A 70 67

Field size

Padded field size

Offset to next field

Quantization table offset

Huffman table offset

Start of Frame offset

Start of Scan offset (or zero)

Start of data offset (or zero)

Padding with zeros to 16-byte boundary 00 00

Quantization table data 00 84

Optional padding with zeros 00 00

Huffman table data

Start of Frame data

Start of Scan data

JPEG entropy-coded data a (not byte-stuffed)

Padding with zeros to 16-byte boundary

01 A2

00 11

00 0C

..

00 00 00

Motion JPEG marker

Offset to next field, zero 00 00 00 00

Byte
offsets
from
start
of
field

Reserved
Unpredictable; should be set to 0.

Tag
The data type; this field must be set to 'mjpg'.

Field size
The actual size of the image data for this field, in bytes.

116 Video Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Padded field size
The size of the image data, including pad bytes. Some video hardware may append pad bytes
to the image data; this field, along with the field size field, allows you to compute how many
pad bytes were added.

Offset to next field
The offset, in bytes, from the start of the field data to the start of the next field in the bitstream.
This field should be set to 0 in the second field’s header data.

Quantization table offset
The offset, in bytes, from the start of the field data to the quantization table. If this field is set
to 0, check the image description for a default quantization table.

Huffman table offset
The offset, in bytes, from the start of the field data to the Huffman table. If this field is set to
0, check the image description for a default Huffman table.

Start of frame offset
The offset from the start of the field data to the field’s image data. This field should never be
set to 0.

Start of scan offset
The offset, in bytes, from the start of the field data to the start of scan data.

Start of data offset
The offset, in bytes, from the start of the field data to the start of the data stream. Typically,
this immediately follows the start of scan data.

Note: The last two fields were “reserved, must be set to zero” in the original Motion-JPEG specification.

The Motion-JPEG format B header must be a multiple of 16 in size. When you add pad bytes to the
header, set them to 0.

Because Motion-JPEG format B does not support markers, the JPEG bitstream does not have null
bytes (0x00) inserted after data bytes that are set to 0xFF.

Sound Media

Sound media is used to store compressed and uncompressed audio data in QuickTime movies. It has
a media type of 'soun'. This section describes the sound sample description and the storage format
of sound files using various data formats.

Sound Sample Descriptions

The sound sample description contains information that defines how to interpret sound media data.
This sample description is based on the standard sample description, as described in “Sample
Description Atoms” (page 78).

Sound Media 117
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

The data format field contains the format of the audio data This may specify a compression format
or one of several uncompressed audio formats. Table 3-7 (page 118) shows a list of some supported
sound formats.

Table 3-7 Partial list of supported QuickTime audio formats.

Description4-Character codeFormat

This format descriptor should not be used, but may
be found in some files. Samples are assumed to be
stored in either 'raw ' or 'twos' format,
depending on the sample size field in the sound
description.

0x00000000Not specified

This format descriptor should not be used, but may
be found in some files. Samples are assumed to be
stored in either 'raw ' or 'twos' format,
depending on the sample size field in the sound
description.

'NONE'kSoundNotCompressed

Samples are stored uncompressed, in offset-binary
format (values range from 0 to 255; 128 is silence).
These are stored as 8-bit offset binaries.

'raw 'k8BitOffsetBinaryFormat

Samples are stored uncompressed, in
two’s-complement format (sample values range
from -128 to 127 for 8-bit audio, and -32768 to 32767
for 1- bit audio; 0 is always silence). These samples
are stored in 16-bit big-endian format.

'twos'k16BitBigEndianFormat

16-bit little-endian, twos-complement'sowt'k16BitLittleEndian-
Format

Samples have been compressed using MACE 3:1.
(Obsolete.)

'MAC3 'kMACE3Compression

Samples have been compressed using MACE 6:1.
(Obsolete.)

'MAC6 'kMACE6Compression

Samples have been compressed using IMA 4:1.'ima4'kIMACompression

32-bit floating point'fl32'kFloat32Format

64-bit floating point'fl64'kFloat64Format

24-bit integer'in24'k24BitFormat

32-bit integer'in32'k32BitFormat

uLaw 2:1'ulaw'kULawCompression

uLaw 2:1'alaw'kALawCompression

Microsoft ADPCM-ACM code 20x6D730002kMicrosoftADPCMFormat

118 Sound Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Description4-Character codeFormat

DVI/Intel IMAADPCM-ACM code 170x6D730011kDVIIntelIMAFormat

DV Audio'dvca'kDVAudioFormat

QDesign music'QDMC'kQDesignCompression

QDesign music version 2'QDM2'kQDesign2Compression

QUALCOMM PureVoice'Qclp'kQUALCOMMCompression

MPEG-1 layer 3, CBR only (pre-QT4.1)0x6D730055kMPEGLayer3Format

MPEG-1 layer 3, CBR & VBR (QT4.1 and later)'.mp3'kFullMPEGLay3Format

MPEG-4 audio'mp4a'kMPEG4AudioFormat

Sound Sample Description (Version 0)

There are currently two versions of the sound sample description, version 0 and version 1. Version
0 supports only uncompressed audio in raw ('raw ') or twos-complement ('twos') format, although
these are sometimes incorrectly specified as either 'NONE' or 0x00000000.

Version
A 16-bit integer that holds the sample description version (currently 0 or 1).

Revision level
A 16-bit integer that must be set to 0.

Vendor
A 32-bit integer that must be set to 0.

Number of channels
A 16-bit integer that indicates the number of sound channels used by the sound sample. Set
to 1 for monaural sounds, 2 for stereo sounds. Higher numbers of channels are not supported.

Sample size (bits)
A 16-bit integer that specifies the number of bits in each uncompressed sound sample. Allowable
values are 8 or 16. Formats using more than 16 bits per sample set this field to 16 and use sound
description version 1.

Compression ID
A 16-bit integer that must be set to 0 for version 0 sound descriptions. This may be set to –2
for some version 1 sound descriptions; see “Redefined Sample Tables” (page 121).

Packet size
A 16-bit integer that must be set to 0.

Sample rate
A 32-bit unsigned fixed-point number (16.16) that indicates the rate at which the sound samples
were obtained. The integer portion of this number should match the media’s time scale. Many
older version 0 files have values of 22254.5454 or 11127.2727, but most files have integer values,
such as 44100. Sample rates greater than 2^16 are not supported.

Sound Media 119
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Version 0 of the sound description format assumes uncompressed audio in 'raw ' or 'twos' format,
1 or 2 channels, 8 or 16 bits per sample, and a compression ID of 0.

Sound Sample Description (Version 1)

The version field in the sample description is set to 1 for this version of the sound description structure.
In version 1 of the sound description, introduced in QuickTime 3, the sound description record is
extended by 4 fields, each 4 bytes long, and includes the ability to add atoms to the sound description.

These added fields are used to support out-of-band configuration settings for decompression and to
allow some parsing of compressed QuickTime sound tracks without requiring the services of a
decompressor.

These fields introduce the idea of a packet. For uncompressed audio, a packet is a sample from a
single channel. For compressed audio, this field has no real meaning; by convention, it is treated as
1/number-of-channels.

These fields also introduce the idea of a frame. For uncompressed audio, a frame is one sample from
each channel. For compressed audio, a frame is a compressed group of samples whose format is
dependent on the compressor.

Important: The value of all these fields has different meaning for compressed and uncompressed
audio. The meaning may not be easily deducible from the field name.

The four new fields are:

 ■ Samples per packet––the number of uncompressed frames generated by a compressed frame (an
uncompressed frame is one sample from each channel). This is also the frame duration, expressed
in the media’s timescale, where the timescale is equal to the sample rate. For uncompressed
formats, this field is always 1.

 ■ Bytes per packet––for uncompressed audio, the number of bytes in a sample for a single channel.
This replaces the older sampleSize field, which is set to 16.

This value is calculated by dividing the frame size by the number of channels. The same calculation
is performed to calculate the value of this field for compressed audio, but the result of the
calculation is not generally meaningful for compressed audio.

 ■ Bytes per frame––the number of bytes in a frame: for uncompressed audio, an uncompressed
frame; for compressed audio, a compressed frame. This can be calculated by multiplying the
bytes per packet field by the number of channels.

 ■ Bytes per sample––the size of an uncompressed sample in bytes. This is set to 1 for 8-bit audio,
2 for all other cases, even if the sample size is greater than 2 bytes.

When capturing or compressing audio using the QuickTime API, the value of these fields can be
obtained by calling the Apple Sound Manager’s GetCompression function. Historically, the value
returned for the bytes per frame field was not always reliable, however, so this field was set by
multiplying bytes per packet by the number of channels.

120 Sound Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

To facilitate playback on devices that support only one or two channels of audio in 'raw ' or 'twos'
format (such as most early Macintosh and Windows computers), all other uncompressed audio formats
are treated as compressed formats, allowing a simple “decompressor” component to perform the
necessary format conversion during playback. The audio samples are treated as opaque compressed
frames for these data types, and the fields for sample size and bytes per sample are not meaningful.

The new fields correspond to the CompressionInfo structure used by the Macintosh Sound Manager
(which uses 16-bit values) to describe the compression ratio of fixed ratio audio compression algorithms.
If these fields are not used, they are set to 0. File readers only need to check to see if samplesPerPacket
is 0.

Redefined Sample Tables

If the compression ID in the sample description is set to –2, the sound track uses redefined sample
tables optimized for compressed audio.

Unlike video media, the data structures for QuickTime sound media were originally designed for
uncompressed samples. The extended version 1 sound description structure provides a great deal of
support for compressed audio, but it does not deal directly with the sample table atoms that point to
the media data.

The ordinary sample tables do not point to compressed frames, which are the fundamental units of
compressed audio data. Instead, they appear to point to individual uncompressed audio samples,
each one byte in size, within the compressed frames. When used with the QuickTime API, QuickTime
compensates for this fiction in a largely transparent manner, but attempting to parse the sound samples
using the original sample tables alone can be quite complicated.

With the introduction of support for the playback of variable bit-rate (VBR) audio in QuickTime 4.1,
the contents of a number of these fields were redefined, so that a frame of compressed audio is treated
as a single media sample. The sample-to-chunk and chunk offset atoms point to compressed frames,
and the sample size table documents the size of the frames. The size is constant for CBR audio, but
can vary for VBR.

The time-to-sample table documents the duration of the frames. If the time scale is set to the sampling
rate, which is typical, the duration equals the number of uncompressed samples in each frame, which
is usually constant even for VBR (it is common to use a fixed frame duration). If a different media
timescale is used, it is necessary to convert from timescale units to sampling rate units to calculate
the number of samples.

This change in the meaning of the sample tables allows you to use the tables accurately to find
compressed frames.

To indicate that this new meaning is used, a version 1 sound description is used and the compression
ID field is set to –2. The samplesPerPacket field and the bytesPerSample field are not necessarily
meaningful for variable bit rate audio, but these fields should be set correctly in cases where the values
are constant; the other two new fields (bytesPerPacket and bytesPerFrame) are reserved and should
be set to 0.

If the compression ID field is set to zero, the sample tables describe uncompressed audio samples
and cannot be used directly to find and manipulate compressed audio frames. QuickTime has built-in
support that allows programmers to act as if these sample tables pointed to uncompressed 1-byte
audio samples.

Sound Media 121
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Sound Sample Description Extensions

Version 1 of the sound sample description also defines how extensions are added to the
SoundDescription record.

struct SoundDescriptionV1 {
 // original fields
 SoundDescription desc;
 // fixed compression ratio information
 unsigned long samplesPerPacket;
 unsigned long bytesPerPacket;
 unsigned long bytesPerFrame;
 unsigned long bytesPerSample;
 // optional, additional atom-based fields --
 // ([long size, long type, some data], repeat)
};

All extensions to the SoundDescription record are made using atoms. That means one or more atoms
can be appended to the end of the SoundDescription record using the standard [size, type] mechanism
used throughout the QuickTime movie architecture.

siSlopeAndIntercept Atom

One possible extension to the SoundDescription record is the siSlopeAndIntercept atom, which
contains slope, intercept, minClip, and maxClip parameters.

At runtime, the contents of the type siSlopeAndIntercept and siDecompressorSettings atoms
are provided to the decompressor component through the standard SetInfo mechanism of the Sound
Manager.

struct SoundSlopeAndInterceptRecord {
 Float64 slope;
 Float64 intercept;
 Float64 minClip;
 Float64 maxClip;
};
typedef struct SoundSlopeAndInterceptRecord SoundSlopeAndInterceptRecord;

siDecompressionParam atom ('wave')

A second extension is the siDecompressionParam atom, which provides the ability to store data
specific to a given audio decompressor in the SoundDescription record. Some audio decompression
algorithms, such as Microsoft’s ADPCM, require a set of out-of-band values to configure the
decompressor. These are stored in an atom of type siDecompressionParam.

This atom contains other atoms with audio decompressor settings and is a required extension to the
sound sample description for MPEG-4 audio. A 'wave' chunk for 'mp4a' typically contains (in order)
at least a 'frma' atom, an 'mp4a' atom, an 'esds' atom, and a terminator atom.

The contents of other siDecompressionParam atoms are dependent on the audio decompressor.

Size
An unsigned 32-bit integer holding the size of the decompression parameters atom.

122 Sound Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Type
An unsigned 32-bit field containing the four-character code 'wave'.

Extension atoms
Atoms containing the necessary out-of-band decompression parameters for the sound
decompressor. For MPEG-4 audio ('mp4a'), this includes elementary stream descriptor ('esds'),
format ('frma'), and terminator (0x00000000) atoms.

Format atom ('frma')

This atom shows the data format of the stored sound media.

Size
An unsigned 32-bit integer holding the size of the format atom.

Type
An unsigned 32-bit field containing the four-character code 'frma'.

Data format
The value of this field is copied from the data-format field of the Sample Description Entry.

Terminator atom (0x00000000)

This atom is present to indicate the end of the sound description. It contains no data, and has a type
field of zero (0x00000000) instead of a four-character code.

Size
An unsigned 32-bit integer holding the size of the decompression parameters atom (always
set to 8).

Type
An unsigned 32-bit integer set to zero (0x00000000). This is a rare instance in which the type
field is not a four-character ASCII code.

MPEG-4 Elementary Stream Descriptor ('esds') Atom

This atom is a required extension to the sound sample description for MPEG-4 audio. This atom
contains an elementary stream descriptor, which is defined in ISO/IEC FDIS 14496.

Size
An unsigned 32-bit integer holding the size of the elementary stream descriptor atom

Type
An unsigned 32-bit field containing the four-character code 'esds'

Version
An unsigned 32-bit field set to zero.

Elementary Stream Descriptor
An elementary stream descriptor for MPEG-4 audio, as defined in the MPEG-4 specification
ISO/IEC 14496.

Sound Media 123
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Sound Sample Data

The format of data stored in sound samples is completely dependent on the type of the compressed
data stored in the sound sample description. The following sections discuss some of the formats
supported by QuickTime.

Uncompressed 8-Bit Sound

Eight-bit audio is stored in offset-binary encodings. If the data is in stereo, the left and right channels
are interleaved.

Uncompressed 16-Bit Sound

Sixteen-bit audio may be stored in two’s-complement encodings. If the data is in stereo, the left and
right channels are interleaved.

IMA, uLaw, and aLaw

 ■ IMA 4:1

The IMA encoding scheme is based on a standard developed by the International Multimedia
Association for pulse code modulation (PCM) audio compression. QuickTime uses a slight
variation of the format to allow for random access. IMA is a 16-bit audio format which supports
4:1 compression. It is defined as follows:

kIMACompression = FOUR_CHAR_CODE('ima4'), /*IMA 4:1*/

 ■ uLaw 2:1 and aLaw 2:1

The uLaw (mu-law) encoding scheme is used on North American and Japanese phone systems,
and is coming into use for voice data interchange, and in PBXs, voice-mail systems, and Internet
talk radio (via MIME). In uLaw encoding, 14 bits of linear sample data are reduced to 8 bits of
logarithmic data.

The aLaw encoding scheme is used in Europe and the rest of the world.

The kULawCompression and the kALawCompression formats are typically found in .au formats.

Floating-Point Formats

Both kFloat32Format and kFloat64Format are floating-point uncompressed formats. Depending
upon codec-specific data associated with the sample description, the floating-point values may be in
big-endian (network) or little-endian (Intel) byte order. This differs from the 16-bit formats, where
there is a single format for each endian layout.

24- and 32-Bit Integer Formats

Both k24BitFormat and k32BitFormat are integer uncompressed formats. Depending upon
codec-specific data associated with the sample description, the floating-point values may be in
big-endian (network) or little-endian (Intel) byte order.

124 Sound Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

kMicrosoftADPCMFormat and kDVIIntelIMAFormat Sound Codecs

The kMicrosoftADPCMFormat and the kDVIIntelIMAFormat codec provide QuickTime interoperability
with AVI and WAV files. The four-character codes used by Microsoft for their formats are numeric.
To construct a QuickTime-supported codec format of this type, the Microsoft numeric ID is taken to
generate a four-character code of the form 'msxx' where xx takes on the numeric ID.

kDVAudioFormat Sound Codec

The DV audio sound codec, kDVAudioFormat, decodes audio found in a DV stream. Since a DV frame
contains both video and audio, this codec knows how to skip video portions of the frame and only
retrieve the audio portions. Likewise, the video codec skips the audio portions and renders only the
image.

kQDesignCompression Sound Codec

The kQDesignCompression sound codec is the QDesign 1 (pre-QuickTime 4) format. Note that there
is also a QDesign 2 format whose four-character code is 'QDM2'.

MPEG-1 Layer 3 (MP3) Codecs

The QuickTime MPEG layer 3 (MP3) codecs come in two particular flavors, as shown in Table 3-7 (page
118). The first (kMPEGLayer3Format) is used exclusively in the constant bitrate (CBR) case
(pre-QuickTime 4). The other (kFullMPEGLay3Format) is used in both the CBR and variable bitrate
(VBR) cases. Note that they are the same codec underneath.

MPEG-4 Audio

MPEG-4 audio is stored as a sound track with data format 'mp4a' and certain additions to the sound
sample description and sound track atom. Specifically:

 ■ The compression ID is set to -2 and redefined sample tables are used (see “Redefined Sample
Tables” (page 121)).

 ■ The sound sample description includes an siDecompressionParam atom (see
“siDecompressionParam atom ('wave')” (page 122)). The siDecompressionParam atom includes:

 ❏ An MPEG-4 elementary stream descriptor extension atom (see “MPEG-4 Elementary Stream
Descriptor ('esds') Atom” (page 123)).

 ❏ The inclusion of a format atom is strongly recommended. See “Format atom ('frma')” (page
123).

 ❏ The last atom in the siDecompressionParam atom must be a terminator atom. See “Terminator
atom (0x00000000)” (page 123).

 ■ Other atoms may be present as well; unknown atoms should be ignored.

The audio data is stored as an elementary MPEG-4 audio stream, as defined in ISO/IEC specification
14496-1.

Sound Media 125
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Formats Not Currently in Use:MACE 3:1 and 6:1

These compression formats are obsolete: MACE 3:1 and 6:1.

These are 8-bit sound codec formats, defined as follows:

kMACE3Compression = FOUR_CHAR_CODE('MAC3'), /*MACE 3:1*/
kMACE6Compression = FOUR_CHAR_CODE('MAC6'), /*MACE 6:1*/

Timecode Media

Timecode media is used to store time code data in QuickTime movies. It has a media type of 'tmcd'.

Timecode Sample Description

The timecode sample description contains information that defines how to interpret time code media
data. This sample description is based on the standard sample description header, as described in
“Sample Description Atoms” (page 78).

The data format field in the sample description is always set to 'tmcd'.

The timecode media handler also adds some of its own fields to the sample description.

Reserved
A 32-bit integer that is reserved for future use. Set this field to 0.

Flags
A 32-bit integer containing flags that identify some timecode characteristics. The following
flags are defined.

Drop frame

Indicates whether the timecode is drop frame. Set it to 1 if the timecode is drop frame. This
flag’s value is 0x0001.

24 hour max

Indicates whether the timecode wraps after 24 hours. Set it to 1 if the timecode wraps. This
flag’s value is 0x0002.

Negative times OK

Indicates whether negative time values are allowed. Set it to 1 if the timecode supports negative
values. This flag’s value is 0x0004.

Counter

Indicates whether the time value corresponds to a tape counter value. Set it to 1 if the timecode
values are tape counter values. This flag’s value is 0x0008.

Time scale
A 32-bit integer that specifies the time scale for interpreting the frame duration field.

126 Timecode Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Frame duration
A 32-bit integer that indicates how long each frame lasts in real time.

Number of frames
An 8-bit integer that contains the number of frames per second for the timecode format. If the
time is a counter, this is the number of frames for each counter tick.

Reserved
A 24-bit quantity that must be set to 0.

Source reference
A user data atom containing information about the source tape. The only currently used user
data list entry is the 'name' type. This entry contains a text item specifying the name of the
source tape.

Timecode Media Information Atom

The timecode media also requires a media information atom. This atom contains information governing
how the timecode text is displayed. This media information atom is stored in a base media information
atom (see “Base Media Information Atoms” (page 70) for more information). The type of the timecode
media information atom is 'tcmi'.

The timecode media information atom contains the following fields:

Size
A 32-bit integer that specifies the number of bytes in this time code media information atom.

Type
A 32-bit integer that identifies the atom type; this field must be set to 'tcmi'.

Version
A 1-byte specification of the version of this timecode media information atom.

Flags
A 3-byte space for timecode media information flags. Set this field to 0.

Text font
A 16-bit integer that indicates the font to use. Set this field to 0 to use the system font. If the
font name field contains a valid name, ignore this field.

Timecode Media 127
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Text face
A 16-bit integer that indicates the font’s style. Set this field to 0 for normal text. You can enable
other style options by using one or more of the following bit masks:

0x0001 Bold

0x0002 Italic

0x0004 Underline

0x0008 Outline

0x0010 Shadow

0x0020 Condense

0x0040 Extend

Text size
A 16-bit integer that specifies the point size of the time code text.

Text color
A 48-bit RGB color value for the timecode text.

Background color
A 48-bit RGB background color for the timecode text.

Font name
A Pascal string specifying the name of the timecode text’s font.

Timecode Sample Data

There are two different sample data formats used by timecode media.

If the Counter flag is set to 1 in the timecode sample description, the sample data is a counter value.
Each sample contains a 32-bit integer counter value.

If the Counter flag is set to 0 in the timecode sample description, the sample data format is a timecode
record, as follows.

Hours
An 8-bit unsigned integer that indicates the starting number of hours.

Negative
A 1-bit value indicating the time’s sign. If bit is set to 1, the timecode record value is negative.

Minutes
A 7-bit integer that contains the starting number of minutes.

Seconds
An 8-bit unsigned integer indicating the starting number of seconds.

Frames
An 8-bit unsigned integer that specifies the starting number of frames. This field’s value cannot
exceed the value of the number of frames field in the timecode sample description.

128 Timecode Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Text Media

Text media is used to store text data in QuickTime movies. It has a media type of 'text'.

Text Sample Description

The text sample description contains information that defines how to interpret text media data. This
sample description is based on the standard sample description header, as described in “Sample
Description Atoms” (page 78).

The data format field in the sample description is always set to 'text'.

The text media handler also adds some of its own fields to the sample description.

Text Media 129
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Display flags
A 32-bit integer containing flags that describe how the text should be drawn. The following
flags are defined.

Don’t auto scale

Controls text scaling. If this flag is set to 1, the text media handler reflows the text instead of
scaling when the track is scaled. This flag’s value is 0x0002.

Use movie background color

Controls background color. If this flag is set to 1, the text media handler ignores the background
color field in the text sample description and uses the movie’s background color instead. This
flag’s value is 0x0008.

Scroll in

Controls text scrolling. If this flag is set to 1, the text media handler scrolls the text until the
last of the text is in view. This flag’s value is 0x0020.

Scroll out

Controls text scrolling. If this flag is set to 1, the text media handler scrolls the text until the
last of the text is gone. This flag’s value is 0x0040.

Horizontal scroll

Controls text scrolling. If this flag is set to 1, the text media handler scrolls the text horizontally;
otherwise, it scrolls the text vertically. This flag’s value is 0x0080.

Reverse scroll

Controls text scrolling. If this flag is set to 1, the text media handler scrolls down (if scrolling
vertically) or backward (if scrolling horizontally; note that horizontal scrolling also depends
upon text justification). This flag’s value is 0x0100.

Continuous scroll

Controls text scrolling. If this flag is set to 1, the text media handler displays new samples by
scrolling out the old ones. This flag’s value is 0x0200.

Drop shadow

Controls drop shadow. If this flag is set to 1, the text media handler displays the text with a
drop shadow. This flag’s value is 0x1000.

Anti-alias

Controls anti-aliasing. If this flag is set to 1, the text media handler uses anti-aliasing when
drawing text. This flag’s value is 0x2000.

Key text

Controls background color. If this flag is set to 1, the text media handler does not display the
background color, so that the text overlay background tracks. This flag’s value is 0x4000.

Text justification
A 32-bit integer that indicates how the text should be aligned. Set this field to 0 for left-justified
text, to 1 for centered text, and to –1 for right-justified text.

130 Text Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Background color
A 48-bit RGB color that specifies the text’s background color.

Default text box
A 64-bit rectangle that specifies an area to receive text (top, left, bottom, right). Typically this
field is set to all zeros.

Reserved
A 64-bit value that must be set to 0.

Font number
A 16-bit value that must be set to 0.

Font face
A 16-bit integer that indicates the font’s style. Set this field to 0 for normal text. You can enable
other style options by using one or more of the following bit masks:

0x0001 Bold

0x0002 Italic

0x0004 Underline

0x0008 Outline

0x0010 Shadow

0x0020 Condense

0x0040 Extend

Reserved
An 8-bit value that must be set to 0.

Reserved
A 16-bit value that must be set to 0.

Foreground color
A 48-bit RGB color that specifies the text’s foreground color.

Text name
A Pascal string specifying the name of the font to use to display the text.

Text Sample Data

The format of the text data is a 16-bit length word followed by the actual text. The length word specifies
the number of bytes of text, not including the length word itself. Following the text, there may be one
or more atoms containing additional information for drawing and searching the text.

Table 3-8 (page 132) lists the currently defined text sample extensions.

Text Media 131
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Table 3-8 Text sample extensions

DescriptionText sample
extension

Style information for the text. Allows you to override the default style in the sample
description or to define more than one style for a sample. The data is a TextEdit
style scrap.

'styl'

Table of font names. Each table entry contains a font number (stored in a 16-bit
integer) and a font name (stored in a Pascal string).This atom is required if the
'styl' atom is present.

'ftab'

Highlight information. The atom data consists of two 32-bit integers. The first
contains the starting offset for the highlighted text, and the second has the ending
offset. A highlight sample can be in a key frame or in a differenced frame. When
it’s used in a differenced frame, the sample should contain a zero-length piece of
text.

'hlit'

Highlight color. This atom specifies the 48-bit RGB color to use for highlighting.'hclr'

Drop shadow offset. When the display flags indicate drop shadow style, this atom
can be used to override the default drop shadow placement. The data consists of
two 16-bit integers. The first indicates the horizontal displacement of the drop
shadow, in pixels; the second, the vertical displacement.

'drpo'

Drop shadow transparency. The data is a 16-bit integer between 0 and 256 indicating
the degree of transparency of the drop shadow. A value of 256 makes the drop
shadow completely opaque.

'drpt'

Image font data. This atom contains two more atoms. An 'idat' atom contains
compressed image data to be used to draw the text when the required fonts are
not available. An 'idsc' atom contains a video sample description describing the
format of the compressed image data.

'imag'

Image font highlighting. This atom contains metric information that governs
highlighting when an 'imag' atom is used for drawing.

'metr'

Hypertext and Wired Text

Hypertext is used as an action that takes you to a Web URL; like a Web URL, it appears blue and
underlined. Hypertext is stored in a text track sample atom stream as type 'htxt'. The same
mechanism is used to store wired actions linked to text strings. A text string can be wired to act as a
hypertext link when clicked or to perform any defined QuickTime wired action when clicked. For
details on wired actions, see “Wired Action Grammar” (page 147).

The data stored is a QTAtomContainer. The root atom of hypertext in this container is a wired-text
atom of type 'wtxt'. This is the parent for all individual hypertext objects.

For each hypertext item, the parent atom is of type 'htxt'. This is the atom container atom type. Two
children of this atom that define the offset of the hypertext in the text stream are

kRangeStart strt // unsigned long

132 Text Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

kRangeEnd end // unsigned long

Child atoms of the parent atom are the events of type kQTEventType and the ID of the event type.
The children of these event atoms follow the same format as other wired events.

kQTEventType, (kQTEventMouseClick, kQTEventMouseClickEnd,
 kQTEventMouseClickEndTriggerButton,
 kQTEventMouseEnter, kQTEventMouseExit)
...
kTextWiredObjectsAtomType, 1
 kHyperTextItemAtomType, 1..n
 kRangeStart, 1
 long
 kRangeEnd, 1
 long

 kAction // The known range of track movie sprite actions

Music Media

Music media is used to store note-based audio data, such as MIDI data, in QuickTime movies. It has
a media type of 'musi'.

Music Sample Description

The music sample description uses the standard sample description header, as described in the section
“Sample Description Atoms” (page 78).

The data format field in the sample description is always set to 'musi'. The music media handler
adds an additional 32-bit integer field to the sample description containing flags. Currently no flags
are defined, and this field should be set to 0.

Following the flags field, there may be appended data in the QuickTime music format. This data
consists of part-to-instrument mappings in the form of General events containing note requests. One
note request event should be present for each part that will be used in the sample data.

Music Sample Data

The sample data for music samples consists entirely of data in the QuickTime music format. Typically,
up to 30 seconds of notes are grouped into a single sample.

Music Media 133
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

MPEG-1 Media

MPEG-1 media is used to store MPEG-1 video streams, MPEG-1, layer 2 audio streams, and multiplexed
MPEG-1 audio and video streams in QuickTime movies. It has a media type of 'MPEG'.

MPEG-1 Sample Description

The MPEG-1 sample description uses the standard sample description header, as described in “Sample
Description Atoms” (page 78).

The data format field in the sample description is always set to 'MPEG'. The MPEG-1 media handler
adds no additional fields to the sample description.

Note: This data format is not used for MPEG-1, layer 3 audio, however (see “MPEG-1 Layer 3 (MP3)
Codecs” (page 125)).

MPEG-1 Sample Data

Each sample in an MPEG-1 media is an entire MPEG-1 stream. This means that a single MPEG-1
sample may be several hundred megabytes in size. The MPEG-1 encoding used by QuickTime
corresponds to the ISO standard, as described in ISO document CD 11172.

Sprite Media

Sprite media is used to store character-based animation data in QuickTime movies. It has a media
type of 'sprt'.

Sprite Sample Description

The sprite sample description uses the standard sample description header, as described in “Sample
Description Atoms” (page 78).

The data format field in the sample description is always set to 'sprt'. The sprite media handler
adds no additional fields to the sample description.

Sprite Sample Data

All sprite samples are stored in QT atom structures. The sprite media uses both key frames and
differenced frames. The key frames contain all of the sprite’s image data, and the initial settings for
each of the sprite’s properties.

134 MPEG-1 Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

A key frame always contains a shared data atom of type 'dflt'. This atom contains data to be shared
between the sprites, consisting mainly of image data and sample descriptions. The shared data atom
contains a single sprite image container atom, with an atom type value of 'imct' and an ID value of
1.

The sprite image container atom stores one or more sprite image atoms of type 'imag'. Each sprite
image atom contains an image sample description immediately followed by the sprite’s compressed
image data. The sprite image atoms should have ID numbers starting at 1 and counting consecutively
upward.

The key frame also must contain definitions for each sprite in atoms of type 'sprt'. Sprite atoms
should have ID numbers start at 1 and count consecutively upward. Each sprite atom contains a list
of properties. Table 3-9 (page 135) shows all currently defined sprite properties.

Table 3-9 Sprite properties

DescriptionValueProperty name

Describes the sprite’s location and scaling within its sprite world
or sprite track. By modifying a sprite’s matrix, you can modify
the sprite’s location so that it appears to move in a smooth path
on the screen or so that it jumps from one place to another. You
can modify a sprite’s size, so that it shrinks, grows, or stretches.
Depending on which image compressor is used to create the sprite
images, other transformations, such as rotation, may be supported
as well. Translation-only matrices provide the best performance.

1kSpriteProperty-
Matrix

Specifies whether or not the sprite is visible. To make a sprite
visible, you set the sprite’s visible property to true.

4kSpriteProperty-
Visible

Contains a 16-bit integer value specifying the layer into which
the sprite is to be drawn. Sprites with lower layer numbers appear
in front of sprites with higher layer numbers. To designate a sprite
as a background sprite, you should assign it the special layer
number kBackgroundSpriteLayerNum.

5kSpritePropertyLayer

Specifies a graphics mode and blend color that indicates how to
blend a sprite with any sprites behind it and with the background.
To set a sprite’s graphics mode, you call SetSpriteProperty,
passing a pointer to a ModifierTrackGraphicsModeRecord
structure.

6kSpriteProperty-
GraphicsMode

Specifies another sprite by ID that delegates QT events.8kSpriteProperty-
ActionHandlingSprite-
ID

Contains the atom ID of the sprite’s image atom.100kSpriteProperty-
ImageIndex

The override sample differs from the key frame sample in two ways. First, the override sample does
not contain a shared data atom. All shared data must appear in the key frame. Second, only those
sprite properties that change need to be specified. If none of a sprite’s properties change in a given
frame, then the sprite does not need an atom in the differenced frame.

Sprite Media 135
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

The override sample can be used in one of two ways: combined, as with video key frames, to construct
the current frame; or the current frame can be derived by combining only the key frame and the
current override sample.

Refer to the section “Sprite Track Media Format” (page 137) for information on how override samples
are indicated in the file, using kSpriteTrackPropertySampleFormat and the default behavior of the
kKeyFrameAndSingleOverride format.

Sprite Track Properties

In addition to defining properties for individual sprites, you can also define properties that apply to
an entire sprite track. These properties may override default behavior or provide hints to the sprite
media handler. The following sprite track properties are supported:

 ■ The kSpriteTrackPropertyBackgroundColor property specifies a background color for the
sprite track. The background color is used for any area that is not covered by regular sprites or
background sprites. If you do not specify a background color, the sprite track uses black as the
default background color.

 ■ The kSpriteTrackPropertyOffscreenBitDepth property specifies a preferred bit depth for the
sprite track’s offscreen buffer. The allowable values are 8 and 16. To save memory, you should
set the value of this property to the minimum depth needed. If you do not specify a bit depth,
the sprite track allocates an offscreen buffer with the depth of the deepest intersecting monitor.

 ■ The kSpriteTrackPropertySampleFormat property specifies the sample format for the sprite
track. If you do not specify a sample format, the sprite track uses the default format,
kKeyFrameAndSingleOverride.

To specify sprite track properties, you create a single QT atom container and add a leaf atom for each
property you want to specify. To add the properties to a sprite track, you call the media handler
function SetMediaPropertyAtom. To retrieve a sprite track’s properties, you call the media handler
function GetMediaPropertyAtom.

The sprite track properties and their corresponding data types are listed in Table 3-10 (page 136).

Table 3-10 Sprite track properties

Leaf data typeAtom IDAtom type

RGBColor1kSpriteTrackPropertyBackgroundColor

unsigned short1kSpriteTrackPropertyOffscreenBitDepth

long1kSpriteTrackPropertySampleFormat

Boolean1kSpriteTrackPropertyHasActions

UInt321kSpriteTrackPropertyQTIdleEventsFrequency

Boolean1kSpriteTrackPropertyVisible

Boolean1kSpriteTrackPropertyScaleSpritesToScaleWorld

136 Sprite Track Properties
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Note: When pasting portions of two different tracks together, the Movie Toolbox checks to see that
all sprite track properties match. If, in fact, they do match, the paste results in a single sprite track
instead of two.

Sprite Track Media Format

The sprite track media format is hierarchical and based on QT atoms and atom containers. A sprite
track is defined by one or more key frame samples, each followed by any number of override samples.
A key frame sample and its subsequent override samples define a scene in the sprite track. A key
frame sample is a QT atom container that contains atoms defining the sprites in the scene and their
initial properties. The override samples are other QT atom containers that contain atoms that modify
sprite properties, thereby animating the sprites in the scene. In addition to defining properties for
individual sprites, you can also define properties that apply to an entire sprite track.

Figure 3-13 (page 137) shows the high-level structure of a sprite track key frame sample. Each atom
in the atom container is represented by its atom type, atom ID, and, if it is a leaf atom, the type of its
data.

Figure 3-13 A key frame sample atom container

QT atom
container

kSpriteAtomType

ID:numSprites

kSpriteSharedDataAtomType

ID:1

kSpriteAtomType

ID:1

Sprite property atoms Shared data atoms

The QT atom container contains one child atom for each sprite in the key frame sample. Each sprite
atom has a type of kSpriteAtomType. The sprite IDs are numbered from 1 to the number of sprites
defined by the key frame sample (numSprites).

Each sprite atom contains leaf atoms that define the properties of the sprite, as shown in Figure
3-14 (page 138). For example, the kSpritePropertyLayer property defines a sprite’s layer. Each sprite
property atom has an atom type that corresponds to the property and an ID of 1.

Sprite Track Media Format 137
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Figure 3-14 Atoms that describe a sprite and its properties

kSpriteAtomType

ID:1

kSpritePropertyImageIndex

ID:1

short

kSpritePropertyLayer

ID:1

short

kSpritePropertyGraphicsMode

ID:1

ModifierTrackGraphicsModeRecord

kSpritePropertyMatrix

ID:1

MatrixRecord

kSpritePropertyVisible

ID:1

short

kSpriteNameAtomType

ID:1

“The sprite name”

kSpriteURLLinkAtomType

ID:1

“The URL”

In addition to the sprite atoms, the QT atom container contains one atom of type
kSpriteSharedDataAtomType with an ID of 1. The atoms contained by the shared data atom describe
data that is shared by all sprites. The shared data atom contains one atom of type
kSpriteImagesContainerAtomType with an ID of 1 (Figure 3-15 (page 138)).

The image container atom contains one atom of type kImageAtomType for each image in the key frame
sample. The image atom IDs are numbered from 1 to the number of images (numImages). Each image
atom contains a leaf atom that holds the image data (type kSpriteImageDataAtomType) and an
optional leaf atom (type kSpriteNameAtomType) that holds the name of the image.

Figure 3-15 Atoms that describe sprite images

kSpriteImageContainerAtomType

ID:1

kSpriteSharedDataAtomType

ID:1

kSpriteImageAtomType

ID:1

kSpriteImageDataAtomType

 ID:1

 Image data

kSpriteNameAtomType

 ID:1

 “The image name”

kSpriteImageDataAtomType

 ID:1

 Image data

kSpriteImageAtomType

ID:numImages

138 Sprite Track Media Format
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Sprite Media Format Atoms

The sprite track’s sample format enables you to store the atoms necessary to describe action lists that
are executed in response to QuickTime events. “QT Atom Container Description Key” (page 145)
defines a grammar for constructing valid action sprite samples, which may include complex
expressions.

Both key frame samples and override samples support the sprite action atoms. Override samples
override actions at the QuickTime event level. In effect, what you do by overriding is to completely
replace one event handler and all its actions with another. The sprite track’s
kSpriteTrackPropertySampleFormat property has no effect on how actions are performed. The
behavior is similar to the default kKeyFrameAndSingleOverride format where, if in a given override
sample there is no handler for the event, the key frame’s handler is used, if there is one.

Sprite Media Format Extensions

This section describes some of the atom types and IDs used to extend the sprite track’s media format,
thus enabling action sprite capabilities.

A complete description of the grammar for sprite media handler samples, including action sprite
extensions, is included in the section “Sprite Media Handler Track Properties QT Atom Container
Format” (page 146).

Important: Some sprite track property atoms were added in QuickTime 4. In particular, you must
set the kSpriteTrackPropertyHasActions track property in order for your sprite actions to be
executed.

Sprite Track Property Atoms

The following constants represent atom types for sprite track properties. These atoms are applied to
the whole track, not just to a single sample.

Constant descriptions

kSpriteTrackPropertyHasActions
You must add an atom of this type with its leaf data set to true if you want the movie controller
to execute the actions in your sprite track’s media. The atom’s leaf data is of type Boolean. The
default value is false, so it is very important to add an atom of this type if you want
interactivity to take place.

kSpriteTrackPropertyQTIdleEventsFrequency
You must add an atom of this type if you want the sprites in your sprite track to receive
kQTEventIdle QuickTime events. The atom’s leaf data is of type UInt32. The value is the
mimimum number of ticks that must pass before the next QTIdle event is sent. Each tick is

Sprite Track Media Format 139
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

1/60th of one second. To specify “Idle as fast as possible,” set the value to 0. The default value
is kNoQTIdleEvents, which means don’t send any idle events.

It is possible that for small idle event frequencies, the movie will not be able to keep up, in
which case idle events will be sent as fast as possible.

Since sending idle events takes up some time, it is best to specify the largest frequency that
produces the results that you desire, or kNoQTIdleEvents if you do not need them.

kSpriteTrackPropertyVisible
You can cause the entire sprite track to be invisible by setting the value of this Boolean property
to false. This is useful for using a sprite track as a hidden button track—for example, placing
an invisible sprite track over a video track would allow the characters in the video to be clickable.
The default value is visible (true).

kSpriteTrackPropertyScaleSpritesToScaleWorld
You can cause each sprite to be rescaled when the sprite track is resized by setting the value
of this Boolean property to true. Setting this property can improve the drawing performance
and quality of a scaled sprite track. This is particularly useful for sprite images compressed
with codecs that are resolution-independent, such as the Curve codec. The default value for
this property is false.

Atom Types

The following constants represent atom types for sprite media:

enum {
 kSpriteAtomType = 'sprt',
 kSpriteImagesContainerAtomType = 'imct',
 kSpriteImageAtomType = 'imag',
 kSpriteImageDataAtomType = 'imda',
 kSpriteImageDataRefAtomType = 'imre',
 kSpriteImageDataRefTypeAtomType = 'imrt',
 kSpriteImageGroupIDAtomType = 'imgr',
 kSpriteImageRegistrationAtomType = 'imrg',
 kSpriteImageDefaultImageIndexAtomType ='defi',
 kSpriteSharedDataAtomType = 'dflt',
 kSpriteNameAtomType = 'name',
 kSpriteImageNameAtomType = 'name',
 kSpriteUsesImageIDsAtomType = 'uses',
 kSpriteBehaviorsAtomType = 'beha',
 kSpriteImageBehaviorAtomType = 'imag',
 kSpriteCursorBehaviorAtomType = 'crsr',
 kSpriteStatusStringsBehaviorAtomType = 'sstr',
 kSpriteVariablesContainerAtomType = 'vars',
 kSpriteStringVariableAtomType = 'strv',
 kSpriteFloatingPointVariableAtomType = 'flov'
 kSpriteSharedDataAtomType = 'dflt',
 kSpriteURLLinkAtomType = 'url '
 kSpritePropertyMatrix = 1
 kSpritePropertyVisible = 4
 kSpritePropertyLayer = 5
 kSpritePropertyGraphicsMode = 6
 kSpritePropertyImageIndex = 100

140 Atom Types
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 kSpritePropertyBackgroundColor = 101
 kSpritePropertyOffscreenBitDepth = 102
 kSpritePropertySampleFormat = 103
};

Constant descriptions

kSpriteAtomType
The atom is a parent atom that describes a sprite. It contains atoms that describe properties of
the sprite. Optionally, it may also include an atom of type kSpriteNameAtomType that defines
the name of the sprite.

kSpriteImagesContainerAtomType
The atom is a parent atom that contains atoms of type kSpriteImageAtomType.

kSpriteImageAtomType
The atom is a parent atom that contains an atom of type kSpriteImageDataAtomType.
Optionally, it may also include an atom of type kSpriteNameAtomType that defines the name
of the image.

kSpriteImageDataAtomType
The atom is a leaf atom that contains image data.

kSpriteSharedDataAtomType
The atom is a parent atom that contains shared sprite data, such as an atom container of type
kSpriteImagesContainerAtomType.

kSpriteNameAtomType
The atom is a leaf atom that contains the name of a sprite or an image. The leaf data is composed
of one or more ASCII characters.

kSpritePropertyImageIndex
A leaf atom containing the image index property which is of type short. This atom is a child
atom of kSpriteAtom.

kSpritePropertyLayer
A leaf atom containing the layer property which is of type short. This atom is a child atom of
kSpriteAtom.

kSpritePropertyMatrix
A leaf atom containing the matrix property which is of type MatrixRecord. This atom is a
child atom of kSpriteAtom.

kSpritePropertyVisible
A leaf atom containing the visible property which is of type short. This atom is a child atom
of kSpriteAtom.

kSpritePropertyGraphicsMode
A leaf atom containing the graphics mode property which is of type
ModifyerTrackGraphicsModeRecord. This atom is a child atom of kSpriteAtom.

kSpritePropertyBackgroundColor
A leaf atom containing the background color property which is of type RGBColor. This atom
is used in a sprite track’s MediaPropertyAtom atom container.

Atom Types 141
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

kSpritePropertyOffscreenBitDepth
A leaf atom containing the preferred offscreen bitdepth which is of type short. This atom is
used in a sprite track’s MediaPropertyAtom atom container.

kSpritePropertySampleFormat
A leaf atom containing the sample format property, which is of type short. This atom is used
in a sprite track’s MediaPropertyAtom atom container.

kSpriteImageRegistrationAtomType
Sprite images have a default registration point of 0, 0. To specify a different point, add an atom
of type kSpriteImageRegistrationAtomType as a child atom of the kSpriteImageAtomType
and set its leaf data to a FixedPoint value with the desired registration point.

kSpriteImageGroupIDAtomType
You must assign group IDs to sets of equivalent images in your key frame sample. For example,
if the sample contains ten images where the first two images are equivalent, and the last eight
images are equivalent, then you could assign a group ID of 1000 to the first two images, and
a group ID of 1001 to the last eight images. This divides the images in the sample into two sets.
The actual ID does not matter, it just needs to be a unique positive integer.

Each image in a sprite media key frame sample is assigned to a group. Add an atom of type
kSpriteImageGroupIDAtomType as a child of the kSpriteImageAtomType atom and set its
leaf data to a long containing the group ID.

Important: You must assign group IDs to your sprite sample if you want a sprite to display images
with non-equivalent image descriptions (i.e., images with different dimensions).

For each of the following atom types (added to QuickTime 4)––except
kSpriteBehaviorsAtomType––you fill in the structure QTSpriteButtonBehaviorStruct, which
contains a value for each of the four states.

kSpriteBehaviorsAtomType
This is the parent atom of kSpriteImageBehaviorAtomType,
kSpriteCursorBehaviorAtomType, and kSpriteStatusStringsBehaviorAtomType.

kSpriteImageBehaviorAtomType
Specifies the imageIndex.

kSpriteCursorBehaviorAtomType
Specifies the cursorID.

kSpriteStatusStringsBehaviorAtomType
Specifies an ID of a string variable contained in a sprite track to display in the status area of
the browser.

142 Atom Types
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Note: All sprite media—specifically the leaf data in the QT atom containers for sample and sprite
track properties—should be written in big-endian format.

kSpriteUsesImageIDsAtomType
This atom allows a sprite to specify which images it uses—in other words, the subset of images
that its imageIndex property can refer to.

You add an atom of type kSpriteUsesImageIDsAtomType as a child of a kSpriteAtomType
atom, setting its leaf data to an array of QT atom IDs. This array contains the IDs of the images
used, not the indices.

Although QuickTime does not currently use this atom internally, tools that edit sprite media can use
the information provided to optimize certain operations, such as cut, copy, and paste.

kSpriteImageRegistrationAtomType
Sprite images have a default registration point of 0, 0. To specify a different point, you add an
atom of type kSpriteImageRegistrationAtomType as a child atom of the
kSpriteImageAtomType and set its leaf data to a FixedPoint value with the desired registration
point.

kSpriteImageGroupIDAtomType
You must assign group IDs to sets of equivalent images in your key frame sample. For example,
if the sample contains ten images where the first two images are equivalent, and the last eight
images are equivalent, then you could assign a group ID of 1000 to the first two images, and
a group ID of 1001 to the last eight images. This divides the images in the sample into two sets.
The actual ID does not matter; it just needs to be a unique positive integer.

Each image in a sprite media key frame sample is assigned to a group. You add an atom of
type kSpriteImageGroupIDAtomType as a child of the kSpriteImageAtomType atom and set
its leaf data to a long containing the group ID.

Important: You must assign group IDs to your sprite sample if you want a sprite to display images
with non-equivalent image descriptions (that is, images with different dimensions).

You use the following atom types, which were added to QuickTime 4, to specify that an image is
referenced and how to access it.

kSpriteImageDataRefAtomType
Add this atom as a child of the kSpriteImageAtomType atom instead of a
kSpriteImageDataAtomType. Its ID should be 1. Its data should contain the data reference
(similar to the dataRef parameter of GetDataHandler).

kSpriteImageDataRefTypeAtomType
Add this atom as a child of the kSpriteImageAtomType atom. Its ID should be 1. Its data should
contain the data reference type (similar to the dataRefType parameter of GetDataHandler).

kSpriteImageDefaultImageIndexAtomType
You may optionally add this atom as a child of the kSpriteImageAtomType atom. Its ID should
be 1. Its data should contain a short, which specifies an image index of a traditional image to
use while waiting for the referenced image to load.

Atom Types 143
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

The following constants represent formats of a sprite track. The value of the constant indicates how
override samples in a sprite track should be interpreted. You set a sprite track’s format by creating a
kSpriteTrackPropertySampleFormat atom.

enum {
 kKeyFrameAndSingleOverride = 1L << 1,
 kKeyFrameAndAllOverrides = 1L << 2
};

Constant descriptions

kKeyFrameAndSingleOverride
The current state of the sprite track is defined by the most recent key frame sample and the
current override sample. This is the default format.

kKeyFrameAndAllOverrides
The current state of the sprite track is defined by the most recent key frame sample and all
subsequent override samples up to and including the current override sample.

Sprite Button Behaviors

In QuickTime 4 and later, sprites in a sprite track can specify simple button behaviors. These behaviors
can control the sprite’s image, the system cursor, and the status message displayed in a Web browser.
They also provide a shortcut for a common set of actions that may result in more efficient QuickTime
movies.

Button behaviors can be added to a sprite. These behaviors are intended to make the common task
of creating buttons in a sprite track easy—you basically just fill in a template.

Three types of behaviors are available; you may choose one or more behaviors. Each change a type
of property associated with a button and are triggered by the mouse states notOverNotPressed,
overNotPressed, overPressed, and notOverPressed. The three properties changed are:

 ■ The sprite’s imageIndexvalue

 ■ The ID of a cursor to be displayed

 ■ The ID of a status string variable displayed in the URL status area of a Web browser.

Setting a property’s value to –1 means don’t change it.

Note: The cursor is automatically set back to the default system cursor when leaving a sprite.

The sprite track handles letting one sprite act as an active button at a time.

The behaviors are added at the beginning of the sprite’s list of actions, so they may be overridden by
actions if desired.

To use the behaviors, you fill in the new atoms as follows, using the description key specified in “QT
Atom Container Description Key” (page 145):

kSpriteAtomType

144 Sprite Button Behaviors
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 <kSpriteBehaviorsAtomType>, 1

 <kSpriteImageBehaviorAtomType>
 [QTSpriteButtonBehaviorStruct]
 <kSpriteCursorBehaviorAtomType>
 [QTSpriteButtonBehaviorStruct]
 <kSpriteStatusStringsBehaviorAtomType>
 [QTSpriteButtonBehaviorStruct]

QT Atom Container Description Key

Because QT atom container–based data structures are widely used in QuickTime, a description key
is presented here. Its usage is illustrated in the following sections, “Sprite Media Handler Track
Properties QT Atom Container Format” (page 146) and “Sprite Media Handler Sample QT Atom
Container Formats” (page 146).

[(QTAtomFormatName)] =
 atomType_1, id, index
 data
 atomType_n, id, index
 data

The atoms may be required or optional:

 // optional atom
 // required atom
<atomType>
atomType

The atom ID may be a number if it is required to be a constant, or it may be a list of valid atom IDs,
indicating that multiple atoms of this type are allowed.

3 // one atom with id of 3
(1..3) // three atoms with id's of 1, 2, and 3
(1, 5, 7) // three atoms with id's of 1, 5, and 7
(anyUniqueIDs) // multiple atoms each with a unique id

The atom index may be a 1 if only one atom of this type is allowed, or it may be a range from 1 to
some constant or variable.

1 // one atom of this type is allowed, index is always 1
(1..3) // three atoms with indexes 1, 2, and 3
(1..numAtoms) // numAtoms atoms with indexes of 1 to numAtoms

The data may be leaf data in which its data type is listed inside of brackets [], or it may be a nested
tree of atoms.

[theDataType] // leaf data of type theDataType
childAtoms // a nested tree of atoms

Nested QTAtom format definitions [(AtomFormatName)] may appear in a definition.

QT Atom Container Description Key 145
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Sprite Media Handler Track Properties QT Atom Container
Format

[(SpriteTrackProperties)]
 <kSpriteTrackPropertyBackgroundColor, 1, 1>
 [RGBColor]
 <kSpriteTrackPropertyOffscreenBitDepth, 1, 1>
 [short]
 <kSpriteTrackPropertySampleFormat, 1, 1>
 [long]
 <kSpriteTrackPropertyScaleSpritesToScaleWorld, 1, 1>
 [Boolean]
 <kSpriteTrackPropertyHasActions, 1, 1>
 [Boolean]
 <kSpriteTrackPropertyVisible, 1, 1>
 [Boolean]
 <kSpriteTrackPropertyQTIdleEventsFrequency, 1, 1>
 [UInt32]

Sprite Media Handler Sample QT Atom Container Formats

[(SpriteKeySample)] =
 [(SpritePropertyAtoms)]
 [(SpriteImageAtoms)]

[(SpriteOverrideSample)] =
 [(SpritePropertyAtoms)]

[(SpriteImageAtoms)]
 kSpriteSharedDataAtomType, 1, 1
 <kSpriteVariablesContainerAtomType>, 1
 <kSpriteStringVariableAtomType>, (1..n) ID is SpriteTrack
 Variable ID to be set
 [CString]
 <kSpriteFloatingPointVariableAtomType>, (1..n) ID is
 SpriteTrack Variable ID to be set
 [float]

 kSpriteImagesContainerAtomType, 1, 1
 kSpriteImageAtomType, theImageID, (1 .. numImages)
 kSpriteImageDataAtomType, 1, 1
 [ImageData is ImageDescriptionHandle prepended to
 image data]
 <kSpriteImageRegistrationAtomType, 1, 1>
 [FixedPoint]
 <kSpriteImageNameAtomType, 1, 1>
 [pString]
 <kSpriteImageGroupIDAtomType, 1, 1>
 [long]

146 Sprite Media Handler Track Properties QT Atom Container Format
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

[(SpritePropertyAtoms)]
 <kQTEventFrameLoaded>, 1, 1
 [(ActionListAtoms)]
 <kCommentAtomType>, (anyUniqueIDs), (1..numComments)
 [CString]

 kSpriteAtomType, theSpriteID, (1 .. numSprites)
 <kSpritePropertyMatrix, 1, 1>
 [MatrixRecord]
 <kSpritePropertyVisible, 1, 1>
 [short]
 <kSpritePropertyLayer, 1, 1>
 [short]
 <kSpritePropertyImageIndex, 1, 1>
 [short]
 <kSpritePropertyGraphicsMode, 1, 1>
 [ModifierTrackGraphicsModeRecord]

 <kSpriteUsesImageIDsAtomType, 1, 1>
 [array of QTAtomID's, one per image used]

 <kSpriteBehaviorsAtomType>, 1

 <kSpriteImageBehaviorAtomType>
 [QTSpriteButtonBehaviorStruct]
 <kSpriteCursorBehaviorAtomType>
 [QTSpriteButtonBehaviorStruct]
 <kSpriteStatusStringsBehaviorAtomType>
 [QTSpriteButtonBehaviorStruct]

 <[(SpriteActionAtoms)]>

[(SpriteActionAtoms)] =
 kQTEventType, theQTEventType, (1 .. numEventTypes)
 [(ActionListAtoms)] //see the next section Wired Action
 //Grammar for a description
 <kCommentAtomType>, (anyUniqueIDs), (1..numComments)
 [CString]

Wired Action Grammar

The wired action grammar shown in this section allows QT event handlers to be expressed in a
QuickTime movie. The sprite, text, VR, 3D, and Flash media handlers all support the embedding of
QT event handlers in their media samples.

[(ActionListAtoms)] =
 kAction, (anyUniqueIDs), (1..numActions)
 kWhichAction 1, 1
 [long whichActionConstant]
 <kActionParameter> (anyUniqueIDs), (1..numParameters)
 [(parameterData)] (whichActionConstant, paramIndex)
 // either leaf data or child atoms
 <kActionFlags> parameterID, (1..numParamsWithFlags)

Wired Action Grammar 147
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 [long actionFlags]
 <kActionParameterMinValue> parameterID, (1.. numParamsWithMin)
 [data depends on param type]
 <kActionParameterMaxValue> parameterID, (1.. numParamsWithMax)
 [data depends on param type]
 [(ActionTargetAtoms)]

 <kCommentAtomType>, (anyUniqueIDs), (1..numComments)
 [CString]

[(ActionTargetAtoms)] =
 <kActionTarget>
 <kTargetMovie>
 [no data]
 <kTargetChildMovieTrackName>
 <PString childMovieTrackName>
 <kTargetChildMovieTrack>
 [IDlong childMovieTrackID]
 <kTargetChildMovieTrackIndex>
 [long childMovieTrackIndex]
 <kTargetChildMovieMovieName>
 [PString childMovieName]
 <kTargetChildMovieMovieID>
 [long childMovieID]
 <kTargetTrackName>
 [PString trackName]
 <kTargetTrackType>
 [OSType trackType]
 <kTargetTrackIndex>
 [long trackIndex]
 OR
 [(kExpressionAtoms)]
 <kTargetTrackID>
 [long trackID]
 OR
 [(kExpressionAtoms)]
 <kTargetSpriteName>
 [PString spriteName]
 <kTargetSpriteIndex>
 [short spriteIndex]
 OR
 [(kExpressionAtoms)]
 <kTargetSpriteID>
 [QTAtomID spriteIID]
 OR
 [(kExpressionAtoms)]
 <kTargetQD3DNamedObjectName>
 [CString objectName]

[(kExpressionAtoms)] =
 kExpressionContainerAtomType, 1, 1
 <kOperatorAtomType, theOperatorType, 1>
 kOperandAtomType, (anyUniqueIDs), (1..numOperands)
 [(OperandAtoms)]
 OR
 <kOperandAtomType, 1, 1>
 [(OperandAtoms)]
[(ActionTargetAtoms)] =

148 Wired Action Grammar
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 <kActionTarget>

 <kTargetMovieName>
 [Pstring MovieName]
 OR
 <kTargetMovieID>
 [long MovieID]
 OR
 [(kExpressionAtoms)]

[(OperandAtoms)] =
 <kOperandExpression> 1, 1
 [(kExpressionAtoms)] // allows for recursion
 OR
 <kOperandConstant> 1, 1
 [float theConstant]
 OR
 <kOperandSpriteTrackVariable> 1, 1
 [(ActionTargetAtoms)]
 kActionParameter, 1, 1
 [QTAtomID spriteVariableID]
 OR
 <kOperandKeyIsDown> 1, 1
 kActionParameter, 1, 1
 [UInt16 modifierKeys]
 kActionParameter, 2, 2
 [UInt8 asciiCharCode]
 OR
 <kOperandRandom> 1, 1
 kActionParameter, 1, 1
 [short minimum]
 kActionParameter, 2, 2
 [short maximum]
 OR
 <any other operand atom type>
 [(ActionTargetAtoms)]

The format for parameter data depends on the action and parameter index.

In most cases, the kActionParameter atom is a leaf atom containing data; for a few parameters, it
contains child atoms.

whichAction corresponds to the action type that is specified by the leaf data of a kWhichAction atom.

paramIndex is the index of the parameter’s kActionParameter atom.

[(parameterData)] (whichAction, paramIndex) =
{
 kActionMovieSetVolume:
 param1: short volume

 kActionMovieSetRate
 param1: Fixed rate

 kActionMovieSetLoopingFlags
 param1: long loopingFlags

 kActionMovieGoToTime

Wired Action Grammar 149
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 param1: TimeValue time

 kActionMovieGoToTimeByName
 param1: Str255 timeName

 kActionMovieGoToBeginning
 no params

 kActionMovieGoToEnd
 no params

 kActionMovieStepForward
 no params

 kActionMovieStepBackward
 no params

 kActionMovieSetSelection
 param1: TimeValue startTime
 param2: TimeValue endTime

 kActionMovieSetSelectionByName
 param1: Str255 startTimeName
 param2: Str255 endTimeName

 kActionMoviePlaySelection
 param1: Boolean selectionOnly

 kActionMovieSetLanguage
 param1: long language

 kActionMovieChanged
 no params

 kActionTrackSetVolume
 param1: short volume

 kActionTrackSetBalance
 param1: short balance

 kActionTrackSetEnabled
 param1: Boolean enabled

 kActionTrackSetMatrix
 param1: MatrixRecord matrix

 kActionTrackSetLayer
 param1: short layer

 kActionTrackSetClip
 param1: RgnHandle clip

 kActionSpriteSetMatrix
 param1: MatrixRecord matrix

 kActionSpriteSetImageIndex
 parm1: short imageIndex

150 Wired Action Grammar
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 kActionSpriteSetVisible
 param1: short visible

 kActionSpriteSetLayer
 param1: short layer

 kActionSpriteSetGraphicsMode
 param1: ModifierTrackGraphicsModeRecord graphicsMode

 kActionSpritePassMouseToCodec
 no params

 kActionSpriteClickOnCodec
 param1: Point localLoc

 kActionSpriteTranslate
 param1: Fixed x
 param2: Fixed y
 param3: Boolean isRelative

 kActionSpriteScale
 param1: Fixed xScale
 param2: Fixed yScale

 kActionSpriteRotate
 param1: Fixed degrees

 kActionSpriteStretch
 param1: Fixed p1x
 param2: Fixed p1y
 param3: Fixed p2x
 param4: Fixed p2y
 param5: Fixed p3x
 param6: Fixed p3y
 param7: Fixed p4x
 param8: Fixed p4y

 kActionQTVRSetPanAngle
 param1: float panAngle

 kActionQTVRSetTiltAngle
 param1: float tileAngle

 kActionQTVRSetFieldOfView
 param1: float fieldOfView

 kActionQTVRShowDefaultView
 no params

 kActionQTVRGoToNodeID
 param1: UInt32 nodeID

 kActionMusicPlayNote
 param1: long sampleDescIndex
 param2: long partNumber
 param3: long delay
 param4: long pitch

Wired Action Grammar 151
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 param5: long velocity
 param6: long duration

 kActionMusicSetController
 param1: long sampleDescIndex
 param2: long partNumber
 param3: long delay
 param4: long controller
 param5: long value

 kActionCase
 param1: [(CaseStatementActionAtoms)]

 kActionWhile
 param1: [(WhileStatementActionAtoms)]

 kActionGoToURL
 param1: CString urlLink

 kActionSendQTEventToSprite
 param1: [(SpriteTargetAtoms)]
 param2: QTEventRecord theEvent

 kActionDebugStr
 param1: Str255 theMessageString

 kActionPushCurrentTime
 no params

 kActionPushCurrentTimeWithLabel
 param1: Str255 theLabel

 kActionPopAndGotoTopTime
 no params

 kActionPopAndGotoLabeledTime
 param1: Str255 theLabel

 kActionSpriteTrackSetVariable
 param1: QTAtomID variableID
 param2: float value

 kActionApplicationNumberAndString
 param1: long aNumber
 param2: Str255 aString
}

Both [(CaseStatementActionAtoms)] and [(WhileStatementActionAtoms)] are child atoms of a
kActionParameter 1, 1 atom.

[(CaseStatementActionAtoms)] =
 kConditionalAtomType, (anyUniqueIDs), (1..numCases)
 [(kExpressionAtoms)]
 kActionListAtomType 1, 1
 [(ActionListAtoms)] // may contain nested conditional actions

[(WhileStatementActionAtoms)] =
 kConditionalAtomType, 1, 1

152 Wired Action Grammar
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 [(kExpressionAtoms)]
 kActionListAtomType 1, 1
 [(ActionListAtoms)] // may contain nested conditional actions

Flash Media

Flash is a vector-based graphics and animation technology designed for the Internet. As an authoring
tool, Flash lets content authors and developers create a wide range of interactive vector animations.
The files exported by this tool are called SWF (pronounced “swiff”) files. SWF files are commonly
played back using Macromedia’s ShockWave plug-in. In an effort to establish Flash as an industrywide
standard, Macromedia has published the SWF File Format and made the specification publicly available
on its website at http://www.macromedia.com/software/flash/open/spec/.

The Flash media handler, introduced in QuickTime 4, allows a Macromedia Flash SWF 3.0 file to be
treated as a track within a QuickTime movie. Thus, QuickTime 4 extends the SWF file format, enabling
the execution of any of its wired actions. See “Adding Wired Actions To a Flash Track” (page 240) for
an example of how to add wired actions.

Because a QuickTime movie may contain any number of tracks, multiple SWF tracks may be added
to the same movie. The Flash media handler also provides support for an optimized case using the
alpha channel graphics mode, which allows a Flash track to be composited cleanly over other tracks.

QuickTime supports all Flash actions except for the Flash load movie action. For example, when a
Flash track in a QuickTime movie contains an action that goes to a particular Flash frame, QuickTime
converts this to a wired action that goes to the QuickTime movie time in the corresponding Flash
frame.

Note: As a time-based media playback format, QuickTime may drop frames when necessary to
maintain its schedule. As a consequence, frames of a SWF file may be dropped during playback. If
this is not satisfactory for your application, you can set the playback mode of the movie to Play All
Frames, which will emulate the playback mode of ShockWave. QuickTime’s SWF file importer sets
the Play All Frames mode automatically when adding a SWF file to an empty movie.

QuickTime support for Flash 3.0 also includes the DoFSCommand mechanism. This allows JavaScript
routines with a specific function prototype to be invoked with parameters passed from the Flash
track. Refer to Macromedia’s Flash 3 documentation for more details on how to author a .SWF 3.0 file
with a Flash FSCommand.

Tween Media

Tween media is used to store pairs of values to be interpolated between in QuickTime movies. These
interpolated values modify the playback of other media types by using track references and track
input maps. For example, a tween media could generate gradually changing relative volume levels
to cause an audio track to fade out. It has a media type of 'twen'.

Flash Media 153
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Every tween operation is based on a collection of one or more values from which a range of output
values can be algorithmically derived. Each tween is assigned a time duration, and an output value
can be generated for any time value within the duration. In the simplest kind of tween operation, a
pair of values is provided as input and values between the two values are generated as output.

A tween track is a special track in a movie that is used exclusively as a modifier track. The data it
contains, known as tween data, is used to generate values that modify the playback of other tracks,
usually by interpolating values. The tween media handler sends these values to other media handlers;
it never presents data.

Tween Sample Description

The tween sample description uses the standard sample description header, as described in “Sample
Table Atoms” (page 76).

The data format field in the sample description is always set to 'twen'. The tween media handler
adds no additional fields to the sample description.

Tween Sample Data

Tween sample data is stored in QT atom structures.

At the root level, there are one or more tween entry atoms; these atoms have an atom type value of
'twen'. Each tween entry atom completely describes one interpolation operation. These atoms should
be consecutively numbered starting at 1, using the atom ID field.

Each tween entry atom contains several more atoms that describe how to perform the interpolation.
The atom ID field in each of these atoms must be set to 1.

 ■ Tween start atom (atom type is 'twst'). This atom specifies the time at which the interpolation
is to start. The time is expressed in the media’s time coordinate system. If this atom is not present,
the starting offset is assumed to be 0.

 ■ Tween duration atom (atom type is 'twdu'). This atom specifies how long the interpolation is to
last. The time is expressed in the media’s time coordinate system. If this atom is not present, the
duration is assumed to be the length of the sample.

 ■ Tween data atom (atom type is 'twdt'). This atom contains the actual values for the interpolation.
The contents depend on the value of the tween type atom.

 ■ Tween type atom (atom type is 'twnt'). Describes the type of interpolation to perform.

Table 3-11 (page 154) shows all currently defined tween types. All tween types are currently supported
using linear interpolation.

Table 3-11 Tween type values

Tween dataValueTween type

Two 16-bit integers.116-bit integer

Two 32-bit integers.232-bit integer

154 Tween Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Tween dataValueTween type

Two 32-bit fixed-point numbers.332-bit fixed-point

Two points.4Point: two 16-bit integers

Two rectangles.5Rectangle: four 16-bit integers

Two rectangles and a region. The tween entry atom must
contain a 'qdrg' atom with an atom ID value of 1. The
region is transformed through the resulting matrices.

6QuickDraw region

Two matrices.7Matrix

Two RGB colors.8RGB color: three 16-bit integers

Two graphics modes with RGB color. Only the RGB color
is interpolated. The graphics modes must be the same.

9Graphics mode with RGB color

Each tween type is distinguished from other types by these characteristics:

 ■ Input values or structures of a particular type

 ■ A particular number of input values or structures (most often one or two)

 ■ Output values or structures of a particular type

 ■ A particular algorithm used to derive the output values

Tween operations for each tween type are performed by a tween component that is specific to that
type or, for a number of tween types that are native to QuickTime, by QuickTime itself. Movies and
applications that use tweening do not need to specify the tween component to use; QuickTime identifies
a tween type by its tween type identifier and automatically routes its data to the correct tween
component or to QuickTime.

When a movie contains a tween track, the tween media handler invokes the necessary component
(or built-in QuickTime code) for tween operations and delivers the results to another media handler.
The receiving media handler can then use the values it receives to modify its playback. For example,
the data in a tween track can be used to alter the volume of a sound track.

Tweening can also be used outside of movies by applications or other software that can use the values
it generates.

Tween Type Categories

Each of the tween types supported by QuickTime belongs to one of these categories:

 ■ Numeric tween types, which have pairs of numeric values, such as long integers, as input. For
these types, linear interpolation is used to generate output values.

 ■ QuickDraw tween types, most of which have pairs of QuickDraw structures, such as points or
rectangles, as input. For these types, one or more structure elements are interpolated, such as the
h and v values for points, and each element that is interpolated is interpolated separately from
others.

Tween Media 155
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 ■ 3D tween types, which have a QuickDraw 3D structure such as TQ3Matrix4x4 or
TQ3RotateAboutAxisTransformData as input. For these types, a specific 3D transformation is
performed on the data to generate output.

 ■ The polygon tween type, which takes three four-sided polygons as input. One polygon (such as
the bounds for a sprite or track) is transformed, and the two others specify the start and end of
the range of polygons into which the tween operation maps it. You can use the output (a
MatrixRecord data structure) to map the source polygon into any intermediate polygon. The
intermediate polygon is interpolated from the start and end polygons for each particular time in
the tween duration.

 ■ Path tween types, whichhave as input a QuickTime vector data stream for a path. Four of the
path tween types also have as input a percentage of path’s length; for these types, either a point
on the path or a data structure is returned. Two other path tween types treat the path as a function:
one returns the y value of the point on the path with a given x value, and the other returns the x
value of the point on the path with a given y value.

 ■ The list tween type, which has as input a QT atom container that contains leaf atoms of a specified
atom type. For this tween type category, the duration of the tween operation is divided by the
number of leaf atoms of the specified type. For time points within the first time division, the data
for the first leaf atom is returned; for the second time division, the data for the second leaf atom
is returned; and so on. The resulting tween operation proceeds in discrete steps (one step for each
leaf atom), instead of the relatively continuous tweening produced by other tween type categories.

Tween QT Atom Container

The characteristics of a tween are specified by the atoms in a tween QT atom container.

A tween QT atom container can contain the atoms described in the following sections.

General Tween Atoms

 ■ kTweenEntry

Specifies a tween atom, which can be either a single tween atom, a tween atom in a tween sequence,
or an interpolation tween atom.

Its parent is the tween QT atom container (which you specify with the constant
kParentAtomIsContainer).

The index of a kTweenEntry atom specifies when it was added to the QT atom container; the first
added has the index 1, the second 2, and so on. The ID of a kTweenEntry atom can be any ID that
is unique among the kTweenEntry atoms contained in the same QuickTime atom container.

This atom is a parent atom. It must contain the following child atoms:

 ❏ A kTweenType atom that specifies the tween type.

 ❏ One or more kTweenData atoms that contain the data for the tween atom. Each kTweenData
atom can contain different data to be processed by the tween component, and a tween
component can process data from only one kTweenData atom a time. For example, an
application can use a list tween to animate sprites. The kTweenEntry atom for the tween atom
could contain three sets of animation data, one for moving the sprite from left to right, one
for moving the sprite from right to left, and one for moving the sprite from top to bottom. In

156 Tween Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

this case, the kTweenEntry atom for the tween atom would contain three kTweenData atoms,
one for each data set. The application specifies the desired data set by specifying the ID of
the kTweenData atom to use.

A kTweenEntry atom can contain any of the following optional child atoms:

 ❏ A kTweenStartOffset atom that specifies a time interval, beginning at the start of the tween
media sample, after which the tween operation begins. If this atom is not included, the tween
operation begins at the start of the tween media sample.

 ❏ A kTweenDuration atom that specifies the duration of the tween operation. If this atom is
not included, the duration of the tween operation is the duration of the media sample that
contains it.

If a kTweenEntry atom specifies a path tween, it can contain the following optional child
atom:

 ❏ A kTweenFlags atom containing flags that control the tween operation. If this atom is not
included, no flags are set.

Note that interpolation tween tracks are tween tracks that modify other tween tracks. The
output of an interpolation tween track must be a time value, and the time values generated
are used in place of the input time values of the tween track being modified.

If a kTweenEntry atom specifies an interpolation tween track, it must contain the following
child atoms:

 ❏ A kTweenInterpolationID atom for each kTweenData atom to be interpolated. The ID of
each kTweenInterpolationID atom must match the ID of the kTweenData atom to be
interpolated. The data for a kTweenInterpolationID atom specifies a kTweenEntry atom
that contains the interpolation tween track to use for the kTweenData atom.

If this atom specifies an interpolation tween track, it can contain either of the following
optional child atoms:

 ❏ A kTweenOutputMin atom that specifies the minimum output value of the interpolation tween
atom. The value of this atom is used only if there is also a kTweenOutputMax atom with the
same parent. If this atom is not included and there is a kTweenOutputMax atom with the same
parent, the tween component uses 0 as the minimum value when scaling output values of
the interpolation tween track.

 ❏ A kTweenOutputMax atom that specifies the maximum output value of the interpolation tween
atom. If this atom is not included, the tween component does not scale the output values of
the interpolation tween track.

 ■ kTweenStartOffset

For a tween atom in a tween track of a QuickTime movie, specifies a time offset from the start of
the tween media sample to the start of the tween atom. The time units are the units used for the
tween track.

Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kTweenStartOffset atom. The ID of this atom is
always 1. The index of this atom is always 1.

This atom is a leaf atom. The data type of its data is TimeValue.

This atom is optional. If it is not included, the tween operation begins at the start of the tween
media sample.

Tween Media 157
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 ■ kTweenDuration

Specifies the duration of a tween operation. When a QuickTime movie includes a tween track,
the time units for the duration are those of the tween track. If a tween component is used outside
of a movie, the application using the tween data determines how the duration value and values
returned by the component are interpreted.

Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kTweenDuration atom. The ID of this atom is always
1. The index of this atom is always 1.

This atom is a leaf atom. The data type of its data is TimeValue.

This atom is optional. If it is not included, the duration of the tween operation is the duration of
the media sample that contains it.

 ■ kTweenData

Contains data for a tween atom.

Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain any number of kTweenData atoms.

The index of a kTweenData atom specifies when it was added to the kTweenEntry atom; the first
added has the index 1, the second 2, and so on. The ID of a kTweenData atom can be any ID that
is unique among the kTweenData atoms contained in the same kTweenEntry atom.

At least one kTweenData atom is required in a kTweenEntry atom.

For single tween atoms, a kTweenData atom is a leaf atom. It can contain data of any type.

For polygon tween atoms, a kTweenData atom is a leaf atom. The data type of its data is Fixed[27],
which specifies three polygons.

For path tweens, a kTweenData atom is a leaf atom. The data type of its data is Handle, which
contains a QuickTime vector.

In interpolation tween atoms, a kTweenData atom is a leaf atom. It can contain data of any type.
An interpolation tween atom can be any tween atoms other than a list tween atom that returns a
time value.

In list tween atoms, a kTweenData atom is a parent atom that must contain the following child
atoms:

 ❏ A kListElementType atom that specifies the atom type of the elements of the tween atom.

 ❏ One or more leaf atoms of the type specified by the kListElementType atom. The data for
each atom is the result of a list tween operation.

 ■ kNameAtom

Specifies the name of a tween atom. The name, which is optional, is not used by tween components,
but it can be used by applications or other software.

Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kNameAtom atom. The ID of this atom is always 1. The
index of this atom is always 1.

This atom is a leaf atom. Its data type is String.

This atom is optional. If it is not included, the tween atom does not have a name.

158 Tween Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 ■ kTweenType

Specifies the tween type (the data type of the data for the tween operation).

Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kTweenType atom. The ID of this atom is always 1.
The index of this atom is always 1.

This atom is a leaf atom. The data type of its data is OSType.

This atom is required.

Path Tween Atoms

 ■ kTweenFlags

Contains flags that control the tween operation. One flag that controls path tween atoms is defined:

 ❏ The kTweenReturnDelta flag applies only to path tween atoms (tweens of type
kTweenTypePathToFixedPoint, kTweenTypePathToMatrixTranslation,
kTweenTypePathToMatrixTranslationAndRotation, kTweenTypePathXtoY, or
kTweenTypePathYtoX). If the flag is set, the tween component returns the change in value
from the last time it was invoked. If the flag is not set, or if the tween component has not
previously been invoked, the tween component returns the normal result for the tween atom.

Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kTweenFlags atom. The ID of this atom is always
1. The index of this atom is always 1.

This atom is a leaf atom. The data type of its data is Long.

This atom is optional. If it is not included, no flags are set.

 ■ kInitialRotationAtom

Specifies an initial angle of rotation for a path tween atom of type
kTweenTypePathToMatrixRotation, kTweenTypePathToMatrixTranslation, or
kTweenTypePathToMatrixTranslationAndRotation.

Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kInitialRotationAtom atom. The ID of this atom is
always 1. The index of this atom is always 1.

This atom is a leaf atom. Its data type is Fixed.

This atom is optional. If it is not included, no initial rotation of the tween atom is performed.

List Tween Atoms

 ■ kListElementType

Specifies the atom type of the elements in a list tween atom.

Its parent atom is a kTweenData atom.

A kTweenEntry atom can contain only one kListElementType atom. The ID of this atom is always
1. The index of this atom is always 1.

Tween Media 159
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

This atom is a leaf atom. Its data type is QTAtomType.

This atom is required in the kTweenData atom for a list tween atom.

3D Tween Atoms

 ■ kTween3dInitialCondition

Specifies an initial transform for a 3D tween atom whose tween type is one of the following:
kTweenType3dCameraData, kTweenType3dMatrix, kTweenType3dQuaternion,
kTweenType3dRotate, kTweenType3dRotateAboutAxis, kTweenType3dRotateAboutAxis,
kTweenType3dRotateAboutPoint, kTweenType3dRotateAboutVector, kTweenType3dScale,
or kTweenType3dTranslate.

Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kTween3dInitialCondition atom. The ID of this
atom is always 1. The index of this atom is always 1.

This atom is a leaf atom. The data type of its data is as follows:

 ❏ For a kTweenType3dCameraData tween, its data type is TQ3CameraData.

 ❏ For a kTweenType3dMatrix tween, its data type is TQ3Matrix4x4.

 ❏ For a kTweenType3dQuaternion tween, its data type is TQ3Quaternion.

 ❏ For a kTweenType3dRotate tween, its data type is TQ3RotateTransformData.

 ❏ For a kTweenType3dRotateAboutAxis tween, its data type is
TQ3RotateAboutAxisTransformData.

 ❏ For a kTweenType3dRotateAboutPoint tween, its data type is
TQ3RotateAboutPointTransformData.

 ❏ For a kTweenType3dRotateAboutVector tween, its data type is TQ3PlaneEquation.

 ❏ For a kTweenType3dScale tween, its data type is TQ3Vector3D.

 ❏ For a kTweenType3dTranslate tween, its data type is TQ3Vector3D.

This atom is optional. For each tween type, the default value is the data structure that specifies
an identity transform, that is, a transform that does not alter the 3D data.

Interpolation Tween Atoms

 ■ kTweenOutputMax

Specifies the maximum output value of an interpolation tween atom. If a kTweenOutputMax atom
is included for an interpolation tween, output values for the tween atom are scaled to be within
the minimum and maximum values. The minimum value is either the value of the
kTweenOutputMin atom or, if there is no kTweenOutputMin atom, 0. For example, if an interpolation
tween atom has values between 0 and 4, and it has kTweenOutputMin and kTweenOutputMax
atoms with values 1 and 2, respectively, a value of 0 (the minimum value before scaling) is scaled
to 1 (the minimum specified by the kTweenOutputMin atom), a value of 4 (the maximum value
before scaling) is scaled to 2 (the maximum specified by the kTweenOutputMax atom), and a value
of 3 (three-quarters of the way between the maximum and minimum values before scaling) is
scaled to 1.75 (three-quarters of the way between the values of the kTweenOutputMin and
kTweenOutputMax atoms).

160 Tween Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kTweenOutputMax atom. The ID of this atom is always
1. The index of this atom is always 1.

This atom is a leaf atom. The data type of its data is Fixed.

This atom is optional. If it is not included, QuickTime does not scale interpolation tween values.

 ■ kTweenOutputMin

Specifies the minimum output value of an interpolation tween atom. If both kTweenOutputMin
and kTweenOutputMax atoms are included for an interpolation tween atom, output values for the
tween atom are scaled to be within the minimum and maximum values. For example, if an
interpolation tween atom has values between 0 and 4, and it has kTweenOutputMin and
kTweenOutputMax atoms with values 1 and 2, respectively, a value of 0 (the minimum value
before scaling) is scaled to 1 (the minimum specified by the kTweenOutputMin atom), a value of
4 (the maximum value before scaling) is scaled to 2 (the maximum specified by the
kTweenOutputMax atom), and a value of 3 (three-quarters of the way between the maximum and
minimum values before scaling) is scaled to 1.75 (three-quarters of the way between the values
of the kTweenOutputMin and kTweenOutputMax atoms).

If a kTweenOutputMin atom is included but a kTweenOutputMax atom is not, QuickTime does not
scale interpolation tween values.

Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kTweenOutputMin atom. The ID of this atom is always
1. The index of this atom is always 1.

This atom is a leaf atom. The data type of its data is Fixed.

This atom is optional. If it is not included but a kTweenOutputMax atom is, the tween component
uses 0 as the minimum value for scaling values of an interpolation tween atom.

 ■ kTweenInterpolationID

Specifies an interpolation tween atom to use for a specified kTweenData atom. There can be any
number of kTweenInterpolationID atoms for a tween atom, one for each kTweenData atom to
be interpolated.

Its parent atom is a kTweenEntry atom.

The index of a kTweenInterpolationID atom specifies when it was added to the kTweenEntry
atom; the first added has the index 1, the second 2, and so on. The ID of a kTweenInterpolationID
atom must match the atom ID of the kTweenData atom to be interpolated, and be unique among
the kTweenInterpolationID atoms contained in the same kTweenEntry atom.

This atom is a leaf atom. The data type of its data is QTAtomID.

This atom is required for an interpolation tween atom.

Region Tween Atoms

 ■ kTweenPictureData

Contains the data for a QuickDraw picture. Used only by a kTweenTypeQDRegion atom.

Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kTweenPictureData or kTweenRegionData atom.
The ID of this atom is always 1. The index of this atom is always 1.

Tween Media 161
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

This atom is a leaf atom. The data type of its data is Picture.

Either a kTweenPictureData or kTweenRegionData atom is required for a kTweenTypeQDRegion
atom.

 ■ kTweenRegionData

Contains the data for a QuickDraw region. Used only by a kTweenTypeQDRegion atom.

Its parent atom is a kTweenEntry atom.

A kTweenEntry atom can contain only one kTweenRegionData or kTweenPictureData atom.
The ID of this atom is always 1. The index of this atom is always 1.

This atom is a leaf atom. The data type of its data is Region.

Either a kTweenPictureData or kTweenRegionData atom is required for a kTweenTypeQDRegion
tween.

Sequence Tween Atoms

 ■ kTweenSequenceElement

Specifies an entry in a tween sequence.

Its parent is the tween QT atom container (which you specify with the constant
kParentAtomIsContainer).

The ID of a kTweenSequenceElement atom must be unique among the kTweenSequenceElement
atoms in the same QT atom container. The index of a kTweenSequenceElement atom specifies its
order in the sequence; the first entry in the sequence has the index 1, the second 2, and so on.

This atom is a leaf atom. The data type of its data is TweenSequenceEntryRecord, a data structure
that contains the following fields:

endPercent
A value of type Fixed that specifies the point in the duration of the tween media sample at
which the sequence entry ends. This is expressed as a percentage; for example, if the value is
75.0, the sequence entry ends after three-quarters of the total duration of the tween media
sample have elapsed. The sequence entry begins after the end of the previous sequence entry
or, for the first entry in the sequence, at the beginning of the tween media sample.

tweenAtomID
A value of type QTAtomID that specifies the kTweenEntry atom containing the tween for the
sequence element. The kTweenEntry atom and the kTweenSequenceElement atom must both
be a child atoms of the same tween QT atom container.

dataAtomID
A value of type QTAtomID that specifies the kTweenData atom containing the data for the tween.
This atom must be a child atom of the atom specified by the tweenAtomID field.

162 Tween Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Modifier Tracks

The addition of modifier tracks in QuickTime 2.1 introduced the capability for creating dynamic
movies. (A modifier track sends data to another track; by comparison, a track reference is an
association.) For example, instead of playing video in a normal way, a video track could send its
image data to a sprite track. The sprite track then could use that video data to replace the image of
one of its sprites. When the movie is played, the video track appears as a sprite.

Modifier tracks are not a new type of track. Instead, they are a new way of using the data in existing
tracks. A modifier track does not present its data, but sends it to another track that uses the data to
modify how it presents its own data. Any track can be either a sender or a presenter, but not both.
Previously, all tracks were presenters.

Another use of modifier tracks is to store a series of sound volume levels, which is what occurs when
you work with a tween track. These sound levels can be sent to a sound track as it plays to dynamically
adjust the volume. A similar use of modifier tracks is to store location and size information. This data
can be sent to a video track to cause it to move and resize as it plays.

Because a modifier track can send its data to more than one track, you can easily synchronize actions
between multiple tracks. For example, a single modifier track containing matrices as its samples can
make two separate video tracks follow the same path.

See “Creating Movies With Modifier Tracks” (page 238) for more information about using modifier
tracks.

Limitations of Spatial Modifier Tracks

A modifier track may cause a track to move outside of its original boundary regions. This may present
problems, since applications do not expect the dimensions or location of a QuickTime movie to change
over time.

To ensure that a movie maintains a constant location and size, the Movie Toolbox limits the area in
which a spatially modified track can be displayed. A movie’s “natural” shape is defined by the region
returned by the GetMovieBoundsRgn function. The toolbox clips all spatially modified tracks against
the region returned by GetMovieBoundsRgn. This means that a track can move outside of its initial
boundary regions, but it cannot move beyond the combined initial boundary regions of all tracks in
the movie. Areas uncovered by a moving track are handled by the toolbox in the same way as areas
uncovered by tracks with empty edits.

If a track has to move through a larger area than that defined by the movie’s boundary region, the
movie’s boundary region can be enlarged to any desired size by creating a spatial track (such as a
video track) of the desired size but with no data. As long as the track is enabled, it contributes to the
boundary regions of the movie.

Modifier Tracks 163
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Track References

Although QuickTime has always allowed the creation of movies that contain more than one track, it
has not been able to specify relationships between those tracks. Track references are a feature of
QuickTime that allows you to relate a movie’s tracks to one another. The QuickTime track-reference
mechanism supports many-to-many relationships. That is, any movie track may contain one or more
track references, and any track may be related to one or more other tracks in the movie.

Track references can be useful in a variety of ways. For example, track references can be used to relate
timecode tracks to other movie tracks. You can use track references to identify relationships between
video and sound tracks—identifying the track that contains dialog and the track that contains
background sounds, for example. Another use of track references is to associate one or more text
tracks that contain subtitles with the appropriate audio track or tracks.

Track references are also used to create chapter lists, as described in the next section.

Every movie track contains a list of its track references. Each track reference identifies another related
track. That related track is identified by its track identifier. The track reference itself contains
information that allows you to classify the references by type. This type information is stored in an
OSType data type. You are free to specify any type value you want. Note, however, that Apple has
reserved all lowercase type values.

You may create as many track references as you want, and you may create more than one reference
of a given type. Each track reference of a given type is assigned an index value. The index values start
at 1 for each different reference type. The Movie Toolbox maintains these index values, so that they
always start at 1 and count by 1.

Using the AddTrackReference function, you can relate one track to another. The
DeleteTrackReference function will remove that relationship. The SetTrackReference and
GetTrackReference functions allow you to modify an existing track reference so that it identifies a
different track. The GetNextTrackReferenceType and GetTrackReferenceCount functions allow
you to scan all of a track’s track references.

Chapter Lists

A chapter list provides a set of named entry points into a movie, allowing the user to jump to a
preselected point in the movie from a convenient pop-up list.

The movie controller automatically recognizes a chapter list and will create a pop-up list from it.
When the user makes a selection from the pop-up, the controller will jump to the appropriate point
in the movie. Note that if the movie is sized so that the controller is too narrow to display the chapter
names, the pop-up list will not appear.

To create a chapter list, you must create a text track with one sample for each chapter. The display
time for each sample corresponds to the point in the movie that marks the beginning of that chapter.
You must also create a track reference of type 'chap' from an enabled track of the movie to the text
track. It is the 'chap' track reference that makes the text track into a chapter list. The track containing
the reference can be of any type (audio, video, MPEG, and so on), but it must be enabled for the
chapter list to be recognized.

164 Track References
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Given an enabled track myVideoTrack, for example, you can use the AddTrackReference function
to create the chapter reference:

 AddTrackReference(myVideoTrack, theTextTrack,
 kTrackReferenceChapterList,
 &addedIndex);

kTrackReferenceChapterList is defined in Movies.h. It has the value 'chap'.

The text track that constitutes the chapter list does not need to be enabled, and normally is not. If it
is enabled, the text track will be displayed as part of the movie, just like any other text track, in addition
to functioning as a chapter list.

If more than one enabled track includes a 'chap' track reference, QuickTime uses the first chapter
list that it finds.

3D Media

QuickTime movies store 3D image data in a base media. This media has a media type of 'qd3d'.

3D Sample Description

The 3D sample description uses the standard sample description header, as described in “Sample
Table Atoms” (page 76).

The data format field in the sample description is always set to 'qd3d'. The 3D media handler adds
no additional fields to the sample description.

3D Sample Data

The 3D samples are stored in the 3D Metafile format developed for QuickDraw 3D.

Streaming Media

QuickTime movies store streaming data in a streaming media track. This media has a media type of
'strm'.

Streaming Media Sample Description

The streaming media sample description contains information that defines how to interpret streaming
media data. This sample description is based on the standard sample description header, as described
in “Sample Table Atoms” (page 76).

3D Media 165
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

The streaming media sample description is documented in the QuickTime header file QTSMovie.h,
as shown in Listing 3-1 (page 166).

Listing 3-1 Streaming media sample description

struct QTSSampleDescription {
 long descSize;
 long dataFormat;
 long resvd1; /* set to 0*/
 short resvd2; /* set to 0*/
 short dataRefIndex;
 UInt32 version;
 UInt32 resvd3; /* set to 0*/
 SInt32 flags;
 /* qt atoms follow:*/
 /* long size, long type, some data*/
 /* repeat as necessary*/
};
typedef struct QTSSampleDescription QTSSampleDescription;

The sample format depends on the dataFormat field of the QTSSampleDescription. The dataFormat
field can be any value you specify. The currently defined values are 'rtsp' and 'sdp '.

If 'rtsp', the sample can be just an rtsp URL. It can also be any value that you can put in a .rtsp
file, as defined at

http://streaming.apple.com/qtstreaming/documentation/userdocs/rtsptags.htm

If 'sdp ', then the sample is an SDP file. This would be used to receive a multicast broadcast.

Hint Media

The QuickTime file format supports streaming of media data over a network as well as local playback.
The process of sending protocol data units is time-based, just like the display of time-based data, and
is therefore suitably described by a time-based format. A QuickTime file or movie that supports
streaming includes information about the data units to stream. This information is included in
additional tracks of the movie called hint tracks.

Hint tracks contain instructions for a streaming server which assist in the formation of packets. These
instructions may contain immediate data for the server to send (for example, header information) or
reference segments of the media data. These instructions are encoded in the QuickTime file in the
same way that editing or presentation information is encoded in a QuickTime file for local playback.

Instead of editing or presentation information, information is provided which allows a server to
packetize the media data in a manner suitable for streaming, using a specific network transport.

The same media data is used in a QuickTime file which contains hints, whether it is for local playback,
or streaming over a number of different transport types. Separate hint tracks for different transport
types may be included within the same file and the media will play over all such transport types
without making any additional copies of the media itself. In addition, existing media can be easily
made streamable by the addition of appropriate hint tracks for specific transports. The media data
itself need not be recast or reformatted in any way.

166 Hint Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Typically, hinting is performed by media packetizer components. QuickTime selects an appropriate
media packetizer for each track and routes each packetizer's output through an Apple-provided
packet builder to create a hint track. One hint track is created for each streamable track in the movie.

Hint tracks are quite small compared with audio or video tracks. A movie that contains hint tracks
can be played from a local disk or streamed over HTTP, similar to any other QuickTime movie. Hint
tracks are only used when streaming a movie over a real-time media streaming protocol, such as RTP.

Support for streaming in the QuickTime file format is based upon the following considerations:

 ■ Media data represented as a set of network-independent standard QuickTime tracks, which may
be played or edited, as normal.

 ■ A common declaration and base structure for server hint tracks; this common format is protocol
independent, but contains the declarations of which protocols are described in the server tracks.

 ■ A specific design of the server hint tracks for each protocol which may be transmitted; all these
designs use the same basic structure.

The resulting streams, sent by the servers under the direction of hint tracks, do not need to contain
any trace of QuickTime information. This approach does not require that QuickTime, or its structures
or declaration style, be used either in the data on the wire or in the decoding station. For example, a
QuickTime file using H.261 video and DVI audio, streamed under Real-Time Protocol (RTP), results
in a packet stream which is fully compliant with the IETF specifications for packing those codings
into RTP.

Hint tracks are built and flagged, so that when the movie is viewed directly (not streamed), they are
ignored.

The next section describes a generic format for streaming hints to be stored in a QuickTime movie.

Adding Hint Tracks to a Movie

To store packetization hints, one or more hint tracks are added to a movie. Each hint track contains
hints for at least one actual media track to be streamed. A streamed media track may have more than
one hint track. For example, it might have a separate hint track for the different packet sizes the server
supports, or it might have different hint tracks for different protocols. It is not required that all media
tracks have corresponding hint tracks in a movie.

The sample time of a hint sample corresponds to the sample time of the media contained in the packets
generated by that hint sample. The hint sample may also contain a transmission time for each packet.
(The format for the hint sample is specific to the hint track type.)

The hint track may have a different time scale than its referenced media tracks.

The flags field in the track header atom ('tkhd') must be set to 0x000000, indicating that the track
is inactive and is not part of the movie, preview, or poster.

The subType field of the handler description atom ('hdlr') contains 'hint', indicating that the media
type is packetization hints.

Note that if a QuickTime media track is edited, any previously stored packetization hints may become
invalid. Comparing the modification dates of the media track and the hint track is one way to determine
this scenario, but it is far from being foolproof. Since the hint track keeps track of which original track

Hint Media 167
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

media samples and sample descriptions to play at specific times, changes that affect those parts of
the original track or media make those hints invalid. Changes to a movie that do not invalidate existing
hint tracks include flattening (when there are no edit lists), and adding new tracks. Changes that
invalidate hint tracks include:

 ■ Flattening (when there are edit lists)

 ■ Adding or deleting samples

 ■ Changing a track’s time scale

 ■ Changing sample descriptions

Warning: Hint tracks are marked as inactive, so calling the FlattenMovie function with
the flattenActiveTracksOnly bit set deletes all hint tracks from a movie.

Packetization Hint Media Header Atom

In QuickTime movies, the media information atom ('minf') contains header data specific to the
media. For hint tracks, the media header is a base media information atom ('gmhd'). The hint track
must contain the base media information atom.

Hint Track User Data Atom

Each hint track may contain track user data atoms that apply to only to the corresponding hint track.
There are currently two such atoms defined.

 ■ User data atom type 'hinf'.

This contains statistics for the hint track. The 'hinf' atom contains child atoms as defined in Table
3-12 (page 169). In some cases, there are both 32-bit and 64-bit counters available. Any unknown types
should be ignored.

 ■ User data atom type 'hnti'.

This may contain child atoms. Child atoms that start with 'sdp ' (note, again, the space) contain SDP
text for this track. Text from these child atoms must be inserted into the proper place in the SDP text
for the movie, after any common SDP text. This is analogous to the movie-level 'hnti' atom.

Movie Hint Info Atom

A movie may contain an 'hnti' movie user data atom, which may contain one or more child atoms.
The child atom contents start with 4 bytes that specify the transport and 4 bytes that specify the type
of data contained in the rest of the child atom. Currently, the only defined transport is 'rtp ' (note
the space) and the only content data type defined is 'sdp ' (note the space). Child atoms whose
transport or type combinations you don’t recognize should be skipped.

168 Hint Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

The text in an atom of type 'rtp sdp ' should be inserted (in the proper place) into the SDP
information generated from this file (for example, by a streaming server) before any SDP information
for specific tracks.

Table 3-12 (page 169) describes the type and values of the 'hnti' atom.

Table 3-12 The 'hinf' atom type containing child atoms

DescriptionValueType

The total number of bytes that will be sent, including 12-byte RTP headers, but
not including any network headers.

8 bytes'trpY

4-byte version of 'trpY 4 bytes'totl'

The total number of network packets that will be sent (if the application knows
there is a 28-byte network header, it can multiply 28 by this number and add it
to the 'trpY value to get the true number of bytes sent.

8 bytes'nump'

4-byte version of 'nump'4 bytes'npck'

The total number of bytes that will be sent, not including 12-byte RTP headers.8 bytes'tpyl'

4-byte version of 'tpyl'4 bytes'tpaY

The maximum data rate. This atom contains two numbers: g, followed by m
(both 32-bit values). g is the granularity, in milliseconds. m is the maximum
data rate given that granularity. For example, if g is 1 second, then m is the
maximum data rate over any 1 second. There may be multiple 'maxr' atoms,
with different values for g. The maximum data rate calculation does not include
any network headers (but does include 12-byte RTP headers).

8 bytes'maxr'

The number of bytes from the media track to be sent.8 bytes'dmed'

The number of bytes of immediate data to be sent.8 bytes'dimm'

The number of bytes of repeated data to be sent.8 bytes'drep'

The smallest relative transmission time, in milliseconds.4 bytes'tmin'

The largest relative transmission time, in milliseconds.4 bytes'tmax'

The largest packet, in bytes; includes 12-byte RTP header.4 bytes'pmax'

The largest packet duration, in milliseconds.4 bytes'dmax'

The payload type, which includes payload number (32-bits) followed by rtpmap
payload string (Pascal string).

Variable'payt'

Hint Media 169
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Note: Any of the atoms shown in Table 3-12 (page 169) may or may not be present. These atoms are
not guaranteed.

Finding an Original Media Track From a Hint Track

Like any other QuickTime track, hint tracks can contain track reference atoms. Exactly one of these
must be of track reference type 'hint', and its internal list must contain at least one track ID, which
is the track ID of the original media track. Like other track reference atoms, there may be empty
references in this list, indicated by a track ID of 0. For hint tracks that refer to more than one track,
the index number (starting at 1, and including any 0 entries) is used in the media track reference index
field in some of the packet data table entry modes.

For example, if you have MPEG-1 video at track ID 11 and MPEG-1 layer 2 audio at track ID 12, and
you are creating a RTP hint track that encapsulates these in an MPEG-2 transport, you need to refer
to both tracks. You can also assume that there are some empty entries and other track references in
your hint track atom reference atom’s list. So it might look like this: 11, 0, 0, 14, 0, 12, 0. When you
are assembling packets from audio and video tracks 11 and 12, you use their list indexes (1 and 6) in
the media track ref index field.

If you have only one media track listed in your hint track reference, you may simply use a 0 in the
media track ref index field.

RTP Hint Tracks

RTP hint tracks contain information that allows a streaming server to create RTP streams from a
QuickTime movie, without requiring the server to know anything about the media type, compression,
or payload format.

In RTP, each media stream, such as an audio or video track, is sent as a separate RTP stream.
Consequently, each media track in the movie has an associated RTP hint track containing the data
necessary to packetize it for RTP transport, and each hint track contains a track reference back to its
associated media track.

Media tracks that do not have an associated RTP hint track cannot be streamed over RTP and should
be ignored by RTP streaming servers.

It is possible for a media track to have more than one associated hint track. The hint track contains
information such as the packet size and time scale in the hint track’s sample description. This minimizes
the runtime server load, but in order to support multiple packet sizes it is necessary to have multiple
RTP hint tracks for each media track, each with different a packet size. A similar mechanism could
be used to provide hint tracks for multiple protocols in the future.

It is also possible for a single hint track to refer to more than one media stream. For example, audio
and video MPEG elementary streams could be multiplexed into a single systems stream RTP payload
format, and a single hint track would contain the necessary information to combine both elementary
streams into a single series of RTP packets.

170 Finding an Original Media Track From a Hint Track
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

This is the exception rather than the rule, however. In general, multiplexing is achieved by using IP’s
port-level multiplexing, not by interleaving the data from multiple streams into a single RTP session.

The hint track is related to each base media track by a track reference declaration. The sample
description for RTP declares the maximum packet size that this hint track will generate. Partial session
description (SDP) information is stored in the track’s user data atom.

Hint Sample Data Format

The sample description atom ('stsd') contains information about the hint track samples. It specifies
the data format (note that currently only RTP data format is defined) and the data reference to use
(if more than one is defined) to locate the hint track sample data. It also contains some general
information about this hint track, such as the hint track version number, the maximum packet size
allowed by this hint track, and the RTP time scale. It may contain additional information, such as the
random offsets to add to the RTP time stamp and sequence number.

The sample description atom can contain a table of sample descriptions to accommodate media that
are encoded in multiple formats, but a hint track can be expected to have a single sample description
at this time.

The sample description for hint tracks is defined in Table 3-13 (page 171).

Table 3-13 Hint track sample description

BytesField

4Size

4Data format

6Reserved

2Data reference index

2Hint track version

2Last compatible hint track version

4Max packet size

variableAdditional data table

Field descriptions

Size
A 32-bit integer specifying the size of this sample description in bytes.

Data format
A four-character code indicating the data format of the hint track samples. Only 'rtp ' is
currently defined. Note that the fourth character in 'rtp ' is an ASCII blank space (0x20). Do
not attempt to packetize data whose format you do not recognize.

Hint Sample Data Format 171
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Reserved
Six bytes that must be set to 0.

Data reference index
This field indirectly specifies where to find the hint track sample data. The data reference is a
file or resource specified by the data reference atom ('dref') inside the data information atom
('dinf') of the hint track. The data information atom can contain a table of data references,
and the data reference index is a 16-bit integer that tells you which entry in that table should
be used. Normally, the hint track has a single data reference, and this index entry is set to 0.

Hint track version
A 16-bit unsigned integer indicating the version of the hint track specification. This is currently
set to 1.

Last compatible hint track version
A 16-bit unsigned integer indicating the oldest hint track version with which this hint track is
backward-compatible. If your application understands the hint track version specified by this
field, it can work with this hint track.

Max packet size
A 32-bit integer indicating the packet size limit, in bytes, used when creating this hint track.
The largest packet generated by this hint track will be no larger than this limit.

Additional data table
A table of variable length containing additional information. Additional information is formatted
as a series of tagged entries.

This field always contains a tagged entry indicating the RTP time scale for RTP data. All other
tagged entries are optional.

Three data tags are currently defined for RTP data. One tag is defined for use with any type
of data. You can create additional tags. Tags are identified using four-character codes. Tags
using all lowercase letters are reserved by Apple. Ignore any tagged data you do not understand.

Table entries are structured like atoms. The structure of table entries is shown in Table 3-14 (page
172).

Table 3-14 The structure of table entries

BytesFormatField

432-bit integerEntry length

44-char codeData tag

Entry length - 8VariableData

Tagged entries for the 'rtp ' data format are defined as follows:

'tims'
A 32-bit integer specifying the RTP time scale. This entry is required for RTP data.

'tsro'
A 32-bit integer specifying the offset to add to the stored time stamp when sending RTP packets.
If this entry is not present, a random offset should be used, as specified by the IETF. If this
entry is 0, use an offset of 0 (no offset).

172 Hint Sample Data Format
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

'snro'
A 32-bit integer specifying the offset to add to the sequence number when sending RTP packets.
If this entry is not present, a random offset should be used, as specified by the IETF. If this
entry is 0, use an offset of 0 (no offset).

Packetization Hint Sample Data for Data Format 'rtp '

This section describes the sample data for the 'rtp ' format. The 'rtp ' format assumes that the
server is sending data using Real-Time Transport Protocol (RTP). This format also assumes that the
server “knows” about RTP headers but does not require that the server know anything about specific
media headers, including media headers defined in various IETF drafts.

Each sample in the hint track will generate one or more RTP packets. Each entry in the sample data
table in a hint track sample corresponds to a single RTP packet. Samples in the hint track may or may
not correspond exactly to samples in the media track. Data in the hint track sample is byte aligned,
but not 32-bit aligned.

The RTP timestamps of all packets in a hint sample are the same as the hint sample time. In other
words, packets that do not have the same RTP timestamp cannot be placed in the same hint sample.

The RTP hint track time scale should be reasonably chosen so that there is adequate spacing between
samples (as well as adequate spacing between transmission times for packets within a sample).

The packetization hint sample data contains the following data elements.

BytesPacketization hint sample data

2Entry count

2Reserved

VariablePacket entry table

VariableAdditional data

Field descriptions

Entry count
A 16-bit unsigned integer indicating the number of packet entries in the table. Each entry in
the table corresponds to a packet. Multiple entries in a single sample indicate that the media
sample had to be split into multiple packets. A sample with an entry count of 0 is reserved
and, if encountered, must be skipped.

Reserved
Two bytes that must be set to 0.

Packet entry table
A variable length table containing packet entries. Packet entries are defined below.

Additional data
A variable length field containing data pointed to by the entries in the data table.

Packetization Hint Sample Data for Data Format 'rtp ' 173
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

The packet entry contains the following data elements.

BytesPacket entry

4Relative packet transmission time

2RTP header info

2RTP sequence number

2Flags

2Entry count

0 or variableExtra information TLVs

variableData table

Relative packet transmission time
A 32-bit signed integer value, indicating the time, in the hint track’s time scale, to send this
packet relative to the hint sample’s actual time. Negative values mean that the packet will be
sent earlier than real time, which is useful for smoothing the data rate. Positive values are
useful for repeating packets at later times. Within each hint sample track, each packet time
stamp must be non-decreasing.

RTP header info
A 16-bit integer specifying various values to be set in the RTP header. The bits of the field are
defined as follows.

20 3 4 5 6 7 8 9 0 1 2
MX

3 4
reserved payload type

1 5
P reserved

The RTP header information field contains the following elements.

DescriptionBit#Field

A 1-bit number corresponding to the padding (P) bit in the RTP header. This
bit should probably not be set, since a server that needs different packet
padding would need to unpad and repad the packet itself.

2P

A 1-bit number corresponding to the extension (X) bit in the RTP header. This
bit should probably not be set, since a server that needs to send its own RTP
extension would either not be able to, or would be forced to replace any
extensions from the hint track.

3X

A 1-bit number corresponding to the marker (M) bit in the RTP header.8M

A 7-bit number corresponding to the payload type (PT) field of the RTP header.9-15Payload type

All undefined bits are reserved and must be set to zero. Note that the location of the defined bits are
in the same bit location as in the RTP header.

174 Packetization Hint Sample Data for Data Format 'rtp '
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

RTP sequence number
A 16-bit integer specifying the RTP sequence number for this packet. The RTP server adds a
random offset to this sequence number before transmitting the packet. This field allows
re-transmission of packets––for example, the same packet can be assembled with the same
sequence number and a different (later) packet transmission time. A text sample with a duration
of 5 minutes can be retransmitted every 10 seconds, so that clients that miss the original sample
transmission (perhaps they started playing the movie in the middle) will be refreshed after a
maximum of 10 seconds.

Flags
A 16-bit field indicating certain attributes for this packet. Defined bits are:

10 12
BXreserved R

151413

The RTP header information field contains the following elements.

DescriptionBit#Field

A 1-bit number indicating that this packet contains an Extra information TLV data
table.

13X

A 1-bit number indicating that this packet contains data that is part of a b-frame. A
server that is having difficulty being able to send all the packets in real time may discard
packets that have this bit set, until it catches up with the clock.

14B

A 1-bit number indicating that this is a repeat packet: the data has been defined in a
previous packet. A server may choose to skip repeat packets to help it catch up when
it is behind in its transmission of packets. All repeated packets for a given packet must
live in the same hint sample.

15R

All undefined bits are reserved and must be set to 0.

Entry count
A 16-bit unsigned integer specifying the number of entries in the data table.

Extra information TLVs
The extra information TLVs are only present if and only if the X bit is set in the flags field
above. This provides a way of extending the hint track format without changing the version,
while allowing backward compatibility.

BytesExtra information TLVs

4Extra information size

4TLV size

4TLV type

Padded to 4-byte boundary(int(TLV Size -8 +3) / 4 * 4TLV data

4TLV size

Packetization Hint Sample Data for Data Format 'rtp ' 175
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

BytesExtra information TLVs

4TLV type

Padded to 4-byte boundary(int(TLV Size -8 +3) / 4 * 4TLV data

...TLV size and so forth

Extra information size
A 32-bit number that is the total size of all extra information TLVs in this packet, including the
4 bytes used for this field. An empty Extra information TLVs table would just be the extra
information size, having the value 4. (In this case, it would be more efficient simply to not set
the X bit and save 4 bytes just to represent the empty table.)

TLV size
A 32-bit number that is the total size of this one TLV entry, including 4 bytes for the size, 4
bytes for the type, and any data bytes, but not including padding required to align to the next
4 byte boundary.

TLV type
A 32-bit tag (a four-character OSType) identifying the TLV. Servers must ignore TLV types that
they do not recognize. Note that TLV types containing all lowercase letters are reserved by
Apple Computer.

TLV data
The data for the TLV.

In order to support MPEG (and other data types) whose RTP timestamp is not monotonically increasing
and directly calculated from the sample timestamp, the following TLV type is defined:

Data DescriptionTypeSize

A signed 32-bit integer to be added to the RTP timestamp, which is derived from
the hint sample timestamp.

'rtpo'12

Data table
A table that defines the data to be put in the payload portion of the RTP packet. This table
defines various places the data can be retrieved.

BytesData table entry

1Data source

15Data

The data source field of the entry table indicates how the other 15 bytes of the entry are to be
interpreted. Values of 0 through 4 are defined. The various data table formats are defined below.

Although there are various schemes, note that the entries in the various schemes are the same size,
16 bytes long.

176 Packetization Hint Sample Data for Data Format 'rtp '
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

No-Op Data Mode

The data table entry has the following format for no-op mode:

20 3 4 5 6 7 8 9 0 1 2 3 4
data source = 0 ignored

51

ignored

Field descriptions

Data source = 0
A value of 0 indicates that this data table entry is to be ignored.

Immediate Data Mode

The data table entry has the following format for immediate mode:

20 3 4 5 6 7 8 9 0 1 2 3 4
data source = 1 immediate length

51

immediate data

Field descriptions

Data source = 1
A value of 1 indicates that the data is to be immediately taken from the bytes of data that follow.

Immediate length
An 8-bit integer indicating the number of bytes to take from the data that follows. Legal values
range from 0 to 14.

Immediate data
14 bytes of data to place into the payload portion of the packet. Only the first number of bytes
indicated by the immediate length field is used.

Sample Mode

The data table entry has the following format for sample mode.

Packetization Hint Sample Data for Data Format 'rtp ' 177
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

20 3 4 5 6 7 8 9 0 1 2 3 4
data source = 2 track ref index

51

length

sample number

offset

bytes per compression block
samples per compression block

Field descriptions

Data source = 2
A value of 2 indicates that the data is to be taken from a track’s sample data.

Track ref index
A value that indicates which track the sample data will come from. A value of 0 means that
there is exactly one media track referenced, so use that. Values from 1 to 127 are indexes into
the hint track reference atom entries, indicating which original media track the sample is to be
read from. A value of -1 means the hint track itself, that is, get the sample from the same track
as the hint sample you are currently parsing.

Length
A 16-bit integer specifying the number of bytes in the sample to copy.

Sample number
A 32-bit integer specifying sample number of the track.

Offset
A 32-bit integer specifying the offset from the start of the sample from which to start copying.
If you are referencing samples in the hint track, this will generally points into the Additional
Data area.

Bytes per compression block
A 16-bit unsigned integer specifying the number of bytes that results from compressing the
number of samples in the Samples per compression block field. A value of 0 is equivalent to
a value of 1.

Samples per compression block
A 16-bit unsigned integer specifying the uncompressed samples per compression block. A
value of 0 is equivalent to a value of 1.

If the bytes per compression block and/or the samples per compression block is greater than 1, than
this ratio is used to translate a sample number into an actual byte offset.

This ratio mode is typically used for compressed audio tracks. Note that for QuickTime sound tracks,
the bytes per compression block also factors in the number of sound channels in that stream, so a
QuickTime stereo sound stream’s BPCB would be twice that of a mono stream of the same sound
format.

(CB = NS * BPCB / SPCB)

178 Packetization Hint Sample Data for Data Format 'rtp '
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

where CB = compressed bytes, NS = number of samples, BPCB = bytes per compression block, and
SPCB = samples per compression block.

An example:

A GSM compression block is typically 160 samples packed into 33 bytes.

So, BPCB = 33 and SPCB = 160.

The hint sample requests 33 bytes of data starting at the 161st media sample. Assume that the first
QuickTime chunk contains at least 320 samples. So after determining that this data will come from
chunk 1, and knowing where chunk 1 starts, you must use this ratio to adjust the offset into the file
where the requested samples will be found:

chunk_number = 1; /* calculated by walking the sample-to-chunk atom */
first_sample_in_this_chunk = 1; /* also calculated from that atom */
chunk_offset = chunk_offsets[chunk_number]; /* from the stco atom */
data_offset = (sample_number - first_sample_in_this_chunk) * BPCB / SPCB;
read_from_file(chunk_offset + data_offset, length); /* read our data */

Sample Description Mode

The data table entry has the following format for sample description mode:

20 3 4 5 6 7 8 9 0 1 2 3 4
data source = 3 track ref index

51

length

sample description index

offset

reserved

Field descriptions

Data source = 3
A value of 3 indicates that the data is to be taken from the media track's sample description
table.

Track ref index
A value that indicates which track the sample description will come from. A value of 0 means
that there is exactly one hint track reference, so use that. Values from 1 to 127 are indexes into
the hint track reference atom entries, indicating which original media track the sample is to be
read from. A value of -1 means the hint track itself, that is, get the sample description from the
same track as the hint sample you are currently parsing.

Length
A 16-bit integer specifying the number of bytes to copy.

Packetization Hint Sample Data for Data Format 'rtp ' 179
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Sample description index
A 32-bit integer specifying the index into the media's sample description table.

Offset
A 32-bit integer specifying the offset from the start of the sample description from which to
start copying.

Reserved
Four bytes that must be set to 0.

Additional data
A variable length field containing data pointed to by hint track sample mode entries in the
data table.

VR Media

This section describes the QuickTime VR world and node information atom containers, which can
be obtained by calling the QuickTime VR Manager routines QTVRGetVRWorld and QTVRGetNodeInfo.
Those routines, as well as a complete discussion of QuickTime VR and how your application can
create QuickTime VR movies, are described in detail in QuickTime VR.

Many atom types contained in the VR world and node information atom containers are unique within
their container. For example, each has a single header atom. Most parent atoms within an atom
container are unique as well, such as the node parent atom in the VR world atom container or the hot
spot parent atom in the node information atom container. For these one-time-only atoms, the atom
ID is always set to 1. Unless otherwise mentioned in the descriptions of the atoms that follow, assume
that the atom ID is 1.

Note that many atom structures contain two version fields, majorVersion and minorVersion. The
values of these fields correspond to the constants kQTVRMajorVersion and kQTVRMinorVersion
found in the header file QuickTimeVRFormat.h. For QuickTime 2.0 files, these values are 2 and 0.

QuickTime provides a number of routines for both creating and accessing atom containers.

Some of the leaf atoms within the VR world and node information atom containers contain fields that
specify the ID of string atoms that are siblings of the leaf atom. For example, the VR world header
atom contains a field for the name of the scene. The string atom is a leaf atom whose atom type is
kQTVRStringAtomType ('vrsg'). Its atom ID is that specified by the referring leaf atom.

A string atom contains a string. The structure of a string atom is defined by the QTVRStringAtom data
type.

typedef struct QTVRStringAtom {
 UInt16 stringUsage;
 UInt16 stringLength;
 unsigned char theString[4];
} QTVRStringAtom, *QTVRStringAtomPtr;

Field descriptions

stringUsage
The string usage. This field is unused.

180 VR Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

stringLength
The length, in bytes, of the string.

theString
The string. The string atom structure is extended to hold this string.

Each string atom may also have a sibling leaf atom, called the string encoding atom. The string
encoding atom’s atom type is kQTVRStringEncodingAtomType ('vrse'). Its atom ID is the same as
that of the corresponding string atom. The string encoding atom contains a single variable,
TextEncoding, a UInt32, as defined in the header file TextCommon.h. The value of TextEncoding is
handed, along with the string, to the routine QTTextToNativeText for conversion for display on the
current machine. The routine QTTextToNativeText is found in the header file Movies.h.

Note: The header file TextCommon.h contains constants and routines for generating and handling
text encodings.

VR World Atom Container

The VR world atom container (VR world for short) includes such information as the name for the
entire scene, the default node ID, and default imaging properties, as well as a list of the nodes contained
in the QTVR track.

A VR world can also contain custom scene information. QuickTime VR ignores any atom types that
it doesn’t recognize, but you can extract those atoms from the VR world using standard QuickTime
atom functions.

The structure of the VR world atom container is shown in Figure 3-16 (page 182). The component
atoms are defined and their structures are shown in the sections that follow.

VR Media 181
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Figure 3-16 Structure of the VR world atom container

VR world

VR world header

Name string

Imaging parent

Panorama imaging

Panorama imaging

Node parent

Node ID

Node ID

Node location

Node location

Cursor parent

Cursor

Color cursor

VR World Header Atom Structure

The VR world header atom is a leaf atom. Its atom type is kQTVRWorldHeaderAtomType ('vrsc'). It
contains the name of the scene and the default node ID to be used when the file is first opened as well
as fields reserved for future use.

The structure of a VR world header atom is defined by the QTVRWorldHeaderAtom data type.

typedef struct VRWorldHeaderAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 QTAtomID nameAtomID;
 UInt32 defaultNodeID;
 UInt32 vrWorldFlags;
 UInt32 reserved1;
 UInt32 reserved2;
} VRWorldHeaderAtom, *QTVRWorldHeaderAtomPtr;
QT
QT

Field descriptions

majorVersion
The major version number of the file format.

182 VR Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

minorVersion
The minor version number of the file format.

nameAtomID
The ID of the string atom that contains the name of the scene. That atom should be a sibling
of the VR world header atom. The value of this field is 0 if no name string atom exists.

defaultNodeID
The ID of the default node (that is, the node to be displayed when the file is first opened).

vrWorldFlags
A set of flags for the VR world. This field is unused.

reserved1
Reserved. This field must be 0.

reserved2
Reserved. This field must be 0.

Imaging Parent Atom

The imaging parent atom is the parent atom of one or more node-specific imaging atoms. Its atom
type is kQTVRImagingParentAtomType ('imgp'). Only panoramas have an imaging atom defined.

Panorama-Imaging Atom

A panorama-imaging atom describes the default imaging characteristics for all the panoramic nodes
in a scene. This atom overrides QuickTime VR’s own defaults.

The panorama-imaging atom has an atom type of kQTVRPanoImagingAtomType ('impn'). Generally,
there is one panorama-imaging atom for each imaging mode, so the atom ID, while it must be unique
for each atom, is ignored. QuickTime VR iterates through all the panorama-imaging atoms.

The structure of a panorama-imaging atom is defined by the QTVRPanoImagingAtom data type:

typedef struct QTVRPanoImagingAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 UInt32 imagingMode;
 UInt32 imagingValidFlags;
 UInt32 correction;
 UInt32 quality;
 UInt32 directDraw;
 UInt32 imagingProperties[6];
 UInt32 reserved1;
 UInt32 reserved2;
} QTVRPanoImagingAtom, *VRPanoImagingAtomPtr;

Field descriptions

majorVersion
The major version number of the file format.

minorVersion
The minor version number of the file format.

VR Media 183
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

imagingMode
The imaging mode to which the default values apply. Only kQTVRStatic and kQTVRMotion
are allowed here.

imagingValidFlags
A set of flags that indicate which imaging property fields in this structure are valid.

correction
The default correction mode for panoramic nodes. This can be either kQTVRNoCorrection,
kQTVRPartialCorrection, or kQTVRFullCorrection.

quality
The default imaging quality for panoramic nodes.

directDraw
The default direct-drawing property for panoramic nodes. This can be true or false.

imagingProperties
Reserved for future panorama-imaging properties.

reserved1
Reserved. This field must be 0.

reserved2
Reserved. This field must be 0.

The imagingValidFlags field in the panorama-imaging atom structure specifies which imaging
property fields in that structure are valid. You can use these bit flags to specify a value for that field:

enum {
 kQTVRValidCorrection = 1 << 0,
 kQTVRValidQuality = 1 << 1,
 kQTVRValidDirectDraw = 1 << 2,
 kQTVRValidFirstExtraProperty = 1 << 3
};

Constant descriptions

kQTVRValidCorrection
The default correction mode for panorama-imaging properties. If this bit is set, the correction
field holds a default correction mode.

kQTVRValidQuality
The default imaging quality for panorama-imaging properties. If this bit is set, the quality
field holds a default imaging quality.

kQTVRValidDirectDraw
The default direct-draw quality for panorama-imaging properties. If this bit is set, the
directDraw field holds a default direct-drawing property.

kQTVRValidFirstExtraProperty
The default imaging property for panorama-imaging properties. If this bit is set, the first
element in the array in the imagingProperties field holds a default imaging property. As
new imaging properties are added, they will be stored in this array.

184 VR Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Node Parent Atom

The node parent atom is the parent of one or more node ID atoms. The atom type of the node parent
atom is kQTVRNodeParentAtomType ('vrnp') and the atom type of the each node ID atom is
kQTVRNodeIDAtomType ('vrni').

There is one node ID atom for each node in the file. The atom ID of the node ID atom is the node ID
of the node. The node ID atom is the parent of the node location atom. The node location atom is the
only child atom defined for the node ID atom. Its atom type is kQTVRNodeLocationAtomType ('nloc').

Node Location Atom Structure

The node location atom is the only child atom defined for the node ID atom. Its atom type is
kQTVRNodeLocationAtomType ('nloc'). A node location atom describes the type of a node and its
location.

The structure of a node location atom is defined by the QTVRNodeLocationAtom data type:

typedef struct VRNodeLocationAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 OSType nodeType;
 UInt32 locationFlags;
 UInt32 locationData;
 UInt32 reserved1;
 UInt32 reserved2;
} VRNodeLocationAtom, *QTVRNodeLocationAtomPtr;
QT
QT

Field descriptions

majorVersion
The major version number of the file format.

minorVersion
The minor version number of the file format.

nodeType
The node type. This field should contain either kQTVRPanoramaType or kQTVRObjectType.

locationFlags
The location flags. This field must contain the value kQTVRSameFile, indicating that the node
is to be found in the current file. In future, these flags may indicate that the node is in a different
file or at some URL location.

locationData
The location of the node data. When the locationFlags field is kQTVRSameFile, this field
should be 0. The nodes are found in the file in the same order that they are found in the node
list.

Node Parent Atom 185
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

reserved1
Reserved. This field must be 0.

reserved2
Reserved. This field must be 0.

Custom Cursor Atoms

The hot spot information atom, discussed in “Hot Spot Information Atom” (page 188), allows you to
indicate custom cursor IDs for particular hot spots that replace the default cursors used by QuickTime
VR. QuickTime VR allows you to store your custom cursors in the VR world of the movie file.

Note: If you’re using the Mac OS, you could store your custom cursors in the resource fork of the
movie file. However, this would not work on any other platform (such as Windows), so storing cursors
in the resource fork of the movie file is not recommended.

The cursor parent atom is the parent of all of the custom cursor atoms stored in the VR world. Its
atom type is kQTVRCursorParentAtomType ('vrcp'). The child atoms of the cursor parent are either
cursor atoms or color cursor atoms. Their atom types are kQTVRCursorAtomType ('CURS') and
kQTVRColorCursorAtomType ('crsr'). These atoms are stored exactly as cursors or color cursors
would be stored as a resource.

Node Information Atom Container

The node information atom container includes general information about the node such as the node’s
type, ID, and name. The node information atom container also contains the list of hot spot atoms for
the node. A QuickTime VR movie contains one node information atom container for each node in the
file. The routine QTVRGetNodeInfo allows you to obtain the node information atom container for the
current node or for any other node in the movie.

Figure 3-17 (page 187) shows the structure of the node information atom container.

186 Custom Cursor Atoms
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Figure 3-17 Structure of the node information atom container

Node Information

Node header

Name string

Comment string

Hot spot parent

Hot spot information

Name string

Comment string

Link hot spot information

Hot spot

Hot spot information

Name string

Comment string

URL hot spot information

Hot spot

Node Header Atom Structure

A node header atom is a leaf atom that describes the type and ID of a node, as well as other information
about the node. Its atom type is kQTVRNodeHeaderAtomType ('ndhd').

The structure of a node header atom is defined by the QTVRNodeHeaderAtom data type:

typedef struct VRNodeHeaderAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 OSType nodeType;
 QTAtomID nodeID;
 QTAtomID nameAtomID;
 QTAtomID commentAtomID;
 UInt32 reserved1;
 UInt32 reserved2;
} VRNodeHeaderAtom, *VRNodeHeaderAtomPtr;

Field descriptions

majorVersion
The major version number of the file format.

Node Information Atom Container 187
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

minorVersion
The minor version number of the file format.

nodeType
The node type. This field should contain either kQTVRPanoramaType or kQTVRObjectType.

nodeID
The node ID.

nameAtomID
The ID of the string atom that contains the name of the node. This atom should be a sibling of
the node header atom. The value of this field is 0 if no name string atom exists.

commentAtomID
The ID of the string atom that contains a comment for the node. This atom should be a sibling
of the node header atom. The value of this field is 0 if no comment string atom exists.

reserved1
Reserved. This field must be 0.

reserved2
Reserved. This field must be 0.

Hot Spot Parent Atom

The hot spot parent atom is the parent for all hot spot atoms for the node. The atom type of the hot
spot parent atom is kQTVRHotSpotParentAtomType ('hspa') and the atom type of the each hot spot
atom is kQTVRHotSpotAtomType ('hots'). The atom ID of each hot spot atom is the hot spot ID for
the corresponding hot spot. The hot spot ID is determined by its color index value as it is stored in
the hot spot image track.

The hot spot track is an 8-bit video track that contains color information that indicates hot spots. For
more information, refer to Programming With QuickTime VR.

Each hot spot atom is the parent of a number of atoms that contain information about each hot spot.

Hot Spot Information Atom

The hot spot information atom contains general information about a hot spot. Its atom type is
kQTVRHotSpotInfoAtomType ('hsin'). Every hot spot atom should have a hot spot information atom
as a child.

The structure of a hot spot information atom is defined by the QTVRHotSpotInfoAtom data type:

typedef struct VRHotSpotInfoAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 OSType hotSpotType;
 QTAtomID nameAtomID;
 QTAtomID commentAtomID;
 SInt32 cursorID[3];
 Float32 bestPan;
 Float32 bestTilt;

188 Node Information Atom Container
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 Float32 bestFOV;
 FloatPoint bestViewCenter;
 Rect hotSpotRect;
 UInt32 flags;
 UInt32 reserved1;
 UInt32 reserved2;
} VRHotSpotInfoAtom, *QTVRHotSpotInfoAtomPtr;

Field descriptions

majorVersion
The major version number of the file format.

minorVersion
The minor version number of the file format.

hotSpotType
The hot spot type. This type specifies which other information atoms—if any—are siblings to
this one. QuickTime VR recognizes three types: kQTVRHotSpotLinkType, kQTVRHotSpotURLType,
and kQTVRHotSpotUndefinedType.

nameAtomID
The ID of the string atom that contains the name of the hot spot. This atom should be a sibling
of the hot spot information atom. This string is displayed in the QuickTime VR controller bar
when the mouse is moved over the hot spot.

commentAtomID
The ID of the string atom that contains a comment for the hot spot. This atom should be a
sibling of the hot spot information atom. The value of this field is 0 if no comment string atom
exists.

cursorID
An array of three IDs for custom hot spot cursors (that is, cursors that override the default hot
spot cursors provided by QuickTime VR). The first ID (cursorID[0]) specifies the cursor that
is displayed when it is in the hot spot. The second ID (cursorID[1]) specifies the cursor that
is displayed when it is in the hot spot and the mouse button is down. The third ID
(cursorID[2]) specifies the cursor that is displayed when it is in the hot spot and the mouse
button is released. To retain the default cursor for any of these operations, set the corresponding
cursor ID to 0. Custom cursors should be stored in the VR world atom container, as described
in “VR World Atom Container” (page 181).

bestPan
The best pan angle for viewing this hot spot.

bestTilt
The best tilt angle for viewing this hot spot.

bestFOV
The best field of view for viewing this hot spot.

bestViewCenter
The best view center for viewing this hot spot; applies only to object nodes.

hotSpotRect
The boundary box for this hot spot, specified as the number of pixels in full panoramic space.
This field is valid only for panoramic nodes.

Node Information Atom Container 189
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

flags
A set of hot spot flags. This field is unused.

reserved1
Reserved. This field must be 0.

reserved2
Reserved. This field must be 0.

Note: In QuickTime VR movie files, all angular values are stored as 32-bit floating-point values that
specify degrees. In addition, all floating-point values conform to the IEEE Standard 754 for binary
floating-point arithmetic, in big-endian format.

Specific Information Atoms

Depending on the value of the hotSpotType field in the hot spot info atom there may also be a type
specific information atom. The atom type of the type-specific atom is the hot spot type.

Link Hot Spot Atom

The link hot spot atom specifies information for hot spots of type kQTVRHotSpotLinkType ('link').
Its atom type is thus 'link'. The link hot spot atom contains specific information about a link hot
spot.

The structure of a link hot spot atom is defined by the QTVRLinkHotSpotAtom data type:

typedef struct VRLinkHotSpotAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 UInt32 toNodeID;
 UInt32 fromValidFlags;
 Float32 fromPan;
 Float32 fromTilt;
 Float32 fromFOV;
 FloatPoint fromViewCenter;
 UInt32 toValidFlags;
 Float32 toPan;
 Float32 toTilt;
 Float32 toFOV;
 FloatPoint toViewCenter;
 Float32 distance;
 UInt32 flags;
 UInt32 reserved1;
 UInt32 reserved2;
} VRLinkHotSpotAtom, *VRLinkHotSpotAtomPtr;

Field descriptions

majorVersion
The major version number of the file format.

190 Node Information Atom Container
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

minorVersion
The minor version number of the file format.

toNodeID
The ID of the destination node (that is, the node to which this hot spot is linked).

fromValidFlags
A set of flags that indicate which source node view settings are valid.

fromPan
The preferred from-pan angle at the source node (that is, the node containing the hot spot).

fromTilt
The preferred from-tilt angle at the source node.

fromFOV
The preferred from-field of view at the source node.

fromViewCenter
The preferred from-view center at the source node.

toValidFlags
A set of flags that indicate which destination node view settings are valid.

toPan
The pan angle to use when displaying the destination node.

toTilt
The tilt angle to use when displaying the destination node.

toFOV
The field of view to use when displaying the destination node.

toViewCenter
The view center to use when displaying the destination node.

distance
The distance between the source node and the destination node.

flags
A set of link hot spot flags. This field is unused and should be set to 0.

reserved1
Reserved. This field must be 0.

reserved2
Reserved. This field must be 0.

Certain fields in the link hot spot atom are not used by QuickTime VR. The fromValidFlags field is
generally set to 0 and the other from fields are not used. However, these fields could be quite useful
if you have created a transition movie from one node to another. The from angles can be used to
swing the current view of the source node to align with the first frame of the transition movie. The
distance field is intended for use with 3D applications, but is also not used by QuickTime VR.

Node Information Atom Container 191
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Link Hot Spot Valid Flags

The toValidFlags field in the link hot spot atom structure specifies which view settings are to be
used when moving to a destination node from a hot spot. You can use these bit flags to specify a value
for that field:

enum {
 kQTVRValidPan = 1 << 0,
 kQTVRValidTilt = 1 << 1,
 kQTVRValidFOV = 1 << 2,
 kQTVRValidViewCenter = 1 << 3
};

Constant descriptions

kQTVRValidPan
The setting for using the destination pan angle.

kQTVRValidTilt
The setting for using the destination tilt angle.

kQTVRValidFOV
The setting for using the destination field of view.

kQTVRValidViewCenter
The setting for using the destination view center.

URL Hot Spot Atom

The URL hot spot atom has an atom type of kQTVRHotSpotURLType ('url '). The URL hot spot atom
contains a URL string for a particular Web location (for example, http://quicktimevr.apple.com).
QuickTime VR automatically links to this URL when the hot spot is clicked.

Support for Wired Actions

Certain actions on a QuickTime VR movie can trigger wired actions if the appropriate event handler
atoms have been added to the file. This section discusses what atoms must be included in the
QuickTime VR file to support wired actions.

As with sprite tracks, the presence of a certain atom in the media property atom container of the
QTVR track enables the handling of wired actions. This atom is of type
kSpriteTrackPropertyHasActions, which has a single Boolean value that must be set to true.

When certain events occur and the appropriate event handler atom is found in the QTVR file, then
that atom is passed to QuickTime to perform any actions specified in the atom. The event handler
atoms themselves must be added to the node information atom container in the QTVR track. There
are two types of event handlers for QTVR nodes: global and hot spot specific. The currently supported

192 URL Hot Spot Atom
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

global event handlers are kQTEventFrameLoaded and kQTEventIdle. The event handler atoms for
these are located at the root level of the node information atom container. A global event handler
atom’s type is set to the event type and its ID is set to 1.

Hot spot–specific event handler atoms are located in the specific hot spot atom as a sibling to the hot
spot info atom. For these atoms, the atom type is always kQTEventType and the ID is the event type.
Supported hot spot–specific event types are kQTEventMouseClick, kQTEventMouseClickEnd,
kQTEventMouseClickEndTriggerButton, and kQTEventMouseEnter, kQTEventMouseExit.

The specific actions that cause these events to be generated are described as follows:

kQTEventFrameLoaded ('fram')
A wired action that is generated when a node is entered, before any application-installed
entering-node procedure is called (this event processing is considered part of the node setup
that occurs before the application’s routine is called).

kQTEventIdle ('idle')
A wired action that is generated every n ticks, where n is defined by the contents of the
kSpriteTrackPropertyQTIdleEventsFrequency atom (SInt32) in the media property atom
container. When appropriate, this event is triggered before any normal idle processing occurs
for the QuickTime VR movie.

kQTEventMouseClick ('clik')
A wired action that is generated when the mouse goes down over a hot spot.

kQTEventMouseClickEnd ('cend')
A wired action that is generated when the mouse goes up after a kQTEventMouseClick is
generated, regardless of whether the mouse is still over the hot spot originally clicked. This
event occurs prior to QuickTime VR’s normal mouse-up processing.

kQTEventMouseClickEndTriggerButton ('trig')
A wired action that is generated when a click end triggers a hot spot (using the same criterion
as used by QuickTime VR in 2.1 for link/url hot spot execution). This event occurs prior to
QuickTime VR’s normal hot spot–trigger processing.

kQTEventMouseEnter ('entr'), kQTEventMouseExit ('exit')
Wired action that are generated when the mouse rolls into or out of a hot spot, respectively.
These events occur whether or not the mouse is down and whether or not the movie is being
panned. These events occur after any application-installed MouseOverHotSpotProc is called,
and will be cancelled if the return value from the application’s routine indicates that
QuickTimeVR’s normal over–hot spot processing should not take place.

QuickTime VR File Format

A QuickTime VR movie is stored on disk in a format known as the QuickTime VR file format. Beginning
in QuickTime VR 2.0, a QuickTime VR movie could contain one or more nodes. Each node is either
a panorama or an object. In addition, a QuickTime VR movie could contain various types of hot spots,
including links between any two types of nodes.

QuickTime VR File Format 193
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Important: This section describes the file format supported by version 2.1 of the QuickTime VR
Manager.

All QuickTime VR movies contain a single QTVR track, a special type of QuickTime track that maintains
a list of the nodes in the movie. Each individual sample in a QTVR track contains general information
and hot spot information for a particular node.

If a QuickTime VR movie contains any panoramic nodes, that movie also contains a single panorama
track, and if it contains any object nodes, it also contains a single object track. The panorama and
object tracks contain information specific to the panoramas or objects in the movie. The actual image
data for both panoramas and objects is usually stored in standard QuickTime video tracks, hereafter
referred to as image tracks. (An image track can also be any type of track that is capable of displaying
an image, such as a QuickTime 3D track.) The individual frames in the image track for a panorama
make up the diced frames of the original single panoramic image. The frames for the image track of
an object represent the many different views of the object. Hot spot image data is stored in parallel
video tracks for both panoramas and objects.

Single-Node Panoramic Movies

Figure 3-18 (page 194) illustrates the basic structure of a single-node panoramic movie. As you can
see, every panoramic movie contains at least three tracks: a QTVR track, a panorama track, and a
panorama image track.

Figure 3-18 The structure of a single-node panoramic movie file

QTVR track

Panorama track

Panorama image track

For a single-node panoramic movie, the QTVR track contains just one sample. There is a corresponding
sample in the panorama track, whose time and duration are the same as the time and duration of the
sample in the QTVR track. The time base of the movie is used to locate the proper video samples in
the panorama image track. For a panoramic movie, the video sample for the first diced frame of a
node’s panoramic image is located at the same time as the corresponding QTVR and panorama track
samples. The total duration of all the video samples is the same as the duration of the corresponding
QTVR sample and the panorama sample.

A panoramic movie can contain an optional hot spot image track and any number of standard
QuickTime tracks. A panoramic movie can also contain panoramic image tracks with a lower resolution.
The video samples in these low-resolution image tracks must be located at the same time and must
have the same total duration as the QTVR track. Likewise, the video samples for a hot spot image
track, if one exists, must be located at the same time and must have the same total duration as the
QTVR track.

194 QuickTime VR File Format
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Single-Node Object Movies

Figure 3-19 (page 195) illustrates the basic structure of a single-node object movie. As you can see,
every object movie contains at least three tracks: a QTVR track, an object track, and an object image
track.

Figure 3-19 The structure of a single-node object movie file

QTVR track

Object track

Object image track

For a single-node object movie, the QTVR track contains just one sample. There is a corresponding
sample in the object track, whose time and duration are the same as the time and duration of the
sample in the QTVR track. The time base of the movie is used to locate the proper video samples in
the object image track.

For an object movie, the frame corresponding to the first row and column in the object image array
is located at the same time as the corresponding QTVR and object track samples. The total duration
of all the video samples is the same as the duration of the corresponding QTVR sample and the object
sample.

In addition to these three required tracks, an object movie can also contain a hot spot image track and
any number of standard QuickTime tracks (such as video, sound, and text tracks). A hot spot image
track for an object is a QuickTime video track that contains images of colored regions delineating the
hot spots; an image in the hot spot image track must be synchronized to match the appropriate image
in the object image track. A hot spot image track should be 8 bits deep and can be compressed with
any lossless compressor (including temporal compressors). This is also true of panoramas.

Note: To assign a single fixed-position hot spot to all views of an object, you should create a hot spot
image track that consists of a single video frame whose duration is the entire node time.

To play a time-based track with the object movie, you must synchronize the sample data of that track
to the start and stop times of a view in the object image track. For example, to play a different sound
with each view of an object, you might store a sound track in the movie file with each set of sound
samples synchronized to play at the same time as the corresponding object’s view image. (This
technique also works for video samples.) Another way to add sound or video is simply to play a
sound or video track during the object’s view animation; to do this, you need to add an active track
to the object that is equal in duration to the object’s row duration.

QuickTime VR File Format 195
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Important: In a QuickTime VR movie file, the panorama image tracks and panorama hot spot tracks
must be disabled. For an object, the object image tracks must be enabled and the object hot spot tracks
must be disabled.

Multinode Movies

A multinode QuickTime VR movie can contain any number of object and panoramic nodes. Figure
3-20 (page 196) illustrates the structure of a QuickTime VR movie that contains five nodes (in this case,
three panoramic nodes and two object nodes).

Figure 3-20 The structure of a multinode movie file

QTVR track

Panorama track

Panorama image track

Panorama low-res
image track

Panorama hot spot
image track

Object track

Object image track

Object hot spot track

1st node 2nd node 3rd node 4th node 5th node

Important: Panoramic tracks and object tracks must never be located at the same time.

QTVR Track

A QTVR track is a special type of QuickTime track that maintains a list of all the nodes in a movie.
The media type for a QTVR track is 'qtvr'. All the media samples in a QTVR track share a common
sample description. This sample description contains the VR world atom container. The track contains
one media sample for each node in the movie. Each QuickTime VR media sample contains a node
information atom container.

196 QTVR Track
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

QuickTime VR Sample Description Structure

Whereas the QuickTime VR media sample is simply the node information itself, all sample descriptions
are required by QuickTime to have a certain structure for the first several bytes. The structure for the
QuickTime VR sample description is as follows:

typedef struct QTVRSampleDescription {
 UInt32 size;
 UInt32 type;
 UInt32 reserved1;
 UInt16 reserved2;
 UInt16 dataRefIndex;
 UInt32 data;
} QTVRSampleDescription, *QTVRSampleDescriptionPtr, **QTVRSampleDescriptionHandle;

Field descriptions

size
The size, in bytes, of the sample description header structure, including the VR world atom
container contained in the data field.

type
The sample description type. For QuickTime VR movies, this type should be 'qtvr'.

reserved1
Reserved. This field must be 0.

reserved2
Reserved. This field must be 0.

dataRefIndex
Reserved. This field must be 0.

data
The VR world atom container. The sample description structure is extended to hold this atom
container.

Panorama Tracks

A movie’s panorama track is a track that contains information about the panoramic nodes in a scene.
The media type of the panorama track is 'pano'. Each sample in a panorama track corresponds to a
single panoramic node. This sample parallels the corresponding sample in the QTVR track. Panorama
tracks do not have a sample description (although QuickTime requires that you specify a dummy
sample description when you call AddMediaSample to add a sample to a panorama track). The sample
itself contains an atom container that includes a panorama sample atom and other optional atoms.

Panorama Tracks 197
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Panorama Sample Atom Structure

A panorama sample atom has an atom type of kQTVRPanoSampleDataAtomType ('pdat'). It describes
a single panorama, including track reference indexes of the scene and hot spot tracks and information
about the default viewing angles and the source panoramic image.

The structure of a panorama sample atom is defined by the QTVRPanoSampleAtom data type:

typedef struct VRPanoSampleAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 UInt32 imageRefTrackIndex;
 UInt32 hotSpotRefTrackIndex;
 Float32 minPan;
 Float32 maxPan;
 Float32 minTilt;
 Float32 maxTilt;
 Float32 minFieldOfView;
 Float32 maxFieldOfView;
 Float32 defaultPan;
 Float32 defaultTilt;
 Float32 defaultFieldOfView;
 UInt32 imageSizeX;
 UInt32 imageSizeY;
 UInt16 imageNumFramesX;
 UInt16 imageNumFramesY;
 UInt32 hotSpotSizeX;
 UInt32 hotSpotSizeY;
 UInt16 hotSpotNumFramesX;
 UInt16 hotSpotNumFramesY;
 UInt32 flags;
 OSType panoType;
 UInt32 reserved2;
} VRPanoSampleAtom, *VRPanoSampleAtomPtr;

Field descriptions

majorVersion
The major version number of the file format.

minorVersion
The minor version number of the file format.

imageRefTrackIndex
The index of the image track reference. This is the index returned by the AddTrackReference
function when the image track is added as a reference to the panorama track. There can be
more than one image track for a given panorama track and hence multiple references. (A
panorama track might have multiple image tracks if the panoramas have different characteristics,
which could occur if the panoramas were shot with different size camera lenses.) The value in
this field is 0 if there is no corresponding image track.

hotSpotRefTrackIndex
The index of the hot spot track reference.

minPan
The minimum pan angle, in degrees. For a full panorama, the value of this field is usually 0.0.

198 Panorama Tracks
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

maxPan
The maximum pan angle, in degrees. For a full panorama, the value of this field is usually
360.0.

minTilt
The minimum tilt angle, in degrees. For a high-resolution panorama, a typical value for this
field is –42.5.

maxTilt
The maximum tilt angle, in degrees. For a high-resolution panorama, a typical value for this
field is +42.5.

minFieldOfView
The minimum vertical field of view, in degrees. For a high-resolution panorama, a typical
value for this field is 5.0. The value in this field is 0 for the default minimum field of view,
which is 5 percent of the maximum field of view.

maxFieldOfView
The maximum vertical field of view, in degrees. For a high-resolution panorama, a typical
value for this field is 85.0. The value in this field is 0 for the default maximum field of view,
which is maxTilt – minTilt.

defaultPan
The default pan angle, in degrees.

defaultTilt
The default tilt angle, in degrees.

defaultFieldOfView
The default vertical field of view, in degrees.

imageSizeX
The width, in pixels, of the panorama stored in the highest resolution image track.

imageSizeY
The height, in pixels, of the panorama stored in the highest resolution image track.

imageNumFramesX
The number of frames into which the panoramic image is diced horizontally. The width of
each frame (which is imageSizeX/imageNumFramesX) should be divisible by 4.

imageNumFramesY
The number of frames into which the panoramic image is diced vertically. The height of each
frame (which is imageSizeY/imageNumFramesY) should be divisible by 4.

hotSpotSizeX
The width, in pixels, of the panorama stored in the highest resolution hot spot image track.

hotSpotSizeY
The height, in pixels, of the panorama stored in the highest resolution hot spot image track.

hotSpotNumFramesX
The number of frames into which the panoramic image is diced horizontally for the hot spot
image track.

Panorama Tracks 199
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

hotSpotNumFramesY
The number of frames into which the panoramic image is diced vertically for the hot spot
image track.

flags
A set of panorama flags. kQTVRPanoFlagHorizontal has been superseded by the panoType
field. It is only used when the panoType field is nil to indicate a horizontally-oriented cylindrical
panorama. kQTVRPanoFlagAlwaysWrap is set if the panorama should wrap horizontally,
regardless of whether or not the pan range is 360 degrees. Note that these flags are currently
supported only under Mac OS X.

panoType
An OSType describing the type of panorama. Types supported are

kQTVRHorizontalCylinder

kQTVRVerticalCylinder

kQTVRCube

reserved2
Reserved. This field must be 0.

Important: A new flag has been added to the flags field of the QTVRPanoSampleAtom data structure.
This flag controls how panoramas wrap horizontally. If kQTVRPanoFlagAlwaysWrap is set, then the
panorama wraps horizontally, regardless of the number of degrees in the panorama. If the flag is not
set, then the panorama wraps only when the panorama range is 360 degrees. This is the default
behavior.

The minimum and maximum values in the panorama sample atom describe the physical limits of the
panoramic image. QuickTime VR allows you to set further constraints on what portion of the image
a user can see by calling the QTVRSetConstraints routine. You can also preset image constraints by
adding constraint atoms to the panorama sample atom container. The three constraint atom types
are kQTVRPanConstraintAtomType, kQTVRTiltConstraintAtomType, and
kQTVRFOVConstraintAtomType. Each of these atom types share a common structure defined by the
QTVRAngleRangeAtom data type:

typedef struct QTVRAngleRangeAtom {
 Float32 minimumAngle;
 Float32 maximumAngle;
} QTVRAngleRangeAtom, *QTVRAngleRangeAtomPtr;

Field descriptions

minimumAngle
The minimum angle in the range, in degrees.

maximumAngle
The maximum angle in the range, in degrees.

200 Panorama Tracks
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Panorama Image Track

The actual panoramic image for a panoramic node is contained in a panorama image track, which is
a standard QuickTime video track. The track reference to this track is stored in the
imageRefTrackIndex field of the panorama sample atom.

QuickTime VR 2.1 required the original panoramic image to be rotated 90 degrees counterclockwise.
This orientation has changed in QuickTime VR 2.2, however, as discussed later in this section.

The rotated image is diced into smaller frames, and each diced frame is then compressed and added
to the video track as a video sample, as shown in Figure 3-21 (page 201). Frames can be compressed
using any spatial compressor; however, temporal compression is not allowed for panoramic image
tracks.

Figure 3-21 Creating an image track for a panorama

Original panorama

Rotate 90 CCW0

Dice
the
image

Image track

Add
samples
to image
track

1

2

3

1

2

3

24 24

Panorama Tracks 201
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

QuickTime VR 2.2 does not require the original panoramic image to be rotated 90 degrees
counterclockwise, as was the case in QuickTime VR 2.1. The rotated image is still diced into smaller
frames, and each diced frame is then compressed and added to the video track as a video sample, as
shown in Figure 3-22 (page 202).

Figure 3-22 Creating an image track for a panorama, with the image track oriented horizontally

Original panorama

Image track

Dice the Image

Add samples to image track

1 2 3 24

1 2 3 24

In QuickTime 3.0, a panorama sample atom (which contains information about a single panorama)
contains the panoType field, which indicates whether the diced panoramic image is oriented
horizontally or vertically.

Cylindrical Panoramas

The primary change to cylindrical panoramas in QuickTime VR 2.2 is that the panorama, as stored
in the image track of the movie, can be oriented horizontally. This means that the panorama does not
need to be rotated 90 degrees counterclockwise, as required previously.

To indicate a horizontal orientation, the field in the VRPanoSampleAtom data structure formerly called
reserved1 has been renamed panoType. Its type is OSType. The panoType field value for a horizontally
oriented cylinder is kQTVRHorizontalCylinder ('hcyl'), while a vertical cylinder is
kQTVRVerticalCylinder ('vcyl'). For compatibility with older QuickTime VR files, when the
panoType field is nil, then a cylinder is assumed, with the low order bit of the flags field set to 1 to
indicate if the cylinder is horizontal and 0 if the cylinder is vertical.

202 Panorama Tracks
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

One consequence of reorienting the panorama horizontally is that, when the panorama is divided
into separate tiles, the order of the samples in the file is now the reverse of what it was for vertical
cylinders. Since vertical cylinders were rotated 90 degrees counterclockwise, the first tile added to
the image track was the rightmost tile in the panorama. For unrotated horizontal cylinders, the first
tile added to the image track is the left-most tile in the panorama.

Cubic Panoramas

A new type of panorama was introduced in the current version of QuickTime: the cubic panorama.
This panorama in its simplest form is represented by six faces of a cube, thus enabling the viewer to
see all the way up and all the way down. The file format and the cubic rendering engine actually
allow for more complicated representations, such as special types of cubes with elongated sides or
cube faces made up of separate tiles. Atoms that describe the orientation of each face allow for these
nonstandard representations. If these atoms are not present, then the simplest representation is
assumed. The following describes this simplest representation: a cube with six square sides.

Tracks in a cubic movie are laid out as they are for cylindrical panoramas. This includes a QTVR track,
a panorama track, and an image track. Optionally, there may also be a hot spot track and a fast-start
preview track. The image, hot spot, and preview tracks are all standard QuickTime video tracks.

Image Tracks in Cubic Nodes

For a cubic node the image track contains six samples that correspond to the six square faces of the
cube. The same applies to hot spot and preview tracks. The following diagram shows how the order
of samples in the track corresponds to the orientation of the cube faces:

Track samples

1 2 3 4 5 6

Cube faces

5

1 2 3 4

6

Note that the frames are oriented horizontally. There is no provision for frames that are rotated 90
counterclockwise as there are for cylindrical panoramas.

Cubic Panoramas 203
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Panorama Tracks in Cubic Nodes

The media sample for a panorama track contains the pano sample atom container. For cubes, some
of the fields in the pano sample data atom have special values, which provide compatibility back to
QuickTime VR 2.2. The cubic projection engine ignores these fields. They allow one to view cubic
movies in older versions of QuickTime VR using the cylindrical engine, although the view will be
somewhat incorrect, and the top and bottom faces will not be visible. The special values are shown
in Table 3-15 (page 204).

Table 3-15 Fields and their special values as represented in the pano sample data atom, providing backward
compatibility to QuickTime VR 2.2

ValueField

4imageNumFramesX

1imageNumFramesY

Frame width * 4imageSizeX

Frame heightimageSizeY

0.0minPan

360.0maxPan

-45.0minTilt

45.0maxTilt

5.0minFieldOfView

90.0maxFieldOfView

1flags

A 1 value in the flags field tells QuickTime VR 2.2 that the frames are not rotated. QuickTime VR 2.2
treats this as a four-frame horizontal cylinder. The panoType field (formerly reserved1) must be set
to kQTVRCube ('cube') so that QuickTime VR 3.0 can recognize this panorama as a cube.

Since certain viewing fields in the pano sample data atom are being used for backward compatibility,
a new atom must be added to indicate the proper viewing parameters for the cubic image. This atom
is the cubic view atom (atom type 'cuvw'). The data structure of the cubic view atom is as follows:

struct QTVRCubicViewAtom {
 Float32 minPan;
 Float32 maxPan;
 Float32 minTilt;
 Float32 maxTilt;
 Float32 minFieldOfView;
 Float32 maxFieldOfView;

 Float32 defaultPan;
 Float32 defaultTilt;

204 Panorama Tracks in Cubic Nodes
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 Float32 defaultFieldOfView;
};
typedef struct QTVRCubicViewAtom QTVRCubicViewAtom;

The fields are filled in as desired for the cubic image. This atom is ignored by older versions of
QuickTime VR. Typical minimum and maximum field values are shown in Table 3-16 (page 205).

Table 3-16 Values for min and max fields

ValueField

0.0minPan

360.0maxPan

-90.0minTilt

90.0maxTilt

5.0minFieldOfView

120.0maxFieldOfView

You add the cubic view atom to the pano sample atom container (after adding the pano sample data
atom). Then use AddMediaSample to add the atom container to the panorama track.

Nonstandard Cubes

Although the default representation for a cubic panorama is that of six square faces of a cube, it is
possible to depart from this standard representation. When doing so, a new atom must be added to
the pano sample atom container. The atom type is 'cufa'. The atom is an array of data structures of
type QTVRCubicFaceData. Each entry in the array describes one face of whatever polyhedron is being
defined. QTVRCubicFaceData is defined as follows:

struct QTVRCubicFaceData {
 float orientation[4];
 float center[2];
 float aspect;
 float skew;
};
typedef struct QTVRCubicFaceData QTVRCubicFaceData;

The mathematical explanation of these data structures is beyond the scope of this document but will
be described in a separate Apple Technote. Table 3-17 (page 205) shows what values QuickTime VR
uses for the default representation of six square sides.

Table 3-17 Values used for representing six square sides

SideSkewAspectCenterCenterOrientationOrientationOrientationOrientation

front01000001

Nonstandard Cubes 205
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

SideSkewAspectCenterCenterOrientationOrientationOrientationOrientation

right01000.50–.5

back01000100

left01000.50.5

top010000.5.5

bottom010000.5–.5

Hot Spot Image Tracks

When a panorama contains hot spots, the movie file contains a hot spot image track, a video track
that contains a parallel panorama, with the hot spots designated by colored regions. Each diced frame
of the hot spot panoramic image must be compressed with a lossless compressor (such as QuickTime’s
graphics compressor). The dimensions of the hot spot panoramic image are usually the same as those
of the image track’s panoramic image, but this is not required. The dimensions must, however, have
the same aspect ratio as the image track’s panoramic image. A hot spot image track should be 8 bits
deep.

Low-Resolution Image Tracks

It’s possible to store one or more low-resolution versions of a panoramic image in a movie file; those
versions are called low-resolution image tracks. If there is not enough memory at runtime to use the
normal image track, QuickTime VR uses a lower resolution image track if one is available. A
low-resolution image track contains diced frames just like the higher resolution track, but the
reconstructed panoramic image is half the height and half the width of the higher resolution image.

Important: The panoramic images in the lower resolution image tracks and the hot spot image tracks,
if present, must have the same orientation (horizontal or vertical) as the panorama image track.

Track Reference Entry Structure

Since there are no fields in the pano sample data atom to indicate the presence of low-resolution
image tracks, a separate sibling atom must be added to the panorama sample atom container. The
track reference array atom contains an array of track reference entry structures that specify information
about any low-resolution image tracks contained in a movie. Its atom type is
kQTVRTrackRefArrayAtomType ('tref').

A track reference entry structure is defined by the QTVRTrackRefEntry data type:

typedef struct QTVRTrackRefEntry {
 UInt32 trackRefType;
 UInt16 trackResolution;
 UInt32 trackRefIndex;

206 Hot Spot Image Tracks
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

} QTVRTrackRefEntry;

Field descriptions

trackRefType
The track reference type.

trackResolution
The track resolution.

trackRefIndex
The index of the track reference.

The number of entries in the track reference array atom is determined by dividing the size of the atom
by sizeof (QTVRTrackRefEntry).

kQTVRPreviewTrackRes is a special value for the trackResolution field in the QTVRTrackRefEntry
structure. This is used to indicate the presence of a special preview image track.

Object Tracks

A movie’s object track is a track that contains information about the object nodes in a scene. The media
type of the object track is 'obje'. Each sample in an object track corresponds to a single object node
in the scene. The samples of the object track contain information describing the object images stored
in the object image track.

These object information samples parallel the corresponding node samples in the QTVR track and
are equal in time and duration to a particular object node’s image samples in the object’s image track
as well as the object node’s hot spot samples in the object’s hot spot track.

Object tracks do not have a sample description (although QuickTime requires that you specify a
dummy sample description when you call AddMediaSample to add a sample to an object track). The
sample itself is an atom container that contains a single object sample atom and other optional atoms.

Object Sample Atom Structure

object sample atom describes a single object, including information about the default viewing angles
and the view settings. The structure of an object sample atom is defined by the QTVRObjectSampleAtom
data type:

typedef struct VRObjectSampleAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 UInt16 movieType;
 UInt16 viewStateCount;
 UInt16 defaultViewState;
 UInt16 mouseDownViewState;
 UInt32 viewDuration;
 UInt32 columns;
 UInt32 rows;
 Float32 mouseMotionScale;

Object Tracks 207
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 Float32 minPan;
 Float32 maxPan;
 Float32 defaultPan;
 Float32 minTilt;
 Float32 maxTilt;
 Float32 defaultTilt;
 Float32 minFieldOfView;
 Float32 fieldOfView;
 Float32 defaultFieldOfView;
 Float32 defaultViewCenterH;
 Float32 defaultViewCenterV;
 Float32 viewRate;
 Float32 frameRate;
 UInt32 animationSettings;
 UInt32 controlSettings;
} VRObjectSampleAtom, *VRObjectSampleAtomPtr;
QT
QT
QT

Field descriptions

majorVersion
The major version number of the file format.

minorVersion
The minor version number of the file format.

movieType
The movie controller type.

viewStateCount
The number of view states of the object. A view state selects an alternate set of images for an
object’s views. The value of this field must be positive.

defaultViewState
The 1-based index of the default view state. The default view state image for a given view is
displayed when the mouse button is not down.

mouseDownViewState
The 1-based index of the mouse-down view state. The mouse-down view state image for a
given view is displayed while the user holds the mouse button down and the cursor is over
an object movie.

viewDuration
The total movie duration of all image frames contained in an object’s view. In an object that
uses a single frame to represent a view, the duration is the image track’s sample duration time.

columns
The number of columns in the object image array (that is, the number of horizontal positions
or increments in the range defined by the minimum and maximum pan values). The value of
this field must be positive.

rows
The number of rows in the object image array (that is, the number of vertical positions or
increments in the range defined by the minimum and maximum tilt values). The value of this
field must be positive.

208 Object Tracks
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

mouseMotionScale
The mouse motion scale factor (that is, the number of degrees that an object is panned or tilted
when the cursor is dragged the entire width of the VR movie image). The default value is 180.0.

minPan
The minimum pan angle, in degrees. The value of this field must be less than the value of the
maxPan field.

maxPan
The maximum pan angle, in degrees. The value of this field must be greater than the value of
the minPan field.

defaultPan
The default pan angle, in degrees. This is the pan angle used when the object is first displayed.
The value of this field must be greater than or equal to the value of the minPan field and less
than or equal to the value of the maxPan field.

minTilt
The minimum tilt angle, in degrees. The default value is +90.0. The value of this field must be
less than the value of the maxTilt field.

maxTilt
The maximum tilt angle, in degrees. The default value is –90.0. The value of this field must be
greater than the value of the minTilt field.

defaultTilt
The default tilt angle, in degrees. This is the tilt angle used when the object is first displayed.
The value of this field must be greater than or equal to the value of the minTilt field and less
than or equal to the value of the maxTilt field.

minFieldOfView
The minimum field of view to which the object can zoom. The valid range for this field is from
1 to the value of the fieldOfView field. The value of this field must be positive.

fieldOfView
The image field of view, in degrees, for the entire object. The value in this field must be greater
than or equal to the value of the minFieldOfView field.

defaultFieldOfView
The default field of view for the object. This is the field of view used when the object is first
displayed. The value in this field must be greater than or equal to the value of the
minFieldOfView field and less than or equal to the value of the fieldOfView field.

defaultViewCenterH
The default horizontal view center.

defaultViewCenterV
The default vertical view center.

viewRate
The view rate (that is, the positive or negative rate at which the view animation in the object
plays, if view animation is enabled). The value of this field must be from –100.0 through +100.0,
inclusive.

Object Tracks 209
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

frameRate
The frame rate (that is, the positive or negative rate at which the frame animation in a view
plays, if frame animation is enabled). The value of this field must be from –100.0 through
+100.0, inclusive.

animationSettings
A set of 32-bit flags that encode information about the animation settings of the object.

controlSettings
A set of 32-bit flags that encode information about the control settings of the object.

The movieType field of the object sample atom structure specifies an object controller type, that is,
the user interface to be used to manipulate the object.

QuickTime VR supports the following controller types:

enum ObjectUITypes {
 kGrabberScrollerUI = 1,
 kOldJoyStickUI = 2,
 kJoystickUI = 3,
 kGrabberUI = 4,
 kAbsoluteUI = 5
};

Constant descriptions

kGrabberScrollerUI
The default controller, which displays a hand for dragging and rotation arrows when the cursor
is along the edges of the object window.

kOldJoyStickUI
A joystick controller, which displays a joystick-like interface for spinning the object. With this
controller, the direction of panning is reversed from the direction of the grabber.

kJoystickUI
A joystick controller, which displays a joystick-like interface for spinning the object. With this
controller, the direction of panning is consistent with the direction of the grabber.

kGrabberUI
A grabber-only interface, which displays a hand for dragging but does not display rotation
arrows when the cursor is along the edges of the object window.

kAbsoluteUI
An absolute controller, which displays a finger for pointing. The absolute controller switches
views based on a row-and-column grid mapped into the object window.

Animation Settings

The animationSettings field of the object sample atom is a long integer that specifies a set of
animation settings for an object node. Animation settings specify characteristics of the movie while
it is playing. Use these constants to specify animation settings:

enum QTVRAnimationSettings {
 kQTVRObjectAnimateViewFramesOn = (1 << 0),
 kQTVRObjectPalindromeViewFramesOn = (1 << 1),
 kQTVRObjectStartFirstViewFrameOn = (1 << 2),

210 Object Tracks
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

 kQTVRObjectAnimateViewsOn = (1 << 3),
 kQTVRObjectPalindromeViewsOn = (1 << 4),
 kQTVRObjectSyncViewToFrameRate = (1 << 5),
 kQTVRObjectDontLoopViewFramesOn = (1 << 6),
 kQTVRObjectPlayEveryViewFrameOn = (1 << 7)
};

Constant descriptions

kQTVRObjectAnimateViewFramesOn
The animation setting to play all frames in the current view state.

kQTVRObjectPalindromeViewFramesOn
The animation setting to play a back-and-forth animation of the frames of the current view
state.

kQTVRObjectStartFirstViewFrameOn
The animation setting to play the frame animation starting with the first frame in the view
(that is, at the view start time).

kQTVRObjectAnimateViewsOn
The animation setting to play all views of the current object in the default row of views.

kQTVRObjectPalindromeViewsOn
The animation setting to play a back-and-forth animation of all views of the current object in
the default row of views.

kQTVRObjectSyncViewToFrameRate
The animation setting to synchronize the view animation to the frame animation and use the
same options as for frame animation.

kQTVRObjectDontLoopViewFramesOn
The animation setting to stop playing the frame animation in the current view at the end.

kQTVRObjectPlayEveryViewFrameOn
The animation setting to play every view frame regardless of play rate. The play rate is used
to adjust the duration in which a frame appears but no frames are skipped so the rate is not
exact.

Control Settings

The controlSettings field of the object sample atom is a long integer that specifies a set of control
settings for an object node. Control settings specify whether the object can wrap during panning and
tilting, as well as other features of the node. The control settings are specified using these bit flags:

enum QTVRControlSettings {
 kQTVRObjectWrapPanOn = (1 << 0),
 kQTVRObjectWrapTiltOn = (1 << 1),
 kQTVRObjectCanZoomOn = (1 << 2),
 kQTVRObjectReverseHControlOn = (1 << 3),
 kQTVRObjectReverseVControlOn = (1 << 4),
 kQTVRObjectSwapHVControlOn = (1 << 5),
 kQTVRObjectTranslationOn = (1 << 6)
};

Constant Descriptions

Object Tracks 211
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

kQTVRObjectWrapPanOn
The control setting to enable wrapping during panning. When this control setting is enabled,
the user can wrap around from the current pan constraint maximum value to the pan constraint
minimum value (or vice versa) using the mouse or arrow keys.

kQTVRObjectWrapTiltOn
The control setting to enable wrapping during tilting. When this control setting is enabled, the
user can wrap around from the current tilt constraint maximum value to the tilt constraint
minimum value (or vice versa) using the mouse or arrow keys.

kQTVRObjectCanZoomOn
The control setting to enable zooming. When this control setting is enabled, the user can change
the current field of view using the zoom-in and zoom-out keys on the keyboard (or using the
VR controller buttons).

kQTVRObjectReverseHControlOn
The control setting to reverse the direction of the horizontal control.

kQTVRObjectReverseVControlOn
The control setting to reverse the direction of the vertical control.

kQTVRObjectSwapHVControlOn
The control setting to exchange the horizontal and vertical controls.

kQTVRObjectTranslationOn
The control setting to enable translation. When this setting is enabled, the user can translate
using the mouse when either the translate key is held down or the controller translation mode
button is toggled on.

Track References for Object Tracks

The track references to an object’s image and hot spot tracks are not handled the same way as track
references to panoramas. The track reference types are the same (kQTVRImageTrackRefType and
kQTVRHotSpotTrackRefAtomType), but the location of the reference indexes is different. There is no
entry in the object sample atom for the track reference indexes. Instead, separate atoms using the
VRTrackRefEntry structure are stored as siblings to the object sample atom. The types of these atoms
are kQTVRImageTrackRefAtomType and kQTVRHotSpotTrackRefAtomType. If either of these atoms
is not present, then the reference index to the corresponding track is assumed to be 1.

Note: The trackResolution field in the VRTrackRefEntry structure is ignored for object tracks.

The actual views of an object for an object node are contained in an object image track, which is usually
a standard QuickTime video track. (An object image track can also be any type of track that is capable
of displaying an image, such as a QuickTime 3D track.)

As described in Chapter 1 of QuickTime VR, these views are often captured by moving a camera
around the object in a defined pattern of pan and tilt angles. The views must then be ordered into an
object image array, which is stored as a one-dimensional sequence of frames in the movie’s video
track (see Figure 3-23 (page 213)).

212 Track References for Object Tracks
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Figure 3-23 The structure of an image track for an object

1,1 1,2 1,3 1,4 1,m 2,1 2,2 2,3 n,1 n,2 n,m.....

View duration

For object movies containing frame animation, each animated view in the object image array consists
of the animating frames. It is not necessary that each view in the object image array contain the same
number of frames, but the view duration of all views in the object movie must be the same.

For object movies containing alternate view states, alternate view states are stored as separate object
image arrays that immediately follow the preceding view state in the object image track. Each state
does not need to contain the same number of frames. However, the total movie time of each view
state in an object node must be the same.

Movie Media

Movie media is used to encapsulate embedded movies within QuickTime movies. This feature is
available in QuickTime 4.1.

Movie Sample Description

The movie media doesn’t have a unique sample description. It uses the minimum sample description,
which is SampleDescriptionRecord.

Movie Media Sample Format

Each sample in the movie media is a QuickTime atom container. All root-level atoms and their contents
are enumerated in the following list. Note that the contents of all atoms are stored in big-endian
format.

kMovieMediaDataReference
A data reference type and a data reference. The data reference type is stored as an OSType at
the start of the atom. The data reference is stored following the data reference type. If the data
reference type is URL and the data reference is for a movie on the Apple website, the contents
of the atom would be url http://www.apple.com/foo.mov.

There may be more than one atom of this type. The first atom of this type should have an atom
ID of 1. Additional data references should be numbered sequentially.

Movie Media 213
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

kMovieMediaDefaultDataReferenceID
This atom contains a QTAtomID that indicates the ID of the data reference to use when
instantiating the embedded movie for this sample. If this atom is not present, the data reference
with an ID of 1 is used.

kMovieMediaSlaveTime
A Boolean that indicates whether or not the TimeBase of the embedded movie should be slaved
to the TimeBase of the parent movie. If the TimeBase is slaved, the embedded movie’s zero
time will correspond to the start time of its movie media sample. Further, the playback rate of
the embedded movie will always be the same as the parent movie’s. If the TimeBase is not
slaved, the embedded movie will default to a rate of 0, and a default time of whatever default
time value it instantiated with (which may not be 0). If the TimeBase is not slaved, the embedded
movie can be played by either including an AutoPlay atom in the movie media sample or by
using a wired action. If this atom is not present, the embedded movie defaults to not slaved.

kMovieMediaSlaveAudio
A Boolean that indicates whether or not the audio properties of the embedded movie should
be slaved to those of the parent movie. When audio is slaved, all audio properties of the
containing track are duplicated in the embedded movie. These properties include sound
volume, balance, bass and treble, and level metering. If this atom is not present, the embedded
movie defaults to not slaved audio.

kMovieMediaSlaveGraphicsMode
A Boolean that indicates how the graphics mode of the containing track is applied to the
embedded movie. If the graphics mode is not slaved, then the entire embedded movie is imaged
using its own graphics modes. The result of the drawing of the embedded movie is composited
onto the containing movie using the graphics mode of the containing track. If the graphics
mode is slaved, then the graphics mode of each track in the embedded movie is ignored and
instead the graphics mode of the containing track is used. In this case, the tracks of the
embedded movie composite their drawing directly into the parent movie’s contents. If this
atom is not present, the graphics mode defaults to not slaved. Graphics mode slaving is useful
for compositing semi-transparent media––for example, a PNG with an alpha channel––on top
of other media.

kMovieMediaSlaveTrackDuration
A Boolean that indicates how the Movie Media Handler should react when the duration of the
embedded movie is different than the duration of the movie media sample that it is contained
by. When the movie media sample is created, the duration of the embedded movie may not
yet be known. Therefore, the duration of the media sample may not be correct. In this case,
the Movie Media Handler can do one of two things. If this atom is not present or it contains a
value of false, the Movie Media Handler will respect the duration of media sample that contains
the embedded movie. If the embedded movie has a longer duration than the movie media
sample, the embedded movie will be truncated to the duration of the containing movie media
sample. If the embedded movie is shorter, there will be a gap after it is finished playing. If this
atom contains a value of true, the duration of the movie media sample will be adjusted to
match the actual duration of the embedded movie. Because it is not possible to change an
existing media sample, this will cause a new media sample to be added to the movie and the
track’s edit list to be updated to reference the new sample instead of the original sample.

214 Movie Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

Note: When the duration of the embedded movie’s sample is adjusted, by default no other tracks are
adjusted. This can cause the overall temporal composition to change in unintended ways. To maintain
the complete temporal composition, a higher-level data structure which describes the temporal
relationships between the various tracks must also be included with the movie.

kMovieMediaAutoPlay
A Boolean that indicates whether or not the embedded movie should start playing immediately
after being instantiated. This atom is only used if the TimeBase of the embedded movie is not
slaved to the parent movie. See the kMovieMediaSlaveTime atom in “Movie Media Sample
Format” (page 213) for more information. If auto play is requested, the movie will be played
at its preferred rate after being instantiated. If this atom is not present, the embedded movie
will not automatically play.

kMovieMediaLoop
A UInt8 that indicates how the embedded movie should loop. This atom is only used if the
TimeBase of the embedded movie is not slaved to the parent movie. See the
kMovieMediaSlaveTime atom in “Movie Media Sample Format” (page 213) for more information.
If this atom contains a 0, or if this atom is not present, the embedded movie will not loop. If
this atom contains a value of 1, the embedded movie loops normally––that is, when it reaches
the end it loops back to the beginning. If this atom contains a value of 2, the embedded movie
uses palindromic looping. All other values are reserved.

kMovieMediaUseMIMEType
Text (not a C string or a pascal string) that indicates the MIME type of the movie import
component that should be used to instantiate this media. This is useful in cases where the data
reference may not contain MIME type information. If this atom is not present, the MIME type
of the data reference as determined at instantiation time is used. This atom is intended to allow
content creators a method for working around MIME type binding problems. It should not
typically be required, and should not be included in movie media samples by default.

kMovieMediaTitle
Currently unused. It would contain text indicating the name of the embedded movie.

kMovieMediaAltText
Text (not a C string or a pascal string) that is displayed to the user when the embedded movie
is being instantiated or if the embedded movie cannot be instantiated. If this atom is not present,
the name of the data reference (typically the file name) is used.

kMovieMediaClipBegin
A MovieMediaTimeRecord that indicates the time of the embedded movie that should be used.
The clip begin atom provides a way to specify that a portion of the beginning of the embedded
movie should not be used. If this atom is not present, the beginning of the embedded movie
is not changed. Note that this atom does not change the time at which the embedded movie
begins playing in the parent movie’s time line. If the time specified in the clip begin atom is
greater than the duration of the embedded movie, then the embedded movie will not play at
all.

struct MovieMediaTimeRecord {
 wide time;
TimeScale scale;
};

Movie Media 215
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

kMovieMediaClipDuration
A MovieMediaTimeRecord that indicates the duration of the embedded movie that should be
used. The clip duration atom is applied by removing media from end of the embedded movie.
If the clip duration atom is not present, then no media is removed from the end of the embedded
movie. In situations where the sample contains both a clip duration and a clip begin atom, the
clip begin is applied first. If the clip duration specifies a value that is larger than the duration
of the embedded movie, no change is made to the embedded movie.

kMovieMediaEnableFrameStepping
A Boolean that indicates whether or not the embedded movie should be considered when
performing step operations, specifically using the interesting time calls with the nextTimeStep
flag. If this atom is not present or is set to false, the embedded movie is not included in step
calculations. If the atom is set to true, it is included in step calculations.

kMovieMediaBackgroundColor
An RGBColor that is used for filling the background when the movie is being instantiated or
when it fails to instantiate.

kMovieMediaRegionAtom
A number of child atoms, shown below, which describe how the Movie Media Handler should
resize the embedded movie. If this atom is not present, the Movie Media Handler resizes the
child movie to completely fill the containing track’s box.

kMovieMediaSpatialAdjustment

This atom contains an OSType that indicates how the embedded movie should be scaled to fit
the track box. If this atom is not present, the default value is kMovieMediaFitFill. These
modes are all based on SMIL layout options.

kMovieMediaFitClipIfNecessary

If the media is larger than the track box, it will be clipped; if it is smaller, any additional area
will be transparent.

kMovieMediaFitFill

The media will be scaled to completely fill the track box.

kMovieMediaFitMeet

The media is proportionally scaled so that it is entirely visible in the track box and fills the
largest area possible without changing the aspect ratio.

kMovieMediaFitSlice

The media is scaled proportionally so that the smaller dimension is completely visible.

kMovieMediaFitScroll

Not currently implemented. It currently has the same behavior as
kMovieMediaFitClipIfNecessary. When implemented, it will have the behavior described
in the SMIL specification for a scrolling layout element.

kMovieMediaRectangleAtom
Four child atoms that define a rectangle. Not all child atoms must be present: top and left must
both appear together, width and height must both appear together. The dimensions contained
in this rectangle are used in place of the track box when applying the contents of the spatial
adjustment atom. If the top and left are not specified, the top and left of the containing track’s

216 Movie Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

box are used. If the width and height are not specified, the width and height of the containing
track’s box are used. Each child atom contains a UInt32.

kMovieMediaTop

If present, the top of the rectangle

kMovieMediaLeft

If present, the left boundary of the rectangle

kMovieMediaWidth

If present, width of rectangle

kMovieMediaHeight

If present, height of rectangle

Movie Media 217
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

218 Movie Media
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 3

Media Data Atom Types

This chapter describes a number of common data types that are used in QuickTime files.

Language Code Values

Some elements of a QuickTime file may be associated with a particular spoken language. To indicate
the language associated with a particular object, the QuickTime file format uses either language codes
from the Macintosh Script Manager or ISO language codes (as specified in ISO 639-2/T) .

QuickTime stores language codes as unsigned 16-bit fields. All Macintosh language codes have a
value that is less than 0x800. ISO language codes are three-character codes, and are stored inside the
16-bit language code field as packed arrays, as described in “ISO Language Codes” (page 222). If
treated as an unsigned 16-bit integer, an ISO language code always has a value of 0x800 or greater.

If the language is specified using a Macintosh language code, any associated text uses Macintosh text
encoding.

If the language is specified using an ISO language code, any associated text uses Unicode text encoding.
When Unicode is used, the text is in UTF-8 unless it starts with a byte-order-mark (BOM, 0xFEFF.),
whereupon the text is in UTF-16. Both the BOM and the UTF-16 text should be big-endian.

Note: ISO language codes cannot be used for all elements of a QuickTime file. Currently, ISO language
codes can be used only for user data text. All other elements, including text tracks, must be specified
using Macintosh language codes.

Macintosh Language Codes

Table 4-1 (page 219) lists some of the Macintosh language codes supported by QuickTime.

Table 4-1 QuickTime language code values

ValueLanguageValueLanguage

52Georgian0English

53Moldavian1French

Language Code Values 219
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Basic Data Types

ValueLanguageValueLanguage

54Kirghiz2German

55Tajiki3Italian

56Turkmen4Dutch

57Mongolian5Swedish

58MongolianCyr6Spanish

59Pashto7Danish

60Kurdish8Portuguese

61Kashmiri9Norwegian

62Sindhi10Hebrew

63Tibetan11Japanese

64Nepali12Arabic

65Sanskrit13Finnish

66Marathi14Greek

67Bengali15Icelandic

68Assamese16Maltese

69Gujarati17Turkish

70Punjabi18Croatian

71Oriya19Traditional Chinese

72Malayalam20Urdu

73Kannada21Hindi

74Tamil22Thai

75Telugu23Korean

76Sinhalese24Lithuanian

77Burmese25Polish

78Khmer26Hungarian

79Lao27Estonian

80Vietnamese28Lettish

81Indonesian28Latvian

220 Language Code Values
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Basic Data Types

ValueLanguageValueLanguage

82Tagalog29Saamish

83MalayRoman29Lappish

84MalayArabic30Faeroese

85Amharic31Farsi

87Galla32Russian

87Oromo33Simplified Chinese

88Somali34Flemish

89Swahili35Irish

90Ruanda36Albanian

91Rundi37Romanian

92Chewa38Czech

93Malagasy39Slovak

94Esperanto40Slovenian

128Welsh41Yiddish

129Basque42Serbian

130Catalan43Macedonian

131Latin44Bulgarian

132Quechua45Ukrainian

133Guarani46Byelorussian

134Aymara47Uzbek

135Tatar48Kazakh

136Uighur49Azerbaijani

137Dzongkha50AzerbaijanAr

138JavaneseRom51Armenian

Language Code Values 221
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Basic Data Types

ISO Language Codes

Because the language codes specified by ISO 639-2/T are three characters long, they must be packed
to fit into a 16-bit field. The packing algorithm must map each of the three characters, which are
always lowercase, into a 5-bit integer and then concatenate these integers into the least significant 15
bits of a 16-bit integer, leaving the 16-bit integer’s most significant bit set to zero.

One algorithm for performing this packing is to treat each ISO character as a 16-bit integer. Subtract
0x60 from the first character and multiply by 2^10 (0x400), subtract 0x60 from the second character
and multiply by 2^5 (0x20), subtract 0x60 from the third character, and add the three 16-bit values.
This will result in a single 16-bit value with the three codes correctly packed into the 15 least significant
bits and the most significant bit set to zero.

Example: The ISO language code 'jpn' consists of the three hexadecimal values 0x6A, 0x70, 0x6E.
Subtracting 0x60 from each value yields the values 0xA, 0x10, 0xE, as shown in the following table.

Table 4-2 5-bit values of UTF-8 characters

Shifted value5-bit valueUTF-8 codeCharacter

0x2800 (01010..........)0xA (01010)0x6Aj

0x200 (.....10000.....)0x10 (10000)0x70p

0xE (..........01110)0xE (01110)0x6En

The first value is shifted 10 bits to the left (multiplied by 0x400) and the second value is shifted 5 bits
to the left (multiplied by 0x20). This yields the values 0x2800, 0x200, 0xE. When added, this results
in the 16-bit packed language code value of 0x2A0E.

Calendar Date and Time Values

QuickTime movies store date and time information in Macintosh date format: a 32-bit value indicating
the number of seconds that have passed since midnight January 1, 1904.

This value does not specify a time zone. Common practice is to use local time for the time zone where
the value is generated.

It is strongly recommended that all calendar date and time values be stored using UTC time, so that
all files have a time and date relative to the same time zone.

Matrices

QuickTime files use matrices to describe spatial information about many objects, such as tracks within
a movie.

222 Calendar Date and Time Values
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Basic Data Types

A transformation matrix defines how to map points from one coordinate space into another coordinate
space. By modifying the contents of a transformation matrix, you can perform several standard
graphics display operations, including translation, rotation, and scaling. The matrix used to accomplish
two-dimensional transformations is described mathematically by a 3-by-3 matrix.

All values in the matrix are 32-bit fixed-point numbers divided as 16.16, except for the {u, v, w} column,
which contains 32-bit fixed-point numbers divided as 2.30. Figure 4-1 (page 223) depicts how QuickTime
uses matrices to transform displayed objects.

Figure 4-1 How display matrices are used in QuickTime

a b u

c d v

wt tx y

x' y' 1x y 1 =x

Figure 4-2 Applying the transform

Atom size
Type = 'moov'

'mvhd'‡Movie header atom

'trak'

'udta'

'clip'

Movie atom

‡ Required atom

Clipping atom

One or more track atoms

User data atom

'ctab'Color table atom

Graphics Modes

QuickTime files use graphics modes to describe how one video or graphics layer should be combined
with the layers beneath it. Graphics modes are also known as transfer modes. Some graphics modes
require a color to be specified for certain operations, such as blending to determine the blend level.
QuickTime uses the graphics modes defined by Apple’s QuickDraw.

The most common graphics modes are and ditherCopy, which simply indicate that the image should
not blend with the image behind it, but overwrite it. QuickTime also defines several additional graphics
modes.

Table 4-3 (page 224) lists the additional graphics modes supported by QuickTime.

Graphics Modes 223
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Basic Data Types

Table 4-3 QuickTime graphics modes

DescriptionCodeUses
opcolor

Mode

Copy the source image over the destination.0x0Copy

Dither the image (if needed), otherwise do a copy.0x40Dither copy

Replaces destination pixel with a blend of the source and
destination pixel colors, with the proportion for each channel
controlled by that channel in the opcolor.

0x20yesBlend

Replaces the destination pixel with the source pixel if the
source pixel isn't equal to the opcolor.

0x24yesTransparent

Replaces the destination pixel with a blend of the source and
destination pixels, with the proportion controlled by the alpha
channel.

0x100Straight alpha

Premultiplied with white means that the color components
of each pixel have already been blended with a white pixel,
based on their alpha channel value. Effectively, this means
that the image has already been combined with a white
background. First, remove the white from each pixel and then
blend the image with the actual background pixels.

0x101Premul white alpha

Premultiplied with black is the same as pre-multiplied with
white, except the background color that the image has been
blended with is black instead of white.

0x102Premul black alpha

Similar to straight alpha, but the alpha value used for each
channel is the combination of the alpha channel and that
channel in the opcolor.

0x104yesStraight alpha
blend

(Tracks only) The track is drawn offscreen, and then composed
onto the screen using dither copy

0x103Composition
(dither copy)

RGB Colors

Many atoms in the QuickTime file format contain RGB color values. These are usually stored as three
consecutive unsigned 16-bit integers in the following order: red, green, blue.

Balance

Balance values are represented as 16-bit, fixed-point numbers that range from -1.0 to +1.0. The
high-order 8 bits contain the integer portion of the value; the low-order 8 bits contain the fractional
part. Negative values weight the balance toward the left speaker; positive values emphasize the right
channel. Setting the balance to 0 corresponds to a neutral setting.

224 RGB Colors
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 4

Basic Data Types

This chapter contains a number of examples that can help you pull together all of the material in this
book by examining the atom structure that results from a number of different scenarios.

The chapter is divided into the following topics:

 ■ “Creating, Copying, and Disposing of Atom Containers” (page 226) discusses the various ways
you can work with atom containers, along with illustrations and sample code that show usage.

 ■ “Creating an Effect Description” (page 233) discusses how you create an effect description by
creating an atom container, inserting a QT atom that specifies the effect, and inserting a set of QT
atoms that set its parameters.

 ■ “Creating Movies With Modifier Tracks” (page 238) provides sample code showing you how to
create a movie with modifier tracks.

 ■ “Authoring Movies With External Movie Targets” (page 239) discusses how to author movies
with external targets, using two new target atoms introduced in QuickTime 4.

 ■ “Adding Wired Actions To a Flash Track” (page 240) explains the steps you need to follow in
order to add wired actions to a Macromedia Flash track.

 ■ “Creating Video Tracks at 30 Frames-per-Second” (page 243) discusses creating 30 fps video.

 ■ “Creating Video Tracks at 29.97 Frames-per-Second” (page 243) describes creating 29.97 fps video.

 ■ “Creating Audio Tracks at 44.1 Khz” (page 244) provides an example of creating an audio track.

 ■ “Creating a Timecode Track for 29.97 FPS Video” (page 244) presents a timecode track example.

 ■ “Playing With Edit Lists” (page 248) discusses how to interpret edit list data.

 ■ “Interleaving Movie Data” (page 250) shows how a movie’s tracks are interleaved in the movie
data file.

 ■ “Referencing Two Data Files With a Single Track” (page 251) shows how track data may reside
in more than one file.

 ■ “Getting the Name of a QuickTime VR Node” (page 252) discusses how you can use standard
QuickTime atom container functions to retrieve the information in a QuickTime VR node header
atom.

 ■ “Adding Custom Atoms in a QuickTime VR Movie” (page 254) describes how to add custom
atoms to either the QuickTime VR world or node information atom containers.

 ■ “Adding Atom Containers in a QuickTime VR Movie” (page 255) shows the code you would use
to add VR world and node information atom containers to a QTVR track.

225
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

 ■ “Optimizing QuickTime VR Movies for Web Playback” (page 256) describes how to use the QTVR
Flattener, a movie export component that converts an existing QuickTime VR single node movie
into a new movie that is optimized for viewing on the Web.

Creating, Copying, and Disposing of Atom Containers

Before you can add atoms to an atom container, you must first create the container by calling
QTNewAtomContainer. The code sample shown in Listing 5-1 (page 226) calls QTNewAtomContainer
to create an atom container.

Listing 5-1 Creating a new atom container

QTAtomContainer spriteData;
OSErr err
// create an atom container to hold a sprite’s data
err=QTNewAtomContainer (&spriteData);

When you have finished using an atom container, you should dispose of it by calling the
QTDisposeAtomContainer function. The sample code shown in Listing 5-2 (page 226) calls
QTDisposeAtomContainer to dispose of the spriteData atom container.

Listing 5-2 Disposing of an atom container

if (spriteData)
 QTDisposeAtomContainer (spriteData);

Creating New Atoms

You can use the QTInsertChild function to create new atoms and insert them in a QT atom container.
The QTInsertChild function creates a new child atom for a parent atom. The caller specifies an atom
type and atom ID for the new atom. If you specify a value of 0 for the atom ID, QTInsertChild assigns
a unique ID to the atom.

QTInsertChild inserts the atom in the parent’s child list at the index specified by the index parameter;
any existing atoms at the same index or greater are moved toward the end of the child list. If you
specify a value of 0 for the index parameter, QTInsertChild inserts the atom at the end of the child
list.

The code sample in Listing 5-3 (page 226) creates a new QT atom container and calls QTInsertChild
to add an atom. The resulting QT atom container is shown in Figure 5-1 (page 227). The offset value
10 is returned in the firstAtom parameter.

Listing 5-3 Creating a new QT atom container and calling QTInsertChild to add an atom.

QTAtom firstAtom;
QTAtomContainer container;
OSErr err
err = QTNewAtomContainer (&container);
if (!err)
 err = QTInsertChild (container, kParentAtomIsContainer, 'abcd',

226 Creating, Copying, and Disposing of Atom Containers
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

 1000, 1, 0, nil, &firstAtom);

Figure 5-1 QT atom container after inserting an atom

'abcd'

1000

Index = 1
Offset = 10

QT atom
container

The following code sample calls QTInsertChild to create a second child atom. Because a value of 1
is specified for the index parameter, the second atom is inserted in front of the first atom in the child
list; the index of the first atom is changed to 2. The resulting QT atom container is shown in Figure
5-2 (page 227).

QTAtom secondAtom;

FailOSErr (QTInsertChild (container, kParentAtomIsContainer, 'abcd',
 2000, 1, 0, nil, &secondAtom));

Figure 5-2 QT atom container after inserting a second atom

'abcd'

1000

Index = 1
Offset = 10

Index = 2
Offset = 20'abcd'

2000

QT atom
container

You can call the QTFindChildByID function to retrieve the changed offset of the first atom that was
inserted, as shown in the following example. In this example, the QTFindChildByID function returns
an offset of 20.

firstAtom = QTFindChildByID (container, kParentAtomIsContainer, 'abcd',
 1000, nil);

Listing 5-4 (page 227) shows how the QTInsertChild function inserts a leaf atom into the atom
container sprite. The new leaf atom contains a sprite image index as its data.

Listing 5-4 Inserting a child atom

if ((propertyAtom = QTFindChildByIndex (sprite, kParentAtomIsContainer,
 kSpritePropertyImageIndex, 1, nil)) == 0)

 FailOSErr (QTInsertChild (sprite, kParentAtomIsContainer,

Creating, Copying, and Disposing of Atom Containers 227
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

 kSpritePropertyImageIndex, 1, 1, sizeof(short),&imageIndex,
 nil));

Copying Existing Atoms

QuickTime provides several functions for copying existing atoms within an atom container. The
QTInsertChildren function inserts a container of atoms as children of a parent atom in another atom
container. Figure 5-3 (page 228) shows two example QT atom containers, A and B.

Figure 5-3 Two QT atom containers, A and B

'abcd'
Index= 1
Offset= 10

Index = 1
Offset = 10

Index = 2
Offset = 20

QT atom
container A

QT atom
container B

'defg' 'hijk'

Data

20009001000

The following code sample calls QTFindChildByID to retrieve the offset of the atom in container A.
Then, the code sample calls the QTInsertChildren function to insert the atoms in container B as
children of the atom in container A. Figure 5-4 (page 229) shows what container A looks like after the
atoms from container B have been inserted.

QTAtom targetAtom;

targetAtom = QTFindChildByID (containerA, kParentAtomIsContainer, 'abcd',
 1000, nil);

FailOSErr (QTInsertChildren (containerA, targetAtom, containerB));

228 Creating, Copying, and Disposing of Atom Containers
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

Figure 5-4 QT atom container after child atoms have been inserted

'abcd'
Index = 1
Offset = 10

Index = 1
Offset = 20

Index = 2
Offset = 30

QT atom
container A

'defg' 'hijk'

Data

1000

900 2000

In Listing 5-5 (page 229), the QTInsertChild function inserts a parent atom into the atom container
theSample. Then, the code calls QTInsertChildren to insert the container theSprite into the container
theSample. The parent atom is newSpriteAtom.

Listing 5-5 Inserting a container into another container

FailOSErr (QTInsertChild (theSample, kParentAtomIsContainer,
 kSpriteAtomType, spriteID, 0, 0, nil, &newSpriteAtom));

FailOSErr (QTInsertChildren (theSample, newSpriteAtom, theSprite));

QuickTime provides three other functions you can use to manipulate atoms in an atom container.
The QTReplaceAtom function replaces an atom and its children with a different atom and its children.
You can call the QTSwapAtoms function to swap the contents of two atoms in an atom container; after
swapping, the ID and index of each atom remains the same. The QTCopyAtom function copies an atom
and its children to a new atom container.

Retrieving Atoms From an Atom Container

QuickTime provides functions you can use to retrieve information about the types of a parent atom’s
children, to search for a specific atom, and to retrieve a leaf atom’s data.

You can use the QTCountChildrenOfType and QTGetNextChildType functions to retrieve information
about the types of an atom’s children. The QTCountChildrenOfType function returns the number of
children of a given atom type for a parent atom. The QTGetNextChildType function returns the next
atom type in the child list of a parent atom.

You can use the QTFindChildByIndex, QTFindChildByID, and QTNextChildAnyType functions to
retrieve an atom. You call the QTFindChildByIndex function to search for and retrieve a parent atom’s
child by its type and index within that type.

Creating, Copying, and Disposing of Atom Containers 229
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

Listing 5-6 (page 230) shows the sample code function SetSpriteData, which updates an atom
container that describes a sprite. (For more information about sprites and the Sprite Toolbox, refer to
the book Programming With Wired Movies and Sprite Animation, available at
http://developer.apple.com/techpubs/quicktime/qtdevdocs/RM/PDF.htm.) For each property
of the sprite that needs to be updated, SetSpriteData calls QTFindChildByIndex to retrieve the
appropriate atom from the atom container. If the atom is found, SetSpriteData calls QTSetAtomData
to replace the atom’s data with the new value of the property. If the atom is not found, SetSpriteData
calls QTInsertChild to add a new atom for the property.

Listing 5-6 Finding a child atom by index

OSErr SetSpriteData (QTAtomContainer sprite, Point *location,
 short *visible, short *layer, short *imageIndex)
{
 OSErr err = noErr;
 QTAtom propertyAtom;

 // if the sprite’s visible property has a new value
 if (visible)
 {
 // retrieve the atom for the visible property --
 // if none exists, insert one
 if ((propertyAtom = QTFindChildByIndex (sprite,
 kParentAtomIsContainer, kSpritePropertyVisible, 1,
 nil)) == 0)
 FailOSErr (QTInsertChild (sprite, kParentAtomIsContainer,
 kSpritePropertyVisible, 1, 1, sizeof(short), visible,
 nil))

 // if an atom does exist, update its data
 else
 FailOSErr (QTSetAtomData (sprite, propertyAtom,
 sizeof(short), visible));
 }

 // ...
 // handle other sprite properties
 // ...
}

You can call the QTFindChildByID function to search for and retrieve a parent atom’s child by its
type and ID. The sample code function AddSpriteToSample, shown in Listing 5-7 (page 230), adds a
sprite, represented by an atom container, to a key sample, represented by another atom container.
AddSpriteToSample calls QTFindChildByID to determine whether the atom container theSample
contains an atom of type kSpriteAtomType with the ID spriteID. If not, AddSpriteToSample calls
QTInsertChild to insert an atom with that type and ID. A value of 0 is passed for the index parameter
to indicate that the atom should be inserted at the end of the child list. A value of 0 is passed for the
dataSize parameter to indicate that the atom does not have any data. Then, AddSpriteToSample
calls QTInsertChildren to insert the atoms in the container theSprite as children of the new atom.
FailIf and FailOSErr are macros that exit the current function when an error occurs.

Listing 5-7 Finding a child atom by ID

OSErr AddSpriteToSample (QTAtomContainer theSample,
 QTAtomContainer theSprite, short spriteID)
{

230 Creating, Copying, and Disposing of Atom Containers
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

 OSErr err = noErr;
 QTAtom newSpriteAtom;

 FailIf (QTFindChildByID (theSample, kParentAtomIsContainer,
 kSpriteAtomType, spriteID, nil), paramErr);

 FailOSErr (QTInsertChild (theSample, kParentAtomIsContainer,
 kSpriteAtomType, spriteID, 0, 0, nil, &newSpriteAtom));
 FailOSErr (QTInsertChildren (theSample, newSpriteAtom, theSprite));
}

Once you have retrieved a child atom, you can call QTNextChildAnyType function to retrieve
subsequent children of a parent atom. QTNextChildAnyType returns an offset to the next atom of any
type in a parent atom’s child list. This function is useful for iterating through a parent atom’s children
quickly.

QuickTime also provides functions for retrieving an atom’s type, ID, and data. You can call
QTGetAtomTypeAndID function to retrieve an atom’s type and ID. You can access an atom’s data in
one of three ways.

 ■ To copy an atom’s data to a handle, you can use the QTCopyAtomDataToHandle function.

 ■ To copy an atom’s data to a pointer, you can use the QTCopyAtomDataToPtr function.

 ■ To access an atom’s data directly, you should lock the atom container in memory by calling
QTLockContainer. Once the container is locked, you can call QTGetAtomDataPtr to retrieve a
pointer to an atom’s data. When you have finished accessing the atom’s data, you should call the
QTUnlockContainer function to unlock the container in memory.

Modifying Atoms

QuickTime provides functions that you can call to modify attributes or data associated with an atom
in an atom container. To modify an atom’s ID, you call the function QTSetAtomID.

You use the QTSetAtomData function to update the data associated with a leaf atom in an atom
container. The QTSetAtomData function replaces a leaf atom’s data with new data. The code sample
in Listing 5-8 (page 231) calls

QTFindChildByIndex to determine whether an atom container contains a sprite’s visible property.
If so, the sample calls QTSetAtomData to replace the atom’s data with a new visible property.

Listing 5-8 Modifying an atom’s data

QTAtom propertyAtom;

// if the atom isn’t in the container, add it
if ((propertyAtom = QTFindChildByIndex (sprite, kParentAtomIsContainer,
 kSpritePropertyVisible, 1, nil)) == 0)
 FailOSErr (QTInsertChild (sprite, kParentAtomIsContainer,
 kSpritePropertyVisible, 1, 0, sizeof(short), visible, nil))

// if the atom is in the container, replace its data
else
 FailOSErr (QTSetAtomData (sprite, propertyAtom, sizeof(short),
 visible));

Creating, Copying, and Disposing of Atom Containers 231
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

Removing Atoms From an Atom Container

To remove atoms from an atom container, you can use the QTRemoveAtom and QTRemoveChildren
functions. The QTRemoveAtom function removes an atom and its children, if any, from a container.
The QTRemoveChildren function removes an atom’s children from a container, but does not remove
the atom itself. You can also use QTRemoveChildren to remove all the atoms in an atom container.
To do so, you should pass the constant kParentAtomIsContainer for the atom parameter.

The code sample shown in Listing 5-9 (page 232) adds override samples to a sprite track to animate
the sprites in the sprite track. The sample and spriteData variables are atom containers. The
spriteData atom container contains atoms that describe a single sprite. The sample atom container
contains atoms that describes an override sample.

Each iteration of the for loop calls QTRemoveChildren to remove all atoms from both the sample and
the spriteData containers. The sample code updates the index of the image to be used for the sprite
and the sprite’s location and calls SetSpriteData (Listing 5-6 (page 230)), which adds the appropriate
atoms to the spriteData atom container. Then, the sample code calls AddSpriteToSample (Listing
5-7 (page 230)) to add the spriteData atom container to the sample atom container. Finally, when all
the sprites have been updated, the sample code calls AddSpriteSampleToMedia to add the override
sample to the sprite track.

Listing 5-9 Removing atoms from a container

QTAtomContainer sample, spriteData;

// ...
// add the sprite key sample
// ...

// add override samples to make the sprites spin and move
for (i = 1; i <= kNumOverrideSamples; i++)
{
 QTRemoveChildren (sample, kParentAtomIsContainer);
 QTRemoveChildren (spriteData, kParentAtomIsContainer);

 // ...
 // update the sprite:
 // - update the imageIndex
 // - update the location
 // ...

 // add atoms to spriteData atom container
 SetSpriteData (spriteData, &location, nil, nil, &imageIndex);

 // add the spriteData atom container to sample
 err = AddSpriteToSample (sample, spriteData, 2);

 // ...
 // update other sprites
 // ...

 // add the sample to the media
 err = AddSpriteSampleToMedia (newMedia, sample,
 kSpriteMediaFrameDuration, false);
}

232 Creating, Copying, and Disposing of Atom Containers
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

Creating an Effect Description

An effect description tells QuickTime which effect to execute and contains the parameters that control
how the effect behaves at runtime. You create an effect description by creating an atom container,
inserting a QT atom that specifies the effect, and inserting a set of QT atoms that set its parameters.

There are support functions you can call to assist you in this process.
QTCreateStandardParameterDialog returns a complete effect description that you can use, including
user-selected settings; you only need to add kEffectSourceName atoms to the description for effects
that require sources. At a lower level, QTGetEffectsList returns a list of the available effects and
ImageCodecGetParameterList will return a description of the parameters for an effect, including
the default value for each parameter in the form of a QT atom that can be inserted directly into an
effect description.

Structure of an Effect Description

An effect description is the sole media sample for an effect track. An effect description is implemented
as a QTAtomContainer structure, the general QuickTime structure for holding a set of QuickTime
atoms. All effect descriptions must contain the set of required atoms, which specify attributes such
as which effect component to use. In addition, effect descriptions can contain a variable number of
parameter atoms, which hold the values of the parameters for the effect.

Each atom contains either data or a set of child atoms. If a parameter atom contains data, the data is
the value of the parameter, and this value remains constant while the effect executes. If a parameter
atom contains a set of child atoms, they typically contain a tween entry so the value of the parameter
will be interpolated for the duration of the effect.

You assemble an effect description by adding the appropriate set of atoms to a QTAtomContainer
structure.

You can find out what the appropriate atoms are by making an ImageCodecGetParameterList call
to the effect component. This fills an atom container with a set of parameter description atoms. These
atoms contain descriptions of the effect parameters, such as each parameter’s atom type, data range,
default value, and so on. The default value in each description atom is itself a QTAtom that can be
inserted directly into your effect description.

You can modify the data in the parameter atoms directly, or let the user set them by calling
QTCreateStandardParameterDialog, which returns a complete effect description (you need to add
kEffectSourceName atoms for effects that require sources).

You then add the effect description to the media of the effect track.

Required Atoms of an Effects Description

There are several required atoms that an effect description must contain. The first is the
kParameterWhatName atom. The kParameterWhatName atom contains the name of the effect. This
specifies which of the available effects to use.

Creating an Effect Description 233
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

The code snippet shown in Listing 5-10 (page 234) adds a kParameterWhatName atom to the atom
container effectDescription. The constant kCrossFadeTransitionType contains the name of the
cross-fade effect.

Listing 5-10 Adding a kParameterWhatName atom to the atom container effectDescription

effectCode = kCrossFadeTransitionType;
QTInsertChild(effectDescription, kParentAtomIsContainer,
 kParameterWhatName, kParameterWhatID, 0,
 sizeof(effectCode), &effectCode, nil);

In addition to the kParameterWhatName atom, the effect description for an effect that uses sources
must contain one or more kEffectSourceName atoms. Each of these atoms contains the name of one
of the effect’s sources. An input map is used to map these names to the actual tracks of the movie that
are the sources. “Creating an Input Map” (page 235) describes how to create the input map.

Parameter Atoms of an Effects Description

In addition to the required atoms, the effects description contains a variable number of parameter
atoms. The number and types of parameter atoms vary from effect to effect. For example, the cross
fade effect has only one parameter, while the general convolution filter effect has nine. Some effects
have no parameters at all, and do not require any parameter atoms.

You can obtain the list of parameter atoms for a given effect by calling the effect component using
ImageCodecGetParameterList. The parameter description atoms it returns include default settings
for each parameter in the form of parameter atoms that you can insert into your effect description.

The QTInsertChild function is used to add these parameters to the effect description, as seen in the
code example in Listing 5-10 (page 234).

Consider, for instance, the push effect. Its effect description contains a kParameterWhatName atom,
two kEffectSourceName atoms, and two parameter atoms, one of which is a tween.

The kParameterWhatName atom specifies that this is a 'push' effect.

The two kEffectSourceName atoms specify the two sources that this effect will use, in this case 'srcA'
and 'srcB'. The names correspond to entries in the effect track’s input map.

The 'pcnt' parameter atom defines which frames of the effect are shown. This parameter contains
a tween entry, so that the value of this parameter is interpolated as the effect runs . The interpolation
of the 'pcnt' parameter causes consecutive frames of the effect to be rendered, creating the push
effect.

The 'from' parameter determines the direction of the push. This parameter is set from an enumeration
list, with 2 being defined as the bottom of the screen.

In this example, the source 'srcB' will push in from the bottom, covering the source 'srcA'.

The 'pcnt' parameter is normally tweened from 0 to 100, so that the effect renders completely, from
0 to 100 percent. In this example, the 'pcnt' parameter is tweened from 25 to 75, so the effect will
start 25% of the way through (with 'srcB' already partly on screen) and finish 75% of the way through
(with part of 'srcA' still visible).

Figure 5-5 (page 235) shows the set of atoms that must be added to the entry description.

234 Creating an Effect Description
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

Figure 5-5 An example effect description for the Push effect

kParameterWhatName

'push'

Use the effect component with
the name 'push'. 1

kEffectSourceName

'srcA'

The first source is 'srcA'
which is the name of a source
defined in the input map.

1

The second source is 'srcB'
from the input map.

The percentage value, which
is tweened for 25% to 75%.

The direction from which the
second source pushes the
 first. The value 2 indicates
it pushes in from below.

2kEffectSourceName

'srcB'

1'pcnt'

1'from'

'srcB' 1kTweenType

kParamTypeDataFixed

1

0.25

0.75

2

kTweenData

ByteRequired atoms

Parameter atoms

An important property of effect parameters is that most can be tweened (and some must be tweened).
Tweening is QuickTime’s general purpose interpolation mechanism (see “Tween Media” (page 153)
for more information). For many parameters, it is desirable to allow the value of the parameter to
change as the effect executes. In the example shown in Figure 5-5 (page 235), the 'pcnt' parameter
must be a tween. This parameter controls which frame of the effect is rendered at any given time, so
it must change for the effect to progress. The 'from' parameter is not a tween in the example above,
but it could be if we wanted the direction of the push to change during the course of the effect.

Creating an Input Map

The input map is another QT atom container that you attach to the effects track. It describes the sources
used in the effect and gives a name to each source. This name is used to refer to the source in the
effects description.

Creating an Effect Description 235
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

An input map works in concert with track reference atoms in the source tracks. A track reference
atom of type kTrackModifierReference is added to each source track, which causes that source
track’s output to be redirected to the effects track. An input map is added to the effects track to identify
the source tracks and give a name to each source, such as 'srcA' and 'srcB'. The effect can then
refer to the sources by name, specifying that 'srcB' should slide in over 'srcA', for example.

Structure of an Input Map

The input map contains a set of atoms that refer to the tracks used as sources for the effect. Each
source track is represented by one track reference atom of type kTrackModifierInput.

Each modifier input atom contains two children, one of type kEffectDataSourceType, and one of
type kTrackModifierType, which hold the name and type of the source.

The name of the source is a unique identifier that you create, which is used in the effect description
to reference the track. Any four-character name is valid, as long as it is unique in the set of source
names.

Important: Apple recommends you adopt the standard naming convention 'srcX', where X is a
letter of the alphabet. Thus, your first source would be named 'srcA', the second 'srcB', and so
forth. This convention is used here in this chapter.

The child atom of type kTrackModifierType indicates the type of the track being referenced. For a
video track the type is VideoMediaType, for a sprite track it is SpriteMediaType, and so forth. Video
tracks are the most common track type used as sources for effects. Only tracks that have a visible
output, such as video and sprite tracks, can be used as sources for an effect. This means, for example,
that sound tracks cannot be sources for an effect.

Figure 5-6 (page 237) shows a completed input map that references two sources. The first source is a
video track and is called 'srcA'. The second source, also a video track, is called 'srcB'.

You refer to a kTrackModifierInput atom by its index number, which is returned by the
AddTrackReference function when you create the atom.

236 Creating an Effect Description
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

Figure 5-6 An example of an input map referencing two sources

The first reference atom. The ID
number is the number returned by
AddTrackReference

It is a video track.

The name used in the effect
description is 'scrA'

The name used in the effect
description is 'scrB'

The second reference atom. The ID
number is the number returned
by AddTrackReference

It is a video track.

5kTrackModifierInput

'srcB' 1

1

kTrackModifierType

VideoMediaType

kEffectDataSourceType

'scrA'

2kTrackModifierInput

'srcB' 1

1

kTrackModifierType

VideoMediaType

kEffectDataSourceType

'srcB'

Byte

Building Input Maps

The first step in creating an input map is to create a new QTAtomContainer to hold the map. You use
the standard QuickTime container creation function.

QTNewAtomContainer(&inputMap);

For each source you are creating, you need to call the AddTrackReference function. The track IDs of
the effects track and the source track are passed as parameters to AddTrackReference, which creates
an atom of type kTrackModifierReference and returns an index number. You use this index as the
ID of the atom when you need to refer to it. You then insert the reference into the input map as an
atom of type kTrackModifierInput.

The code in Listing 5-11 (page 237) creates a reference to the track firstSourceTrack, and adds it to
the input map.

Listing 5-11 Adding an input reference atom to an input map

AddTrackReference(theEffectsTrack, firstSourceTrack,
 kTrackModifierReference, &referenceIndex);

QTInsertChild(inputMap, kParentAtomIsContainer,
 kTrackModifierInput, referenceIndex, 0, 0, nil, &inputAtom);

The QTInsertChild function returns the offset of the new modifier input atom in the inputAtom
parameter.

You now need to add the name and type of the source track to the modifier input atom. Again, calling
the QTInsertChild function does this, as shown in the following code snippet:

inputType = VideoMediaType;
QTInsertChild(inputMap, inputAtom,

Creating an Effect Description 237
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

 kTrackModifierType, 1, 0, sizeof(inputType), &inputType,
 nil);

aType = 'srcA';
QTInsertChild(inputMap, inputAtom, kEffectDataSourceType, 1, 0,
 sizeof(aType), &aType, nil);

This process is repeated for each source for the effect.

Creating Movies with Modifier Tracks

QuickTime 2.1 added additional functionality for media handlers. By way of modifier tracks, a media
handler can send its data to another media handler rather than presenting its media directly. See
“Modifier Tracks” (page 163) for a complete discussion of this feature.

To create a movie with modifier tracks, first you create a movie with all the desired tracks, then you
create the modifier track. To link the modifier track to the track that it modifies, you use the
AddTrackReference function as shown in Listing 5-12 (page 238).

Listing 5-12 Linking a modifier track to the track it modifies

long addedIndex;
AddTrackReference(aVideoTrack, aModifierTrack,
 kTrackModifierReference, &addedIndex);

The reference doesn’t completely describe the modifier track’s relationship to the track it modifies.
Instead, the reference simply tells the modifier track to send its data to the specified track. The receiving
track doesn’t “know” what it should do with that data. A single track may also be receiving data from
more than one modifier track.

To describe how each modifier input should be used, each track’s media also has an input map. The
media’s input map describes how the data being sent to each input of a track should be interpreted
by the receiving track. After creating the reference, it is necessary to update the receiving track’s
media input map. When AddTrackReference is called, it returns the index of the reference added.
That index is the index of the input that needs to be described in the media input map. If the modifier
track created above contains regions to change the shape of the video track, the code shown in Listing
5-13 (page 238) updates the input map appropriately.

Listing 5-13 Updating the input map

QTAtomContainer inputMap;
QTAtom inputAtom;
OSType inputType;

Media aVideoMedia = GetTrackMedia(aVideoTrack);
GetMediaInputMap (aVideoMedia, &inputMap);

QTInsertChild(inputMap, kParentAtomIsContainer, kTrackModifierInput,
 addedIndex, 0,0, nil, &inputAtom);

inputType = kTrackModifierTypeClip;
QTInsertChild (inputMap, inputAtom, kTrackModifierType, 1, 0,

238 Creating Movies with Modifier Tracks
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

 sizeof(inputType), &inputType, nil);

SetMediaInputMap(aVideoMedia, inputMap);
QTDisposeAtomContainer(inputMap);

The media input map allows you to store additional information for each input. In the preceding
example, only the type of the input is specified. In other types of references, you may need to specify
additional data.

When a modifier track is playing an empty track edit, or is disabled or deleted, all receiving tracks
are notified that the track input is inactive. When an input becomes inactive, it is reset to its default
value. For example, if a track is receiving data from a clip modifier track and that input becomes
inactive, the shape of the track reverts to the shape it would have if there were no clip modifier track.

Authoring Movies with External Movie Targets

QuickTime 4 enables you to author movies with external movie targets. To specify an action that
targets an element of an external movie, you must identify the external movie by either its name or
its ID. Two new target atom types have been introduced for this purpose; these atoms are used in
addition to the existing target atoms, which you may use to specify that the element is a particular
track or object within a track, such as a sprite.

Note: A movie ID may be specified by an expression.

These additional target atoms provided in QuickTime 4:

[(ActionTargetAtoms)] =
 <kActionTarget>

 <kTargetMovieName>
 [Pstring MovieName]
 OR
 <kTargetMovieID>
 [long MovieID]
 OR
 [(kExpressionAtoms)]

To tag a movie with a name or ID, you add a user data item of type 'plug' to the movie’s user data.
The index of the user data does not matter. The data specifies the name or ID.

You add a user data item of type 'plug' to the movie’s user data with its data set to

"Movieid=MovieName"

where MovieName is the name of the movie.

You add a user data item of type 'plug' to the movie’s user data with its data set to

"Movieid=MovieID"

where the ID is a signed long integer.

Authoring Movies with External Movie Targets 239
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

The QuickTime plug-in additionally supports EMBED tag parameters, which allow you to override a
movie’s name or ID within an HTML page.

Target Atoms for Embedded Movies

QuickTime 4.1 introduced target atoms to accommodate the addition of embedded movies. These
target atoms allow for paths to be specified in a hierarchical movie tree.

Target movies may be an external movie, the default movie, or any movie embedded within another
movie. Targets are specified by using a movie path that may include parent and child movie
relationships, and may additionally include track and track object target atoms as needed.

By using embedded kActionTarget atoms along with parent and child movie target atoms, you can
build up paths for movie targets. Note that QuickTime looks for these embedded kActionTarget
atoms only when evaluating a movie target, and any movie target type may contain a sibling
kActionTarget atom.

Paths begin from the current movie, which is the movie containing the object that is handling an
event. You may go up the tree using a kTargetParentMovie atom, or down the tree using one of five
new child movie atoms. You may use a kTargetRootMovie atom as a shortcut to get to the top of the
tree containing an embedded movie and may use the movieByName and movieByID atoms to specify
a root external movie.

The target atoms are:

 ■ kTargetRootMovie (leaf atom, no data). This is the root movie containing the action handler.

 ■ kTargetParentMovie (leaf atom, no data). This is the parent movie.

Note that there are five ways to specify an embedded child movie. Three of them specify movie track
properties. Two specify properties of the currently loaded movie in a movie track.

 ■ kTargetChildMovieTrackName. A child movie track specified by track name.

 ■ kTargetChildMovieTrackID. A child movie track specified by track ID.

 ■ kTargetChildMovieTrackIndex. A child movie track specified by track index.

 ■ kTargetChildMovieMovieName. A child movie specified by the currently loaded movie’s movie
name. The child movie must contain movieName user data with the specified name.

 ■ kTargetChildMovieMovieID. A child movie specified by the currently loaded movie’s movie ID.
The child movie must contain movieID user data with the specified ID.

Adding Wired Actions To a Flash Track

This section explains the steps you need to follow in order to add wired actions to a Macromedia
Flash track. The Flash media handler was introduced in QuickTime 4 to enable a SWF 3.0 file to be
treated as a track within a QuickTime movie. See “Flash Media” (page 153) for more information about
the Flash media handler.

240 Adding Wired Actions To a Flash Track
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

Sample code (AddFlashActions) is provided on the QuickTime SDK, as well as on the QuickTime
developer website, that lets you add wired actions to a Flash track.

Note: For more detailed information about working with Flash, you can download the Macromedia
SWF File Format Specification at http://www.macromedia.com/software/flash/open/spec/, along
with the SWF File Parser code also at the Macromedia website.

Extending the SWF Format

QuickTime 4 extends the SWF file format to allow the execution of any of its wired actions, in addition
to the much smaller set of Flash actions. For example, you may use a SWF file as a user interface
element in a QuickTime movie, controlling properties of the movie and other tracks. QuickTime also
allows SWF files to be compressed using the zlib data compressor. This can significantly lower the
bandwidth required when downloading a SWF file when it is in a QuickTime movie.

By using wired actions within a Flash track, compressing your Flash tracks, and combining Flash
tracks with other types of QuickTime media, you can create compact and sophisticated multimedia
content.

The SWF File Format Specification consists of a header followed by a series of tagged data blocks.
The types of tagged data blocks you need to use are the DefineButton2 and DoAction. The
DefineButton2 block allows Flash actions to be associated with a mouse state transition. DoAction
allows actions to be executed when the tag is encountered. These are analogous to mouse-related QT
event handlers and the frame loaded event in wired movies.

Flash actions are stored in an action record. Each Flash action has its own tag, such as ActionPlay
and ActionNextFrame. QuickTime defines one new tag: QuickTimeActions, which is 0xAA. The
data for the QuickTime actions tag is simply a QT atom container with the QuickTime wired actions
to execute in it.

There are also fields you need to change in order to add wired actions to a SWF file. Additionally,
there is one tag missing from the SWF file format that is described below.

What You Need to Modify

For defineButton2, you need to modify or add the following fields: file length, action records offset,
the action offset, the condition, the record header size portion, and add action record.

File Length

A 32-bit field in the SWF file header.

RecordHeader for the defineButton2

RecordHeader contains the tag ID and length. You need to update the length. Note that there are
short and long formats for record headers, depending on the size of the record. The tag ID for
defineButton2 is 34.

Adding Wired Actions To a Flash Track 241
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

ActionRecordsOffset

The action records offset, a 16-bit field, is missing from the SWF File Format Specification. It occurs
between the flags and buttons fields. It is initially set to 0 if there are no actions for the button. If there
are actions for the button, then it must contain the offset from the point in the SWF file following this
16-bit value to the beginning of the action offset field.

 DefineButton2 =

 Header
 ButtonID
 Flags

 ActionRecordsOffset (this is missing from the spec)

 Buttons
 ButtonEndFlag
 Button2ActionCode
 ActionOffset
 Condition
 Action [ActionRecords]
 ActionEndFlag

ActionOffset

There is one action offset per condition (mouse overDownToIdle). This is the offset used to skip over
the condition and the following actions (the ActionRecord) for the condition. You need to update
this value when adding actions.

Condition

The condition field is roughly equivalent to a wired movie event. The actions associated with button
state transition condition are triggered when the transition occurs. You need to add or edit this field.

Actions

Flash actions each have their own action tag code. QuickTime actions use a single QuickTime actions
code: 'AA'. You may add a list of actions to a single QuickTime actions tag.

The format of the QuickTime actions tag is as follows:

 1 byte: // Tag = 'AA'
 2 bytes: // data length (size of the QTAtomContainer)
 n bytes // the data which is the QTAtomContainer holding the
 // wired actions

DoAction

For DoAction, you need to modify a subset of the defineButton2 fields in the same manner as
described above. These fields are file length, the record header size portion, and the action record.

Note that you need to write the length fields in little-endian format.

242 Adding Wired Actions To a Flash Track
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

Creating Video Tracks at 30 Frames per Second

The duration of a video frame is stored in the time-to-sample atom contained within a sample table
atom. This duration cannot be interpreted without the media’s time scale, which defines the
units-per-second for the duration. In this example, each frame has the same duration, so the
time-to-sample atom has one entry, which applies to all video frames in the media.

As long as the ratio between frame duration and media time scale remains 1:30, any combination of
values can be used for the duration and time scale. The larger the time scale the shorter the maximum
duration. Since a movie defaults to a time scale of 600, this is a good number to use. It is also the least
common multiple for 24, 25, and 30, making it handy for much of the math you are likely to encounter
when making a movie.

The movie time scale is independent of the media time scale. Since you want to avoid movie edits
that don’t land on frame boundaries, it is a good idea to keep the movie time scale and the media
time scale the same, or the movie time scale should be an even multiple of the media time scale. The
movie time scale is stored in the movie header atom.

With a time scale of 600 in the media header atom, the time-to-sample atom would contain the
following data values:

24Atom size

'stts'Atom type

0Version/Flags

1Number of entries

nSample count

20Sample duration

Creating Video Tracks at 29.97 Frames per Second

NTSC color video is not 30 frames per second (fps), but actually 29.97 fps. The previous example
showed how the media time scale and the duration of the frames specify the video’s frame rate. By
setting the media’s time scale to 2997 units per second and setting the frame durations to 100 units
each, the effective rate is 29.97 fps exactly.

In this situation, it is also a good idea to set the movie time scale to 2997 in order to avoid movie edits
that don’t land on frame boundaries. The movie’s time scale is stored in the movie header atom.

With a time scale of 2997 in the media header atom, the time-to-sample atom would contain the
following data values:

24Atom size

'stts'Atom type

Creating Video Tracks at 30 Frames per Second 243
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

0Version/Flags

1Number of entries

nSample count

100Sample duration

Creating Audio Tracks at 44.1 kHz

The duration of an audio sample is stored in the time-to-sample atom contained in a sample table
atom. This duration cannot be interpreted without the media’s time scale, which defines the units
per second for the duration. With audio, the duration of each audio sample is typically 1, so the
time-to-sample atom has one entry, which applies to all audio samples.

With a time scale of 44100 in the media header atom, the time-to-sample atom would contain the
following data values:

24Atom size

'stts'Atom type

0Version/Flags

1Number of entries

nSample count

1Sample duration

This atom does not indicate whether the audio is stereo or mono or whether it contains 8-bit or 16-bit
samples. That information is stored in the sound sample description atom, which is contained in the
sample table atom.

Creating a Timecode Track for 29.97 FPS Video

A timecode track specifies timecode information for other tracks. The timecode keeps track of the
timecodes of the original source of the video and audio. After a movie has been edited, the timecode
can be extracted to determine the source tape and the timecodes of the frames.

It is important that the timecode track have the same time scale as the video track. Otherwise, the
timecode will not tick at the exact same time as the video track.

For each contiguous source tape segment, there is a single timecode sample that specifies the timecode
value corresponding to the start of the segment. From this sample, the timecode value can be
determined for any point in the segment.

244 Creating Audio Tracks at 44.1 kHz
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

The sample description for a timecode track specifies the timecode system being used (for example,
a 30-fps drop frame) and the source information. Each sample is a timecode value.

Since the timecode media handler is a derived from the base media handler, the media information
atom starts with a generic media header atom. The timecode atoms would contain the following data
values:

77Atom size

'gmhd'Atom type

69Atom size

'gmin'Atom type

0Version/Flags

0x0040Graphics mode

0x8000Opcolor (red)

0x8000Opcolor (green)

0x8000Opcolor (blue)

0Balance

0Reserved

45Atom size

'tmcd'Atom type

37Atom size

'tcmi'Atom type

0Version/Flags

0 (system font)Text font

0 (plain)Text face

12Text size

0Text color (red)

0Text color (green)

0Text color (blue)

0Background color (red)

0Background color (green)

0Background color (blue)

Creating a Timecode Track for 29.97 FPS Video 245
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

'\pChicago' (Pascal string)Font name

The sample table atom contains all the standard sample atoms and has the following data values:

174Atom size

'stbl' (sample table)Atom
type

74Atom size

'stsd' (sample description)Atom type

0Version/Flags

1Number of entries

58Sample description size [1]

'tmcd'Data format [1]

0Reserved [1]

1Data reference index [1]

0Flags[1]

7 (drop frame + 24 hour + negative times
OK)

Flags (timecode) [1]

2997Time scale[1]

100Frame duration[1]

20Number of frames [1]

24Atom size

'name'Atom type

12String length

0 (English)Language code

“my tape
name”

Name

24Atom size

'stts' (time to sample)Atom type

0Version/Flags

1Number of entries

246 Creating a Timecode Track for 29.97 FPS Video
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

1Sample count[1]

1Sample duration[1]

28Atom size

'stsc' (sample to chunk)Atom type

0Version/Flags

1Number of entries

1First chunk[1]

1Samples per chunk[1]

1Sample description ID[1]

20Atom size

'stsz' (sample size)Atom type

0Version/Flags

4Sample size

1Number of entries

20Atom size

'stco' (chunk offset)Atom type

0Version/Flags

1Number of entries

(offset into file of chunk 1)Offset [1]

In the example, let’s assume that the segment’s beginning timecode is 1:15:32.4 (1 hour, 15 minutes,
32 seconds, and 4 frames). The time would be expressed in the data file as 0x010F2004 (0x01 = 1 hour;
0x0F = 15 minutes; 0x20 = 32 seconds; 0x04 = 4 frames).

The video and audio tracks must contain a track reference atom to indicate that they reference this
timecode track. The track reference is the same for both and is contained in the track atom (at the
same level as the track header and media atoms).

This track reference would contain the following data values:

12Atom size

'tref'Atom type

'tmcd'Reference type

3Track ID of referenced track (timecode track)

Creating a Timecode Track for 29.97 FPS Video 247
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

In this example, the video and sound tracks are tracks 1 and 2. The timecode track is track 3.

Playing with Edit Lists

A segment of a movie can be repeated without duplicating media data by using edit lists. Suppose
you have a single-track movie whose media time scale is 100 and track duration is 1000 (10 seconds).
For this example the movie’s time scale is 600. If there are no edits in the movie, the edit atom would
contain the following data values:

36Atom size

'edts'Atom type

28Atom size

'elst'Atom type

0Version/Flags

2Number of entries

6000 (10 seconds)Track duration

0Media time

1.0Media rate

Because this is a single-track move, the track’s duration in the track header atom is 6000 and the
movie’s duration in the movie header atom is 6000.

If you change the track to play the media from time 0 to time 2 seconds, and then play the media from
time 0 to time 10 seconds, the edit atom would now contain these data values:

48Atom size

'edts'Atom type

40Atom size

'elst'Atom type

0Version/Flags

2Number of entries

1200 (2 seconds)Track duration[1]

0Media time[1]

1.0Media rate[1]

248 Playing with Edit Lists
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

6000 (10 seconds)Track duration[2]

0Media time[2]

1.0Media rate[2]

Because the track is now 2 seconds longer, the track’s duration in the track header atom must now
be 7200, and the movie’s duration in the movie header atom must also be 7200.

Currently, the media plays from time 0 to time 2, then plays from time 0 to time 10. If you take that
repeated segment at the beginning (time 0 to time 2) and play it at double speed to maintain the
original duration, the edit atom would now contain the following values:

60Atom size

'edts'Atom type

52Atom size

'elst'Atom type

0Version/Flags

3Number of entries

600 (1 second)Track duration[1]

0Media time[1]

2.0Media rate[1]

600 (1 second)Track duration[2]

0Media time[2]

2.0Media rate[2]

4800 (8 seconds)Track duration[3]

200Media time[3]

1.0Media rate[3]

Because the track is now back to its original duration of 10 seconds, its duration in the track header
atom is 6000, and the movie’s duration in the movie header atom is 6000.

Playing with Edit Lists 249
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

Interleaving Movie Data

In order to get optimal movie playback, you must create the movie with interleaved data. Because
the data for the movie is placed on disk in time order, the data for a particular time in the movie is
close together in the file. This means that you will have to intersperse the data from different tracks.
To illustrate this, consider a movie with a single video and a single audio track.

Figure 5-7 (page 250) shows how the movie data was collected, and how the data would need to be
played back for proper synchronization. In this example, the video data is recorded at 10 frames per
second and the audio data is grouped into half-second chunks.

Figure 5-7 Non-interleaved movie data

1 sec

1 2 3 4 5 6 7 8 9 10 1112 13 14 1516 1718 19 202122 23 24 25 26 27 28 29 30 31 32

2 sec 3 sec

Video track

Time

Audio track

1 2 3 4 5 6 7

After the data has been interleaved on the disk, the movie data atom would contain movie data in
the order shown in Figure 5-8 (page 250).

Figure 5-8 Interleaved movie data

File

1 3 42
1 2 3 4 5 6 7 8 9 10 11 12 13 1415

'moov' 'mdat'

In this example, the file begins with the movie atom ('moov'), followed by the movie data atom
('mdat'). In order to overcome any latencies in sound playback, at least one second of sound data is
placed at the beginning of the interleaved data. This means that the sound and video data are offset
from each other in the file by one second.

250 Interleaving Movie Data
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

Referencing Two Data Files With a Single Track

The data reference index to be used for a given media sample is stored within that sample’s sample
description. Therefore, a track must contain multiple sample descriptions in order for that track to
reference multiple data files. A different sample description must be used whenever the data file
changes or whenever the format of the data changes. The sample-to-chunk atom determines which
sample description to use for a sample.

The sample description atom would contain the following data values:

…Atom size

'stsd'Atom type

0Version/Flags

2Number of entries

…Sample description size[1]

'tmcd'Data format

0Reserved

1Data reference index

…(sample data)

…Sample description size[1]

'tmcd'Data format

0Reserved

2Data reference index

…(sample data)

If there is only 1 sample per chunk and the first 10 samples are extracted from sample description 2
and the next 30 samples are extracted from sample description 1, the sample-to-chunk atom would
contain the following data values:

40Atom size

'stsc'Atom type

0Version/Flags

2Number of entries

1First chunk[1]

1Samples per chunk[1]

Referencing Two Data Files With a Single Track 251
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

2Sample description ID[1]

11First chunk[2]

1Samples per chunk[2]

1Sample description ID[2]

The data reference atom would contain the following data values:

…Atom size

'dinf'Atom type

…Atom size

'dref'Atom type

0Version/Flags

2Number of entries

…Size[1]

'alis'Type[1]

0Version[1]

0 (not self referenced)Flags[1]

[alias pointing to file #1]Data reference[1]

…Size[2]

'rsrc'Type[2]

0Version[2]

0 (not self referenced)Flags[2]

[alias pointing to file #2]Data reference[2]

Getting the Name of a QuickTime VR Node

You can use standard QuickTime atom container functions to retrieve the information in a QuickTime
VR node header atom. For example, the MyGetNodeName function defined in Listing 5-14 (page 252)
returns the name of a node, given its node ID.

Listing 5-14 Getting a node’s name

OSErr MyGetNodeName (QTVRInstance theInstance, UInt32 theNodeID,

252 Getting the Name of a QuickTime VR Node
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

 StringPtr
theStringPtr)
{
 OSErr theErr = noErr;
 QTAtomContainer theNodeInfo;
 QTVRNodeHeaderAtomPtr theNodeHeader;
 QTAtom theNodeHeaderAtom = 0;

 //Get the node information atom container.
 theErr = QTVRGetNodeInfo(theInstance, theNodeID, &theNodeInfo);

 //Get the node header atom.
 if (!theErr)
 theNodeHeaderAtom = QTFindChildByID(theNodeInfo, kParentAtomIsContainer,
 kQTVRNodeHeaderAtomType,
1, nil);
 if (theNodeHeaderAtom != 0) {
 QTLockContainer(theNodeInfo);

 //Get a pointer to the node header atom data.
 theErr = QTGetAtomDataPtr(theNodeInfo, theNodeHeaderAtom, nil,
 (Ptr
*)&theNodeHeader);
 //See if there is a name atom.
 if (!theErr && theNodeHeader->nameAtomID != 0) {
 QTAtom theNameAtom;
 theNameAtom = QTFindChildByID(theNodeInfo, kParentAtomIsContainer,
 kQTVRStringAtomType, theNodeHeader->nameAtomID,
 nil);
 if (theNameAtom != 0) {
 VRStringAtomPtr theStringAtomPtr;

 //Get a pointer to the name atom data; copy it into the string.
 theErr = QTGetAtomDataPtr(theNodeInfo, theNameAtom, nil,
 (Ptr
*)&theStringAtomPtr);
 if (!theErr) {
 short theLen = theStringAtomPtr->stringLength;
 if (theLen > 255)
 theLen = 255;
 BlockMove(theStringAtomPtr->string, &theStringPtr[1],
theLen);
 theStringPtr[0] = theLen;
 }
 }
 }
 QTUnlockContainer(theNodeInfo);
 }

 QTDisposeAtomContainer(theNodeInfo);
 return(theErr);
}

The MyGetNodeName function defined in Listing 5-14 (page 252) retrieves the node information atom
container (by calling QTVRGetNodeInfo) and then looks inside that container for the node header
atom with atom ID 1. If it finds one, it locks the container and then gets a pointer to the node header
atom data. The desired information, the node name, is contained in the string atom whose atom ID
is specified by the nameAtomID field of the node header structure. Accordingly, the MyGetNodeName

Getting the Name of a QuickTime VR Node 253
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

function then calls QTFindChildByID once again to find that string atom. If the string atom is found,
MyGetNodeName calls QTGetAtomDataPtr to get a pointer to the string atom data. Finally,
MyGetNodeName copies the string data into the appropriate location and cleans up after itself before
returning.

Adding Custom Atoms in a QuickTime VR Movie

If you author a QuickTime VR movie, you may choose to add custom atoms to either the VR world
or node information atom containers. Those atoms can be extracted within an application to provide
additional information that the application may use.

Information that pertains to the entire scene might be stored in a custom atom within the VR world
atom container. Node-specific information could be stored in the individual node information atom
containers or as sibling atoms to the node location atoms within the VR world.

Custom hot spot atoms should be stored as siblings to the hot spot information atoms in the node
information atom container. Generally, its atom type is the same as the custom hot spot type. You
can set up an intercept procedure in your application in order to process clicks on the custom hot
spots.

If you use custom atoms, you should install your hot spot intercept procedure when you open the
movie. Listing 5-15 (page 254) is an example of such an intercept procedure.

Listing 5-15 Typical hot spot intercept procedure

QTVRInterceptProc MyProc = NewQTVRInterceptProc (MyHotSpot);
QTVRInstallInterceptProc (qtvr, kQTVRTriggerHotSpotSelector, myProc, 0, 0);

pascal void MyHotSpot (QTVRInstance qtvr, QTVRInterceptPtr qtvrMsg,
 SInt32 refCon, Boolean *cancel)
{
 UInt32 hotSpotID = (UInt32) qtvrMsg->parameter[0];
 QTAtomContainer nodeInfo =
 (QTAtomContainer) qtvrMsg->parameter[1];
 QTAtom hotSpotAtom = (QTAtom) qtvrMsg->parameter[2];
 OSType hotSpotType;
 CustomData myCustomData;
 QTAtom myAtom;

 QTVRGetHotSpotType (qtvr, hotSpotID, &hotSpotType);
 if (hotSpotType != kMyAtomType) return;

 // It's our type of hot spot - don't let anyone else handle it
 *cancel = true;

 // Find our custom atom
 myAtom = QTFindChildByID (nodeInfo, hotSpotAtom, kMyAtomType, 1, nil);
 if (myAtom != 0) {
 OSErr err;
 // Copy the custom data into our structure
 err = QTCopyAtomDataToPtr (nodeInfo, myAtom, false,
 sizeof(CustomData), &myCustomData, nil);
 if (err == noErr)

254 Adding Custom Atoms in a QuickTime VR Movie
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

 // Do something with it
 DoMyHotSpotStuff (hotSpotID, &myCustomData);
 }
}

Your intercept procedure is called for clicks on any hot spot. You should check to see if it is your type
of hot spot and, if so, extract the custom hot spot atom and do whatever is appropriate for your hot
spot type (DoMyHotSpotStuff).

When you no longer need the intercept procedure you should call QTVRInstallInterceptProc again
with the same selector and a nil procedure pointer and then call DisposeRoutineDescriptor on
myProc.

Apple reserves all hot spot and atom types with lowercase letters. Your custom hot spot type should
contain all uppercase letters.

Adding Atom Containers in a QuickTime VR Movie

Assuming you have already created the QuickTime VR world and node information atom containers,
you would use the code (minus error checking) Listing 5-16 (page 255) to add them to the QTVR track.

Listing 5-16 Adding atom containers to a track

long descSize;
QTVRSampleDescriptionHandle qtvrSampleDesc;

// Create a QTVR sample description handle

descSize = sizeof(QTVRSampleDescription) + GetHandleSize((Handle) vrWorld) -
 sizeof(UInt32);
qtvrSampleDesc = (QTVRSampleDescriptionHandle) NewHandleClear (descSize);
(*qtvrSampleDesc)->size = descSize;
(*qtvrSampleDesc)->type = kQTVRQTVRType;

// Copy the VR world atom container data into the QTVR sample description
BlockMove (*((Handle) vrWorld), &((*qtvrSampleDesc)->data),
 GetHandleSize((Handle) vrWorld));
// Now add it to the QTVR track's media
err = BeginMediaEdits (qtvrMedia);
err = AddMediaSample (qtvrMedia, (Handle) nodeInfo, 0,
 GetHandleSize((Handle) nodeInfo), duration,
 (SampleDescriptionHandle) qtvrSampleDesc, 1, 0, &sampleTime);
err = EndMediaEdits (qtvrMedia);
InsertMediaIntoTrack (qtvrTrack, trackTime, sampleTime, duration, 1L<<16);

The duration value is computed based on the duration of the corresponding image track samples
for the node. The value of trackTime is the time for the beginning of the current node (zero for a
single node movie). The values of duration and sampleTime are in the time base of the media; the
value of trackTime is in the movie’s time base.

Adding Atom Containers in a QuickTime VR Movie 255
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

Optimizing QuickTime VR Movies for Web Playback

Originally, both QuickTime movies and QuickTime VR movies had to be completely downloaded to
the user’s local hard disk before they could be viewed. Starting with QuickTime 2.5, if the movie data
is properly laid out in the file, standard linear QuickTime movies can be viewed almost immediately.
The frames that have been downloaded so far are shown while subsequent frames continue to be
downloaded.

The important change that took place to allow this to happen was for QuickTime to place global movie
information at the beginning of the file. Originally, this information was at the end of the file. After
that, the frame data simply needs to be in order in the file. Similarly, QuickTime VR files also need
to be laid out in a certain manner in order to get some sort of quick feedback when viewing on the
web. Roughly speaking this involves writing out all of the media samples in the file in a particular
order. Apple now provides a movie export component that does this for you: the QTVR Flattener.

The QTVR Flattener

The QTVR Flattener is a movie export component that converts an existing QuickTime VR single
node movie into a new movie that is optimized for the Web. Not only does the flattener reorder the
media samples, but for panoramas it also creates a small preview of the panorama. When viewed on
the Web, this preview appears after 5% to 10% of the movie data has been downloaded, allowing
users to see a lower-resolution version of the panorama.

Using the QTVR flattener from your application is quite easy. After you have created the QuickTime
VR movie, you simply open the QTVR Flattener component and call the MovieExportToFile routine
as shown in Listing 5-17 (page 256).

Listing 5-17 Using the flattener

ComponentDescription desc;
Component flattener;
ComponentInstance qtvrExport = nil;
desc.componentType = MovieExportType;
desc.componentSubType = MovieFileType;
desc.componentManufacturer = QTVRFlattenerType;
flattener = FindNextComponent(nil, &desc);
if (flattener) qtvrExport = OpenComponent (flattener);
if (qtvrExport)
 MovieExportToFile (qtvrExport, &myFileSpec, myQTVRMovie, nil, 0, 0);

The code fragment shown in Listing 5-17 (page 256) creates a flattened movie file specified by the
myFileSpec parameter. If your QuickTime VR movie is a panorama, the flattened movie file includes
a quarter size, blurred JPEG, compressed preview of the panorama image.

256 Optimizing QuickTime VR Movies for Web Playback
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

Note: The constants MovieExportType and MovieFileType used in Listing 5-17 (page 256) are defined
in header files QuickTimeComponents.h and Movies.h respectively and are defined as 'spit' and
'MooV'.

You can present users with the QTVR Flattener’s own dialog box to allow them to choose options
such as how to compress the preview image or to select a separate preview image file. Use the following
code to show the dialog box:

 err = MovieExportDoUserDialog (qtvrExport, myQTVRMovie, nil, 0, 0,
&cancel);

If the user cancels the dialog box, then the Boolean cancel is set to true.

If you do not want to present the user with the flattener’s dialog box, you can communicate directly
with the component by using the MovieExportSetSettingsFromAtomContainer routine as described
in the following paragraphs.

If you want to specify a preview image other than the default, you need to create a special atom
container and then call MovieExportSetSettingsFromAtomContainer before calling
MovieExportToFile. You can specify how to compress the image, what resolution to use, and you
can even specify your own preview image file to be used. The atom container you pass in can have
various atoms that specify certain export options. These atoms must all be children of a flattener
settings parent atom.

The preview resolution atom is a 16-bit value that allows you to specify the resolution of the preview
image. This value, which defaults to kQTVRQuarterRes, indicates how much to reduce the preview
image.

The blur preview atom is a Boolean value that indicates whether to blur the image before compressing.
Blurring usually results in a much more highly compressed image. The default value is true.

The create preview atom is a Boolean value that indicates whether a preview image should be created.
The default value is true.

The import preview atom is a Boolean value that is used to indicate that the preview image should
be imported from an external file rather than generated from the image in the panorama file itself.
This allows you to have any image you want as the preview for the panorama. You can specify which
file to use by also including the import specification atom, which is an FSSpec data structure that
identifies the image file. If you do not include this atom, then the flattener presents the user with a
dialog box asking the user to select a file. The default for import preview is false. If an import file
is used, the image is used at its natural size and the resolution setting is ignored.

Sample Atom Container for the QTVR Flattener

The sample code in Listing 5-18 (page 257) creates an atom container and adds atoms to indicate an
import preview file for the flattener to use.

Listing 5-18 Specifying a preview file for the flattener to use

Boolean yes = true;
QTAtomContainer exportData;
QTAtom parent;

Optimizing QuickTime VR Movies for Web Playback 257
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

err = QTNewAtomContainer(&exportData);
// create a parent for the other settings atoms
err = QTInsertChild (exportData, kParentAtomIsContainer,
 QTVRFlattenerParentAtomType, 1, 0, 0, nil, &parent);
// Add child atom to indicate we want to import the preview from a file
err = QTInsertChild (exportData, parent, QTVRImportPreviewAtomType, 1, 0,
 sizeof (yes), &yes, nil);
// Add child atom to tell which file to import
err = QTInsertChild (exportData, parent, QTVRImportSpecAtomType, 1, 0,
 sizeof (previewSpec), &previewSpec, nil);
// Tell the export component
MovieExportSetSettingsFromAtomContainer (qtvrExport, exportData);

Overriding the compression settings is a bit more complicated. You need to open a standard image
compression dialog component and make calls to obtain an atom container that you can then pass to
the QTVR Flattener component.

Listing 5-19 Overriding the compression settings

ComponentInstance sc;
QTAtomContainer compressorData;
SCSpatialSettings ss;
sc = OpenDefaultComponent(StandardCompressionType,StandardCompressionSubType);
ss.codecType = kCinepakCodecType;
ss.codec = nil;
ss.depth = 0;
ss.spatialQuality = codecHighQuality
err = SCSetInfo(sc, scSpatialSettingsType, &ss);
err = SCGetSettingsAsAtomContainer(sc, &compressorData);
MovieExportSetSettingsFromAtomContainer (qtvrExport, compressorData);

258 Optimizing QuickTime VR Movies for Web Playback
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

C H A P T E R 5

Some Useful Examples and Scenarios

This appendix describes QuickTime image files, which are intended to provide the most useful
container for QuickTime-compressed still images.

Most still image file formats define both how images should be stored and compressed. However,
the QuickTime image file format is a container format, which describes a storage mechanism
independent of compression. The QuickTime image file format uses the same atom-based structure
as a QuickTime movie.

Atom Types in QuickTime Image Files

There are two mandatory atom types: 'idsc', which contains an image description, and 'idat',
which contains the image data. This is illustrated in Figure A-1 (page 259). A QuickTime image file
can also contain other atoms. For example, it can contain single-fork preview atoms.

In QuickTime 4, there is a new optional atom type 'iicc', which can store a ColorSync profile.

Figure A-1 (page 259) shows an example QuickTime image file containing a JPEG-compressed image.

Figure A-1 An 'idsc' atom followed by an 'idat' atom

Bytes

4

4

Variable

4

Type = 'idsc'

Atom size

Atom size

Type = 'idat'

Image data

Image description atom

Image description

4

Variable

Image data atom

Atom Types in QuickTime Image Files 259
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

QuickTime Image File Format

Table A-1 A QuickTime image file containing JPEG-compressed data

Atom size, 94 bytes0000005E

Atom type, 'idsc'69647363

Image description size, 86 bytes00000056

Compressor identifier, 'jpeg'6A706567

Reserved, set to 000000000

Reserved, set to 00000

Reserved, set to 00000

Major and minor version of this data, 0 if not applicable00000000

Vendor who compressed this data, 'appl'6170706C

Temporal quality, 0 (no temporal compression)00000000

Spatial quality, codecNormalQuality00000200

Image width, 3200140

Image height, 24000F0

Horizontal resolution, 72 dpi00480000

Vertical resolution, 72 dpi00480000

Data size, 15447 bytes (use 0 if unknown)00003C57

Frame count, 10001

Compressor name, "Photo - JPEG" (32-byte Pascal string)0C 50 68 6F 74 6F 20 2D20

4A 50 45 47 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

Image bit depth, 240018

Color lookup table ID, -1 (none)FFFF

Atom size, 15455 bytes00003C5F

Atom type, 'idat'69646174

JPEG compressed dataFF D8 FF E0 00 10 4A 46

49 46 00 01 01 01 00 48

...

260 Atom Types in QuickTime Image Files
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

QuickTime Image File Format

Important: The exact order and size of atoms is not guaranteed to match the example in Figure
A-1 (page 259). Applications reading QuickTime image files should always use the atom size to traverse
the file and ignore atoms of unrecognized types.

Note: Like QuickTime movie files, QuickTime image files are big-endian. However, image data is
typically stored in the same byte order as specified by the particular compression format.

Recommended File Type and Suffix

Because the QuickTime image file is a single-fork format, it works well in cross-platform applications.
On Mac OS systems, QuickTime image files are identified by the file type 'qtif'. Apple recommends
using the filename extension .QIF to identify QuickTime image files on other platforms.

Recommended File Type and Suffix 261
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

QuickTime Image File Format

262 Recommended File Type and Suffix
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X A

QuickTime Image File Format

The QuickTime file format provides a great deal of flexibility in how media data is physically arranged
within a file. However, it also allows media layouts to be created that may be inefficient for playback
on a given device. To complicate the matter, a media layout that is inefficient for one device may be,
in fact, very efficient for another. The purpose of this appendix is to define some common uses of
QuickTime files and describe the media layout in these circumstances.

Using QuickTime Files and Media Layouts

A QuickTime file can reference media data stored in a number of files, including the file itself. If a
QuickTime file references only media data contained within itself, the file is said to be self-contained.
A QuickTime file can also reference media data stored in files that are not QuickTime files. This is
because the QuickTime file format references media within a URL by file offset, rather than by a data
structuring mechanism of a particular file format. This allows a QuickTime file to refer to data stored
in any container format.

Often, it is convenient to store a single media stream per file, for example, when encoding content. It
is also useful for purposes of reusing content. (To reuse an elementary stream, it is not necessary to
extract it from a larger, possibly multiplexed file.)

Because QuickTime can reference media stored in any file, it is not required that media be stored in
the QuickTime file format. However, this is recommended. Putting the elementary streams in a
QuickTime file has several advantages, particularly in enabling interchange of the content between
different tools. Further, the QuickTime file format adds very little overhead to the media—as little as
a few hundred bytes in many cases—so there is no great penalty in storage space.

One of the issues facing any device (a server or a local workstation) that is attempting to play back a
QuickTime file in real time is the number of file seeks that must be performed.

It is possible to arrange the data in a QuickTime file to minimize, and potentially eliminate, any seeks
during the course of normal playback. (Of course, random access and other kinds of interactivity
require seeks.) Minimizing seeks is accomplished by interleaving the media data in the QuickTime
file in such a way that the layout of the media in the file corresponds to the order in which the media
data will be required. It is expected that most servers, for example, will stream QuickTime media
using the facilities of the hint tracks.

Using QuickTime Files and Media Layouts 263
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Defining Media Data Layouts

Take a scenario where the QuickTime file contains a single hint track that references an audio and a
visual media stream. In order to eliminate all seeks, the hint track media must be interleaved with
the audio and visual stream data. Because the hint track sample must always be read before the audio
and visual media that it references, the hint track samples must always immediately precede the
samples they reference.

A simple illustration of the ordering of data (that is, time and file offset increasing from left to right)
is as follows:

H0 A0 H1 V1 H2 V2 H3 A1 H4 A2 V3 H5 V4

When a single hint sample references multiple pieces of media data, those pieces of media data must
occur in the order that they are referenced.

264 Using QuickTime Files and Media Layouts
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X B

Defining Media Data Layouts

This appendix describes how to seek with a QuickTime file using child atoms.

Seeking With a QuickTime File

Seeking with a QuickTime file is accomplished primarily by using the child atoms contained in the
sample table atom. If an edit list is present, it must also be consulted. If you want to seek a given track
to a time T, where T is in the time scale of the movie header atom, you could perform the following
operations:

1. If the track contains an edit list, determine which edit contains the time T by iterating over the
edits. The start time of the edit in the movie time scale must then be subtracted from the time T
to generate T', the duration into the edit in the movie time scale. T' is next converted to the time
scale of the track’s media to generate T''. Finally, the time in the media scale to use is calculated
by adding the media start time of the edit to T''.

2. The time-to-sample atom for a track indicates what times are associated with which sample for
that track. Use this atom to find the first sample prior to the given time.

3. The sample that was located in step 1 may not be a random access point. Locating the nearest
random access point requires consulting two atoms. The sync sample table indicates which
samples are in fact random access points. Using this table, you can locate which is the first sync
sample prior to the specified time. The absence of the sync sample table indicates that all samples
are synchronization points, and makes this problem easy. The shadow sync atom gives the
opportunity for a content author to provide samples that are not delivered in the normal course
of delivery, but which can be inserted to provide additional random access points. This improves
random access without impacting bitrate during normal delivery. This atom maps samples that
are not random access points to alternate samples which are. You should also consult this table
if present to find the first shadow sync sample prior to the sample in question. Having consulted
the sync sample table and the shadow sync table, you probably wish to seek to whichever resultant
sample is closest to, but prior to, the sample found in step 1.

4. At this point you know the sample that will be used for random access. Use the sample-to-chunk
table to determine in which chunk this sample is located.

5. Knowing which chunk contained the sample in question, use the chunk offset atom to figure out
where that chunk begins.

Seeking With a QuickTime File 265
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Random Access

6. Starting from this offset, you can use the information contained in the sample-to-chunk atom and
the sample size atom to figure out where within this chunk the sample in question is located. This
is the desired information.

266 Seeking With a QuickTime File
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X C

Random Access

This appendix describes how metadata is handled when QuickTime imports other file formats. (For
more information about metadata, refer to “Overview of the File Format” (page 19) and “Compressed
Movie Resources” (page 88)).

These formats are grouped into the following categories and sections:

 ■ “Digital Video File Formats” (page 267)

 ■ “Digital Audio File Formats” (page 268)

 ■ “Still Image File Formats” (page 269)

 ■ “Animation and 3D File Formats ” (page 270)

Each section includes a table with specific details on the following, where applicable:

 ■ The format supported by QuickTime––for example, the movie import component or the graphics
import component

 ■ The Macintosh file type––for example, 'Mp3 '

 ■ File name extensions––for example, .mp3

 ■ Specific details for metadata handling––for example, all Microsoft-defined “tombstone” data is
transferred to the imported movie’s user data. metadata fields that have QuickTime equivalents
are mapped as follows.

 ■ Software required––for example, QuickTime 3 or later

Digital Video File Formats

DescriptionOpenDML and other AVI files

Movie import componentSupported by

'VfW 'Macintosh file type

.aviFile name extensions

Digital Video File Formats 267
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X D

Metadata Handling

DescriptionOpenDML and other AVI files

All Microsoft-defined “tombstone” data is transferred to the imported
movie’s user data. metadata fields that have QuickTime equivalents
are mapped as follows: 'ICOP' maps to kUserDataTextCopyright,
'ISBJ' maps to kUserDataTextInformation, 'INAM' maps to
kUserDataTextFullName, 'ICRD' maps to '©day', 'IMED' maps to
'©fmt', 'ISRC' maps to '©src'.Where no QuickTime equivalent
exists, the metadata item’s four-character code is modified by
replacing the initial I with the symbol ©. All other characters remain
unchanged.

metadata handling

QuickTime 3Software required

Digital Audio File Formats

DescriptionMPEG 1 layer 3

Movie import componentSupported by

'Mp3 ', 'SwaT', 'MPEG', 'PLAY', 'MPG3', 'MP3 'Macintosh file type

.mp3, .swaFile name extensions

Metadata from ID3v1-style MP3 files is imported into the QuickTime
movie.Title maps to kUserDataTextFullName, artist maps to '©ART', album
maps to '©alb', year maps to '©day', comment maps to '©cmt', and track
number maps to '©des'.

Metadata handling

QuickTime 4Software required

DescriptionWAV

Movie import componentSupported by

'WAVE', '.WAV'Macintosh file type

.wavFile name extensions

All Microsoft-defined “tombstone” data is transferred to the imported
movie’s user data. metadata fields that have QuickTime equivalents are
mapped as follows: 'ICOP' maps to kUserDataTextCopyright, 'ISBJ'
maps to kUserDataTextInformation, 'INAM' maps to kUserDataText-
FullName, 'ICRD' maps to '©day', 'IMED' maps to '©fmt', 'ISRC' maps
to '©src'.Where no QuickTime equivalent exists, the metadata item’s
four-character code is modified by replacing the initial I with the symbol
©. All other characters remain unchanged.

Metadata handling

QuickTime 2.5 or laterSoftware required

268 Digital Audio File Formats
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X D

Metadata Handling

Still Image File Formats

DescriptionFlashPix

Graphics import componentSupported by

'FPix'Macintosh file type

.fpxFile name extensions

Information about copyright, authorship, caption text, content description
notes, camera manufacturer name, camera model name are transferred to
kUserDataTextCopyright, kUserDataTextArtistField, kUserDataText-
FullName, kParameterInfoWindowTitle, kParameterInfoManufacturer,
kUserDataTextMakeField user data items, respectively.

Metadata handling

1.0Formats supported

QuickTime 4Software required

DescriptionGIF

Graphics import componentSupported by

'GIFf', or 'GIF 'Macintosh file type

.gifFile name extensions

The GIF comment field is transferred to the kUserDataDateTextInformation
user data item.

Metadata handling

QuickTime 2.5 or laterSoftware required

DescriptionJFIF/JPEG

Graphics import componentSupported by

'JPEG’Macintosh file type

.jpgFile name extensions

The JFIF comment field is transferred to the imported Movie’s user data in
the kUserDataTextInformation field.

Metadata handling

QuickTime 2.5 or laterSoftware required

DescriptionPhotoshop

Graphics import componentSupported by

Still Image File Formats 269
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X D

Metadata Handling

DescriptionPhotoshop

'8BPS'Macintosh file type

.psdFile name extensions

Photoshop files store their metadata based on the IPTC-NAA Information
Interchange Model and Digital Newsphoto Parameter Record. This
information is transferred into the importer Movie’s user data. The entire
ITPC-NAA record is placed into a user data item of type 'iptc'. In addition,
those metadata items which are defined by QuickTime are mapped directly
to QuickTime types as follows: 116 to kUserDataTextCopyright, 120 to
kUserDataTextInformation, 105 to kUserDataTextFullName, 55 to '©day',
115 to '©src'.

Metadata handling

QuickTime 2.5 or later. QuickTime 3 is required for metadata handling.Software required

DescriptionQuickTime Image File

Graphics import componentSupported by

'qtif'Macintosh file type

.qtif, .qif, .qtiFile name extensions

Metadata that is stored in quickTimeImageFileMetaDataAtom atom is
copied directly to the Movie’s user data.

Metadata handling

AllFormats supported

QuickTime 2.5 or laterSoftware required

DescriptionTIFF

Graphics Import ComponentSupported by

'TIFF'Macintosh file type

.tif, .tiffFile name extensions

Extracted from standard tags and from IPTC blockMetadata handling

QuickTime 3 or laterSoftware required

Animation and 3D File Formats

DescriptionAnimated GIF

Movie import componentSupported by

270 Animation and 3D File Formats
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X D

Metadata Handling

DescriptionAnimated GIF

'GIFf'Macintosh file type

.gifFile name extensions

The GIF comment field is transferred to kUserDataTextInformation user
data item.

Metadata handling

QuickTime 3 or laterSoftware required

Animation and 3D File Formats 271
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X D

Metadata Handling

272 Animation and 3D File Formats
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X D

Metadata Handling

This appendix includes information that pertains to Chapter 3, “VR World Atom Container” (page
181) and “Node Information Atom Container” (page 186).

C Summary

Constants

VR World Atom Types

enum {
 kQTVRWorldHeaderAtomType = FOUR_CHAR_CODE('vrsc'),
 kQTVRImagingParentAtomType = FOUR_CHAR_CODE('imgp'),
 kQTVRPanoImagingAtomType = FOUR_CHAR_CODE('impn'),
 kQTVRObjectImagingAtomType = FOUR_CHAR_CODE('imob'),
 kQTVRNodeParentAtomType = FOUR_CHAR_CODE('vrnp'),
 kQTVRNodeIDAtomType = FOUR_CHAR_CODE('vrni'),
 kQTVRNodeLocationAtomType = FOUR_CHAR_CODE('nloc')
};

Node Information Atom Types

enum {
 kQTVRNodeHeaderAtomType = FOUR_CHAR_CODE('ndhd'),
 kQTVRHotSpotParentAtomType = FOUR_CHAR_CODE('hspa'),
 kQTVRHotSpotAtomType = FOUR_CHAR_CODE('hots'),
 kQTVRHotSpotInfoAtomType = FOUR_CHAR_CODE('hsin'),
 kQTVRLinkInfoAtomType = FOUR_CHAR_CODE('link')
};

Miscellaneous Atom Types

enum {
 kQTVRStringAtomType = FOUR_CHAR_CODE('vrsg'),
 kQTVRPanoSampleDataAtomType = FOUR_CHAR_CODE('pdat'),
 kQTVRObjectInfoAtomType = FOUR_CHAR_CODE('obji'),

C Summary 273
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X E

Summary of VR World and Node Atom
Types

 kQTVRAltImageTrackRefAtomType = FOUR_CHAR_CODE('imtr'),
 kQTVRAltHotSpotTrackRefAtomType = FOUR_CHAR_CODE('hstr'),
 kQTVRAngleRangeAtomType = FOUR_CHAR_CODE('arng'),
 kQTVRTrackRefArrayAtomType = FOUR_CHAR_CODE('tref'),
 kQTVRPanConstraintAtomType = FOUR_CHAR_CODE('pcon'),
 kQTVRTiltConstraintAtomType = FOUR_CHAR_CODE('tcon'),
 kQTVRFOVConstraintAtomType = FOUR_CHAR_CODE('fcon'),
 kQTVRCubicViewAtomType = FOUR_CHAR_CODE('cuvw'),
 kQTVRCubicFaceDataAtomType = FOUR_CHAR_CODE('cufa')
};

Track Reference Types

enum {
 kQTVRImageTrackRefType = FOUR_CHAR_CODE('imgt'),
 kQTVRHotSpotTrackRefType = FOUR_CHAR_CODE('hott')
};

Imaging Property Valid Flags

enum {
 kQTVRValidCorrection = 1 << 0,
 kQTVRValidQuality = 1 << 1,
 kQTVRValidDirectDraw = 1 << 2,
 kQTVRValidFirstExtraProperty = 1 << 3
};

Link Hot Spot Valid Bits

enum {
 kQTVRValidPan = 1 << 0,
 kQTVRValidTilt = 1 << 1,
 kQTVRValidFOV = 1 << 2,
 kQTVRValidViewCenter = 1 << 3
};

Animation Settings

enum QTVRAnimationSettings {
 kQTVRObjectAnimateViewFramesOn = (1 << 0),
 kQTVRObjectPalindromeViewFramesOn = (1 << 1),
 kQTVRObjectStartFirstViewFrameOn = (1 << 2),
 kQTVRObjectAnimateViewsOn = (1 << 3),
 kQTVRObjectPalindromeViewsOn = (1 << 4),
 kQTVRObjectSyncViewToFrameRate = (1 << 5),
 kQTVRObjectDontLoopViewFramesOn = (1 << 6),
 kQTVRObjectPlayEveryViewFrameOn = (1 << 7)
};

Control Settings

enum QTVRControlSettings {
 kQTVRObjectWrapPanOn = (1 << 0),

274 C Summary
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X E

Summary of VR World and Node Atom Types

 kQTVRObjectWrapTiltOn = (1 << 1),
 kQTVRObjectCanZoomOn = (1 << 2),
 kQTVRObjectReverseHControlOn = (1 << 3),
 kQTVRObjectReverseVControlOn = (1 << 4),
 kQTVRObjectSwapHVControlOn = (1 << 5),
 kQTVRObjectTranslationOn = (1 << 6)
};

Controller Subtype and ID

enum {
 kQTControllerType = FOUR_CHAR_CODE('ctyp').
 kQTControllerID = 1
};

Object Controller Types

enum ObjectUITypes {
 kGrabberScrollerUI = 1,
 kOldJoyStickUI = 2,
 kJoystickUI = 3,
 kGrabberUI = 4,
 kAbsoluteUI = 5
};

Node Location Flag

enum {
 kQTVRSameFile = 0
};

Panorama Sample Flag

enum {
 kQTVRPanoFlagHorizontal = 1 << 0,
 kQTVRPanoFlagAlwaysWrap = 1 << 2
};

Data Types

typedef float Float32;

Sample Description Header Structure

typedef struct QTVRSampleDescription {
 UInt32 size;
 UInt32 type;
 UInt32 reserved1;
 UInt16 reserved2;
 UInt16 dataRefIndex;
 UInt32 data;

C Summary 275
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X E

Summary of VR World and Node Atom Types

} QTVRSampleDescription, *QTVRSampleDescriptionPtr, **QTVRSampleDescriptionHandle;

String Atom Structure

typedef struct QTVRStringAtom {
 UInt16 stringUsage;
 UInt16 stringLength;
 unsigned char string[4];
} QTVRStringAtom, *QTVRStringAtomPtr;

VR World Header Atom Structure

typedef struct QTVRWorldHeaderAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 QTAtomID nameAtomID;
 UInt32 defaultNodeID;
 UInt32 vrWorldFlags;
 UInt32 reserved1;
 UInt32 reserved2;
} QTVRWorldHeaderAtom, *QTVRWorldHeaderAtomPtr;

Panorama-Imaging Atom Structure

typedef struct QTVRPanoImagingAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 UInt32 imagingMode;
 UInt32 imagingValidFlags;
 UInt32 correction;
 UInt32 quality;
 UInt32 directDraw;
 UInt32 imagingProperties[6];
 UInt32 reserved1;
 UInt32 reserved2;
} QTVRPanoImagingAtom, *QTVRPanoImagingAtomPtr;

Node Location Atom Structure

typedef struct QTVRNodeLocationAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 OSType nodeType;
 UInt32 locationFlags;
 UInt32 locationData;
 UInt32 reserved1;
 UInt32 reserved2;
} QTVRNodeLocationAtom, *QTVRNodeLocationAtomPtr;

Node Header Atom Structure

typedef struct QTVRNodeHeaderAtom {
 UInt16 majorVersion;

276 C Summary
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X E

Summary of VR World and Node Atom Types

 UInt16 minorVersion;
 OSType nodeType;
 QTAtomID nodeID;
 QTAtomID nameAtomID;
 QTAtomID commentAtomID;
 UInt32 reserved1;
 UInt32 reserved2;
} QTVRNodeHeaderAtom, *QTVRNodeHeaderAtomPtr;

Hot Spot Information Atom Structure

typedef struct QTVRHotSpotInfoAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 OSType hotSpotType;
 QTAtomID nameAtomID;
 QTAtomID commentAtomID;
 SInt32 cursorID[3];
 Float32 bestPan;
 Float32 bestTilt;
 Float32 bestFOV;
 FloatPoint bestViewCenter;
 Rect hotSpotRect;
 UInt32 flags;
 UInt32 reserved1;
 UInt32 reserved2;
} QTVRHotSpotInfoAtom, *QTVRHotSpotInfoAtomPtr;

Link Hot Spot Atom Structure

typedef struct QTVRLinkHotSpotAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 UInt32 toNodeID;
 UInt32 fromValidFlags;
 Float32 fromPan;
 Float32 fromTilt;
 Float32 fromFOV;
 FloatPoint fromViewCenter;
 UInt32 toValidFlags;
 Float32 toPan;
 Float32 toTilt;
 Float32 toFOV;
 FloatPoint toViewCenter;
 Float32 distance;
 UInt32 flags;
 UInt32 reserved1;
 UInt32 reserved2;
} QTVRLinkHotSpotAtom, *QTVRLinkHotSpotAtomPtr;

Angle Range Atom Structure

typedef struct QTVRAngleRangeAtom {
 Float32 minimumAngle;
 Float32 maximumAngle;

C Summary 277
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X E

Summary of VR World and Node Atom Types

} QTVRAngleRangeAtom, *QTVRAngleRangeAtomPtr;

Panorama Sample Atom Structure

typedef struct QTVRPanoSampleAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 UInt32 imageRefTrackIndex;
 UInt32 hotSpotRefTrackIndex;
 Float32 minPan;
 Float32 maxPan;
 Float32 minTilt;
 Float32 maxTilt;
 Float32 minFieldOfView;
 Float32 maxFieldOfView;
 Float32 defaultPan;
 Float32 defaultTilt;
 Float32 defaultFieldOfView;
 UInt32 imageSizeX;
 UInt32 imageSizeY;
 UInt16 imageNumFramesX;
 UInt16 imageNumFramesY;
 UInt32 hotSpotSizeX;
 UInt32 hotSpotSizeY;
 UInt16 hotSpotNumFramesX;
 UInt16 hotSpotNumFramesY;
 UInt32 flags;
 UInt32 reserved1;
 UInt32 reserved2;
} QTVRPanoSampleAtom, *QTVRPanoSampleAtomPtr;

Cubic View Atom Structure

struct QTVRCubicViewAtom {
 Float32 minPan;
 Float32 maxPan;
 Float32 minTilt;
 Float32 maxTilt;
 Float32 minFieldOfView;
 Float32 maxFieldOfView;

 Float32 defaultPan;
 Float32 defaultTilt;
 Float32 defaultFieldOfView;
};
typedef struct QTVRCubicViewAtom QTVRCubicViewAtom;

Cubic Face Data Atom Structure

struct QTVRCubicFaceData {
 float orientation[4];
 float center[2];
 float aspect;
 float skew;
};

278 C Summary
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X E

Summary of VR World and Node Atom Types

typedef struct QTVRCubicFaceData QTVRCubicFaceData;

Object Sample Atom Structure

typedef struct QTVRObjectSampleAtom {
 UInt16 majorVersion;
 UInt16 minorVersion;
 UInt16 movieType;
 UInt16 viewStateCount;
 UInt16 defaultViewState;
 UInt16 mouseDownViewState;
 UInt32 viewDuration;
 UInt32 columns;
 UInt32 rows;
 Float32 mouseMotionScale;
 Float32 minPan;
 Float32 maxPan;
 Float32 defaultPan;
 Float32 minTilt;
 Float32 maxTilt;
 Float32 defaultTilt;
 Float32 minFieldOfView;
 Float32 fieldOfView;
 Float32 defaultFieldOfView;
 Float32 defaultViewCenterH;
 Float32 defaultViewCenterV;
 Float32 viewRate;
 Float32 frameRate;
 UInt32 animationSettings;
 UInt32 controlSettings;
} QTVRObjectSampleAtom, *QTVRObjectSampleAtomPtr;

Track Reference Entry Structure

struct QTVRTrackRefEntry {
 UInt32 trackRefType;
 UInt16 trackResolution;
 UInt32 trackRefIndex;
};
typedef struct QTVRTrackRefEntry QTVRTrackRefEntry;

C Summary 279
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X E

Summary of VR World and Node Atom Types

280 C Summary
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X E

Summary of VR World and Node Atom Types

This appendix introduces and defines some of the ways that profile information about a QuickTime
movie file can be summarized in a profile atom near the beginning of the file, so that software reading
the file can easily determine some aspects of its features and complexity.

The information in this appendix should not be seen as a replacement for, or even a functional overlap
with, the definition of the file-type atom. The file-type atom expresses which specifications a file is
compatible with: reading software should not attempt to play files unless they are compatible with
one or more specifications the reader implements, and should not refuse to play a file if it is marked
as so compatible. However, reading software may use profiling information to issue warnings, request
user decisions, and so on.

Reading software should not present excessive warnings to the user in the absence of summarized
features. Additionally, readers are encouraged to try to play content even though crucial profile
information is missing or incomplete.

Profiles may exist at the movie level or the track level. Track-level profiles summarize features of that
track only. Movie-level profiles may summarize features across tracks or summarize features that are
only relevant at the movie level (for example, the movie’s maximum bitrate).

If the movie contains runtime variables that might affect a feature, such as the presence of alternate
tracks that would affect the movie bit-rate, the affected feature should either be absent or report the
worst case (for example, the highest bit-rate).

If a feature value cannot be accurately represented (for example, the value is not an integer, but the
field is formatted as an integer) then the value should be rounded up to the nearest representable
value.

About This Appendix

The technical content of this appendix begins with a discussion of the structure of the profile atom,
which holds an array of feature codes and values. Next is an enumeration of the currently included
profile features, each described in a feature description section.

The responsibilities placed upon a writer of a movie (such as QuickTime or a consumer electronics
(CE) device) are described in the feature’s Writer Responsibilities section. A description of the algorithm
to be used to calculate values is provided.

About This Appendix 281
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

The feature’s Reader Responsibilities section explains how reading software should interpret the
value. In some cases, there are warnings to indicate how the reader must not use the value (for example,
not interpreting the maximum bitrate value as the current bitrate).

Profile Atom Specification

Definition

Atom type
'prfl'

Container
Movie atom ('moov') or track atom ('trak')

Mandatory
No

Quantity
Zero or one

At the movie level, the profile atom must occur within the movie atom before the movie header atom.
A reader may stop the search for the profile atom once the profile atom or the movie header atom is
found. Because new atoms may be introduced into the movie atom (type 'moov') in the future, a
reader must not expect the first child atom of the movie atom to be either the profile (type 'prfl')
or the movie header ('mvhd') atom. This rule allows for new atoms in the future but still accommodates
readers that do not want to perform an exhaustive enumeration of all the child atoms in a movie
atom.

The profile atom expresses profiles or feature codes for features that occur in the movie. The list is
not necessarily exhaustive, and there may be multiple profile values recorded for the same profile
code. For example, if there are two independent sequences of MPEG-4 video in the movie, using
different profile-level IDs, both might be recorded here.

Each feature is either universal or is documented in a specific specification, identified by a brand as
used in the file type atom. The only brands that should occur in a given profile atom are the universal
brand or brands that occur in the file type atom in the same file.

Feature value ranges should in general never include an unknown point; if the value of a feature is
unknown, the feature should be absent from the profile atom.

Feature values should be deducible by fairly simple inspection of the rest of the movie: for example,
extracting the profile-level ID from a video header, or calculations using information from the sample
table (for example, overall average bitrate by summing the sample sizes and the sample durations).
It is not appropriate to have features which cannot be computed, or only computed with difficulty
(e.g. a buffer model estimation which requires emulating a video decoder on the entire bit stream).
The algorithm to extract or deduce the feature value from the rest of the file must be defined.

Empty slots in the profile atom structure must be filled with zeroes.

282 Profile Atom Specification
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

If there are multiple parts of the file to which the same feature apply, yet they have different feature
values, then either there must be entries for each occurrence or none at all. For example, if there are
two MPEG-4 visual sequences, using different visual profiles, there are either two profile entries in
the profile table (one for each sequence) or none at all. Features must not be partially documented.

Profile atoms may also occur at the track level. A track-level profile atom must occur within the track
atom before the track header atom ('tkhd'). A reader should stop searching for a track’s profile atom
if either the profile or the track header atom is found, ignoring any other atoms present.

A track profile atom should only summarize features within that track. If track profile atoms exist, a
movie profile atom can be built largely by copying feature entries from the profile atom of the movie’s
tracks to the profile atom at the movie level. It is possible to have multiple track profiles with different
values which must be resolved to a single value for the movie as whole, however—such as multiple
video tracks with different maximum bit rates—so not all features can be copied directly from the
track to the movie profile. Additionally, the movie profile may summarize features that cannot occur
at the track level, such as total movie bitrate.

When building a movie profile, you must include either all instances of a track-level feature or no
instances of that feature. For example, if you have multiple video tracks that use different codecs,
you must either include an entry at the movie level for each codec, or put no codec feature entries at
the movie level at all.

Figure F-1 The profile atom

Atom size

Feature entries

Type = 'prfl'

Bytes

4

4

n x 32

Number of feature entries 4

Flags 3

Version 1

Profile atom

Syntax

aligned(8) class ProfileAtom
 extends FullAtom('prfl') {
 unsigned int(32) feature-record-count;
 for (i=1; i<feature-record-count; i++) {
 unsigned int(32) reserved = 0;
 unsigned int(32) part-ID;
 unsigned int(32) feature-code;
 unsigned int(32) feature-value
 }
}

Profile Atom Specification 283
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

Semantics

reserved
A 32-bit field that must be set to zero.

part-ID
Either a brand identifier that occurs in the file-type atom of the same file, indicating a feature
that is specific to this brand, or the value 0x20202020 (four ASCII spaces) indicating a universal
feature that can be found in any file type that allows the profile atom. The value 0 is reserved
for an empty slot.

feature-code
A four-character code either documented here (universal features), or in the specification
identified by the brand. The value of 0 is reserved for an empty slot with no meaningful
feature-value.

feature-value
Either a value from an enumerated set (for example, 1 or 0 for true or false, or an MPEG-4
profile-level ID) or a value that can compared (for example, bitrate as an integer or dimensions
as a 32-bit packed structure).

The profile atom is a full atom, so it has an 8-bit version and 24 bits of flags. For this specification, the
version is 0 and the flags have the value 0. A reader compliant with this specification should treat
any profile atom with a nonzero version value as if it did not exist.

Figure F-2 Layout of a typical feature

Part ID = ' '(0x20202020)

Reserved = 0x00000000

Value = 0x00000001

Feature Code = 'avbr'

Bytes

4

4

4

4

Universal Features

A feature consists of four fields: a reserved field, which is set to zero; a part-ID, which specifies which
brand the feature belongs to; a feature code, which identifies the feature; and a value field, which
holds the feature value).

The part-ID can be either universal or brand-specific. Universal features have a part-ID of four ASCII
spaces (0x20202020). Brand-specific features have a part-ID for a particular brand, which is taken
from the Compatible_brands field of the file type atom. Brand-specific features of QuickTime files
have a part-ID of 'qt '. All features listed in this section are universal features; that is, they can be
used in any file that includes a profile atom.

284 Universal Features
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

It is permissible to use the feature code of 0x00000000 as a placeholder, paired with a feature value
of 0x00000000 for one or more features. Readers should simply ignore features having a feature code
of zero.

No feature will exist to describe the unit of other features, such as bitrate. The device should consider
the magnitude and tailor its display appropriately.

This specification describes only how features are stored in files. It does not require that the values
of features be reported (for example, in a user interface) in the same manner as they are stored, or
require that they be reported at all.

Table of Features

Table F-1 (page 285) lists the universal features described in this appendix.

Table F-1 Universal features

Profile ParentDescriptionCodeBrand

Movie or Video Track“Maximum Video Bitrate” (page 286)mvbr0x20202020

Movie or Video Track“Average Video Bitrate” (page 287)avvb0x20202020

Movie or Track“Maximum Audio Bitrate” (page 288)mabr0x20202020

Movie or Audio Track“Average Audio Bitrate” (page 289)avab0x20202020

Movie or Video Track“QuickTime Video Codec Type” (page 290)vfmt0x20202020

Movie or Video Track“QuickTime Audio Codec Type” (page 291)afmt0x20202020

Movie or Video Track“MPEG-4 Video Profile” (page 292)m4vp0x20202020

Movie or Video Track“MPEG-4 Video Codec” (page 293)mp4v0x20202020

Movie or Video Track“MPEG-4 Video Object Type” (page 294)m4vo0x20202020

Movie or Audio Track“MPEG-4 Audio Codec” (page 295)mp4a0x20202020

Movie“Maximum Video Size in a Movie” (page 296)mvsz0x20202020

Movie or Video Track“Maximum Video Size in a Track” (page 298)tvsz0x20202020

Movie or Video Track“Maximum Video Frame Rate in a Single Track” (page
299)

vfps0x20202020

Movie or Video Track“Average Video Frame Rate in a Single Track” (page
300)

tafr0x20202020

Movie or Video Track“Video Variable Frame Rate Indication” (page 301)vvfp0x20202020

Movie or Audio Track“Audio Sample Rate for a Sample Entry” (page 302)ausr0x20202020

Movie or Audio Track“Audio Variable Bitrate Indication” (page 303)avbr0x20202020

Universal Features 285
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

Profile ParentDescriptionCodeBrand

Movie or Audio Track“Audio Channel Count” (page 304)achc0x20202020

Maximum Video Bitrate

Containing profile atom
Track (video), movie

Reserved
0x00000000

part-ID
0x20202020 (universal feature)

feature-code
'mvbr'

feature-value
Unsigned int(32) indicating maximum video bitrate in bits per second

Feature Values

The value is an unsigned 32-bit integer indicating the maximum video bitrate in bits per second. The
value may be larger than the actual video bitrate, so it should not be interpreted as a bitrate that will
actually occur.

Example: 1 Mbps = 1000000.

Writer Responsibilities

A writer of the maximum video bitrate should record a value that is equal to or greater than the actual
bitrate for the video track. A writer (such as a CE device) may choose to record a constant value so
long as that value is greater than or equal to the bitrate that may be encoded. It is also permitted to
record a value set by the video encoder during initialization, so long as the value is never exceeded.

Feature Value Algorithm

Apple recommends a sliding average over 1 second calculated from the sample tables.

If the feature is written for a newly encoded track (as by a CE device), it is permitted to record a value
used to initialize the video encoder so long as the value is never exceeded. If the video track is edited
and the maximum video bitrate recalculated, it may be calculated as a sliding average over 1 second,
based on the sample table.

This can be calculated in the following manner:

1. For each sample, calculate the average 1-second bitrate; choose the shortest run of samples,
including the candidate sample, that comprise 1 second or more of video, then divide the total
data size of those samples by their total duration.

286 Universal Features
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

2. Choose the maximum value from the list of calculated 1-second averages.

Reader Responsibilities

A reader of the maximum video bitrate feature value should compare the recorded value with its
own limits to determine if the content can be played. The reader should not perform an equality
comparison (=) but instead a relative comparison (<, <=, >, or >=).

The recorded value may be larger than the actual maximum video bitrate. Since this value may be
an over-estimate, the reader should not use it as a basis for refusing to play the file, though a warning
may be appropriate. To determine the actual bitrate, the reader may need to perform an inspection
of the video track’s sample table.

Comments

The value of this feature should be deducible from information found in the sample table. Track edits
must be considered in its calculation; if the track is edited, this value must be recalculated. Even
though this value may exceed the actual maximum video bitrate, writers should attempt to minimize
any over-estimation.

Average Video Bitrate

Containing profile atom
Track (video), movie

part-ID
0x20202020 (universal feature)

feature-code
'avvb'

feature-value
Unsigned int(32) indicating average video bitrate in bits per second

Feature Values

The value is an unsigned 32-bit integer indicating the average video bitrate in bits per second.

Example: 1 Mbps = 1000000.

Writer Responsibilities

A writer of the average video bitrate feature should record a value that is equal to or greater than the
average bitrate for the video track, measured across all media samples. A writer (such as a CE device)
may choose to record a constant value so long as that value is greater than or equal to the average
bitrate that may be encoded. It is also permitted to record a value set by the video encoder during
initialization so long as the value equals or exceeds the average calculated from the resulting file.

Universal Features 287
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

Feature Value Algorithm

Ideally, the long-term average: total sample sizes divided by total sample durations.

If the feature is written for a newly encoded track (as by a CE device), it is permitted to record a value
used to initialize the video encoder. If the video track is edited and the average video bitrate
recalculated, it may be calculated as an overall average based on the sample table.

Reader Responsibilities

A reader of the average video bitrate feature value should compare the recorded value with its own
limits to determine if the content can be played. The reader should not perform an equality comparison
(=) but instead a relative comparison (<, <=, >, or >=).

Because a writer may record a larger value than the actual video bitrate, a reader should not interpret
this as the actual video bitrate. To determine the current or actual bitrate, the reader may need to
perform an inspection of the video track's sample table.

Comments

The value of this feature should be deducible from information found in the sample table. Track edits
must be considered in its calculation. Note that for highly variable bitrate video, the average rate may
not be a typical rate.

Maximum Audio Bitrate

Containing profile atom
Track (sound), movie

part-ID
0x20202020 (universal feature)

feature-code
'mabr'

feature-value
Unsigned int(32) indicating maximum audio bitrate in bits per second

Feature Values

The value is an unsigned 32-bit integer indicating the maximum audio bitrate in bits per second that
must be supported to guarantee playback of the audio. The actual maximum bitrate may be smaller,
so a reader should not display this as the current bitrate.

Example: 128 kbps = 128000.

288 Universal Features
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

Writer Responsibilities

A writer of the maximum audio bitrate feature should record a value that is equal to or greater than
the current bitrate for the sound track. While the value may exceed the actual maximum bit-rate, the
writer should attempt to minimize any over-estimation.

While recording the precise bitrate is preferred, it is not required. A writer (such as a CE device) may
choose instead to record a constant value so long as that value is greater than or equal to the bitrate
that may be encoded. It is also permitted to record a value set by the audio encoder during initialization
so long as the value is never exceeded.

Feature Value Algorithm

Apple recommends a sliding average over 1 second calculated from the sample tables.

If the feature is written for a newly encoded track (as by a CE device), it is permitted to record a value
used to initialize the audio encoder so long as the value is never exceeded.

If the sound track is edited, and the audio bitrate is not constant, the maximum audio bitrate must
be recalculated. Note that editing can change the duration of media samples, resulting in non-constant
bitrate audio even when the sound track is encoded using a constant bitrate encoder. Maximum bitrate
may be calculated as a sliding average over 1 second, based on the sample table. This can be calculated
in the following manner:

1. For each sample, calculate the average 1-second bitrate; choose the shortest run of samples,
including the candidate sample, that comprise 1 second or more of audio, then divide the total
data size of those samples by their total duration.

2. Choose the maximum value from the list of calculated 1-second averages.

Reader Responsibilities

A reader of this feature code should compare the recorded value with its own limits to determine if
the content can be played. The reader should not perform an equality comparison (=) but instead a
relative comparison (<, <=, >, or >=).

Because this value may be an over-estimate of the true maximum bitrate, the reader should not refuse
to play a file on the basis of this value, although a warning may be appropriate. To determine the
current or actual bitrate, the reader may need to perform an inspection of the video track's sample
table.

Average Audio Bitrate

Containing profile atom
Track (sound), movie

part-ID
0x20202020 (universal feature)

feature-code
'avab'

Universal Features 289
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

feature-value
Unsigned int(32) indicating average audio bitrate in bits per second

Feature Values

The value is an unsigned 32-bit integer indicating the average audio bitrate in bits per second.

Example: 128 kbps = 128000.

Writer Responsibilities

A writer of the average audio bitrate feature should record a value that is equal to or greater than the
average bitrate for the sound track, measured across all media samples. A writer (such as a CE device)
may choose to record a constant value so long as that value is greater than or equal to the average
bitrate that may be encoded. It is also permitted to record a value set by the audio encoder during
initialization so long as the value is never exceeded on average.

Feature Value Algorithm

Normally, the long-term average: total sample sizes divided by total sample durations.

If the feature is written for a newly encoded track (as by a CE device), it is permitted to record a value
used to initialize the audio encoder. If the sound track is edited and the average video bitrate
recalculated, it may be calculated as an overall average based on the sample table.

Reader Responsibilities

A reader of the average audio bitrate feature value should compare the recorded value with its own
limits to determine if the content can be played. The reader should not perform an equality comparison
(=) but instead a relative comparison (<, <=, >, or >=).

Comments

The value of this feature should be deducible from information found in the sample table. Track edits
normally need not be considered in the calculation for constant bitrate audio, but must be considered
for variable bitrate audio or when track or movie segments containing constant bitrate audio are
edited to alter their duration..

QuickTime Video Codec Type

Containing profile atom
Track (video), movie

part-ID
0x20202020 (universal feature)

feature-code
'vfmt'

290 Universal Features
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

feature-value
Unsigned int(32) (a four-character-code) holding the QuickTime video codec type copied
from the ImageDescription structure’s cType field

Feature Values

This is the four-character-code found in a video sample description.

Examples: 'mp4v', 'jpeg'.

Writer Responsibilities

A writer of the QuickTime video codec type feature should record the four-character code
corresponding to the QuickTime video format type or types also recorded in the video track’s sample
descriptions.

Note: A writer that records the QuickTime Video Codec type for the 'mp4v' codec is encouraged also
to write the MPEG-4 Video Profile feature.

Feature Value Algorithm

The feature value is the video codec type read from a QuickTime ImageDescription’s cType field. If
there are multiple sample descriptions with different video codec types, multiple video codec type
features should be recorded in the profile atom.

Reader Responsibilities

A reader of this feature code should compare the recorded value by an equality comparison (using
=) with the format codes supported by the reader.

QuickTime Audio Codec Type

Containing profile atom
Track (sound), movie

part-ID
0x20202020 (universal feature)

feature-code
'afmt'

feature-value
Unsigned int(32) (a four-character-code) holding the QuickTime audio codec type copied
from SoundDescription structure’s dataFormat field

Feature Values

This is the four-character-code found in a sound sample description.

Universal Features 291
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

Examples: 'mp4a', 'twos'.

Writer Responsibilities

A writer of the QuickTime audio codec type feature should record the four-character-code
corresponding to the QuickTime audio format type or types also recorded in the sound track’s sample
descriptions.

Note: A writer that records the QuickTime Audio Codec type for the 'mp4a' codec is encouraged also
to write the MPEG-4 Audio Codec feature.

Feature Value Algorithm

The feature value is the audio codec type read from a SoundDescription structure’s dataFormat
field. If there are multiple sample descriptions with different audio codec types, either all QuickTime
Audio Codec Type features must be recorded in the profile atom or none must be recorded.

Reader Responsibilities

A reader of this feature code should compare the recorded value by an equality comparison (using
=) with the format codes supported by the reader.

MPEG-4 Video Profile

Containing profile atom
Track (video), movie

part-ID
0x20202020 (universal feature)

feature-code
'm4vp'

feature-value
Unsigned int(32) where least significant 8 bits hold the profile_and_level_indication
from the visual_object_sequence, as defined in specification ISO/IEC 14496-2, retrieved
from the video parameters for the MPEG-4 video codec description. The top 24 bits must be
set to 0.

Feature Values

The least significant 8 bits hold the value. The most significant 24 bits of the feature value should be
set to 0.

292 Universal Features
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

Writer Responsibilities

A writer of the MPEG-4 video profile feature should record the 8 bits corresponding to the
profile_and_level_indication from the visual_object_sequence, as defined in specification
ISO/IEC 14496-2, found in the video parameters encoded in the esds of the MPEG-4 video codec
sample description (with QuickTime codec type 'mp4v').

Note: A writer that records the MPEG-4 video profile feature is encouraged also to write the QuickTime
Video Codec Type feature.

Feature Value Algorithm

The feature value is the profile_and_level_indication from the visual_object_sequence, as
defined in specification ISO/IEC 14496-2, retrieved from the video parameters for the MPEG-4 video
codec description.

Reader Responsibilities

A reader of this feature code should compare the recorded value with the set of profiles and levels
supported by the reader.

Comments

This feature may be present only if MPEG-4 video is used. Normally, the video codec type profile
entry will also record that MPEG-4 video is present, unless no codec types are present (when, for
example, an exhaustive list cannot be formed).

MPEG-4 Video Codec

Containing profile atom
Track (video), movie

part-ID
0x20202020 (universal feature)

feature-code
'mp4v'

feature-value
Unsigned int(32) where the least significant 4 bits holds the visual_object_type as found
in the VisualObject (as defined in specification ISO/IEC 14496-2, subclause 6.2.2) found in
the esds of the MPEG-4 video codec (QuickTime type 'mp4v') sample description

Feature Values

The least significant 4 bits hold the value. The most significant 28 bits of the feature value should be
set to 0.

The list of visual object type constants is defined in specification ISO/IEC 14496-2, subclause 6.3.2.

Universal Features 293
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

Example: Video ID is indicated by the value 1.

Writer Responsibilities

A writer of the MPEG-4 Video Codec feature should record the 4 bits corresponding to the
visual_object_type found in the VisualObject within the ES_descriptor's video
DecoderSpecificConfig. The most significant 28 bits of the value should be set to 0.

Note: A writer that records the MPEG-4 Video Codec feature is encouraged also to write the QuickTime
Video Codec Type feature.

Feature Value Algorithm

The MPEG-4 video codec is the 4 bits of the visual_object_type found in the VisualObject. See
ISO/IEC 14496-2, subclause 6.2.2. The VisualObject is found in the MPEG-4 Elementary Stream
Descriptor Atom within the 'esds' sample description atom of the video sample description for the
QuickTime video codec of type 'mp4v'.

Reader Responsibilities

A reader of this feature code should compare the recorded value with the set of MPEG-4 video
decoders supported by the reader.

Comments

Because the QuickTime 'mp4v' codec may implement multiple video decoders defined in specification
ISO/IEC 14496 in the future, this feature allows the reader to determine the specific video decoder
needed to interpret the video bit-stream.

MPEG-4 Video Object Type

Containing profile atom
Track (video), movie

part-ID
0x20202020 (universal feature)

feature-code
'm4vo'

feature-value
Unsigned int(32) where the least significant 8 bits hold the video_object_type_indication
found in the VideoObjectLayer (Described in ISO/IEC 14496-2, subclause 6.2.3). The
VideoObjectLayer is found in the MPEG-4 Elementary Stream Descriptor Atom within the
'esds' sample description atom of the video sample description for the QuickTime video
codec of type 'mp4v'.

294 Universal Features
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

Feature Values

The value is a video object type constant that indicates a set of video tools. The list of video object
type constants is defined in specification ISO/IEC 14496-2, subclause 6.3.3. The least significant 8 bits
hold the value. The most significant 24 bits should be set to 0.

Example: The Simple Object Type video object is indicated by the value 1.

Writer Responsibilities

A writer of the MPEG-4 Video Object Type feature should record the 8 bits corresponding to the
video_object_type_indication found in the VideoObjectLayer within the ES_descriptor’s video
DecoderSpecificConfig. The most significant 24 bits of the value should be set to 0.This feature
should be written only for MPEG-4 video of video object type 1 (Video ID). If the MPEG-4 video does
not use Video ID (1) for visual_object_type, the esds will have no VideoObjectLayer and
consequently no video_object_type_indication. In this case, no MPEG-4 Video Object Type feature
should be written.

Note: A writer that records the MPEG-4 Video Object Type feature for encoded video using the Video
ID visual object type is encouraged to write the MPEG-4 Video Codec and MPEG-4 Video Profile
features as well.

Feature Value Algorithm

The MPEG-4 video object type is the least significant 8 bits of the video_object_type_indication
found in the VideoObjectLayer. See ISO/IEC 14496-2, subclause 6.2.3. The VideoObjecLayer is
found in the MPEG-4 Elementary Stream Descriptor Atom within the 'esds' sample description
atom of the video sample description for the QuickTime video codec of type 'mp4v'.

Reader Responsibilities

A reader of this feature code should compare the recorded value with the set of MPEG-4 video tools
supported by the reader.

MPEG-4 Audio Codec

Containing profile atom
Track (sound), movie

part-ID
0x20202020 (universal feature)

feature-code
'mp4a'

feature-value
Unsigned int(32) where least significant 5 bits hold the AudioObjectType as found in the
AudioSpecificInfo (as defined in specification ISO/IEC 14496-3, subclause 1.6) found in the
esds of the MPEG-4 audio codec (QuickTime type 'mp4a') sample description

Universal Features 295
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

Feature Values

The least significant 5 bits hold the value. The most significant 27 bits of the feature value should be
set to 0.

The list of audio object type constants is defined in specification ISO/IEC 14496-3, subclause 1.5.1.1.

Examples: AAC LC is indicated by the value 2, CELP is indicated by the value 8.

Writer Responsibilities

A writer of the MPEG-4 Audio Codec feature should record the 5 bits corresponding to the
AudioObjectType found in the ES_descriptor's audio DecoderSpecificConfig. The most significant
27 bits of the value should be set to 0.

Note: A writer that records the MPEG-4 Audio Codec feature is encouraged also to write the QuickTime
Audio Codec Type feature.

Feature Value Algorithm

The MPEG-4 audio codec value is the 5 bits of the AudioObjectType found in the AudioSpecificInfo
(a DecoderSpecificInfo). See specification ISO/IEC 14496, subclause 1.6. The AudioSpecificInfo
is found in the MPEG-4 Elementary Stream Descriptor Atom within the siDecompressionParam
atom of the audio sample description for the QuickTime audio codec of type 'mp4a'.

Reader Responsibilities

A reader of this feature code should compare the recorded value with the set of MPEG-4 audio
decoders supported by the reader.

Comments

Because the QuickTime 'mp4a' codec may implement multiple audio decoders defined in specification
ISO/IEC 14496 in the future, this feature allows the reader to determine the specific audio decoder
needed to interpret the audio bit stream. The MPEG-4 Audio Codec feature should be present only
if the 'mp4a' audio codec is used in a sound track.

Maximum Video Size in a Movie

Containing profile atom
Movie

part-ID
0x20202020 (universal feature)

feature-code
'mvsz'

296 Universal Features
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

feature-value
A 32-bit packed structure holding width and height of the largest bounds needed to display
the movie

Feature Values

A packed structure in a 32-bit value:

struct {
 unsigned integer(16) width;
 unsigned integer(16) height;
};

In big-endian order, the top 16 bits correspond to the width. The lower 16 bits correspond to the
height.

Writer Responsibilities

A writer of the Maximum Movie Video Size feature should record a value that is equal to or greater
than the display size needed by the movie—the actual width and height needed to display the movie
at its normal size, taking into account all matrices (all track matrices and the movie matrix).

A writer (such as a CE device) may choose to record a constant size based upon its current recording
mode even if the actual size recorded in the movie is smaller.

Feature Value Algorithm

This value is calculated by examining the dimensions of all visual tracks and computing the maximum
combined dimensions, including the effect of track matrices and the movie matrix. For example, if
two video tracks play side-by-side in the movie, and the tracks and movie all use the identity matrix,
this value will be the largest of the two tracks’ heights and their combined width.

Reader Responsibilities

A reader of this feature code should compare the recorded value with its own video size limits.

The reader should not interpret the value of this feature as the current video size. To determine the
current video size, the reader should use the dimensions of all currently displaying video tracks, their
matrices, and the movie matrix.

Comments

The width and height correspond to the maximum visual area needed to display the movie.

The summarized width and height should take into account all components of all track matrices and
the movie matrix. The goal is to understand the maximum contribution of all tracks to the movie’s
bounds.

For the case where there is a single video track with an identity track matrix, the movie’s maximum
video size feature would typically have the same value as the track’s maximum video size feature.

Universal Features 297
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

Maximum Video Size in a Track

Containing profile atom
Track (video), movie

part-ID
0x20202020 (universal feature)

feature-code
'tvsz'

feature-value
A 32-bit packed structure holding width and height of the largest picture buffer needed for a
video track.

Feature Values

A packed structure in a 32-bit value:

struct {
 unsigned integer(16) width;
 unsigned integer(16) height;
};

In big-endian order, the top 16 bits correspond to the width. The lower 16 bits correspond to the
height.

Writer Responsibilities

A writer of the Maximum Track Video Size feature should record a value that is equal to or greater
than the largest height and width of any sample description in the video track. This does not include
the effect of any scaling or offset applied by the track matrix and may not be the same as the track
height and track width.

A writer (such as a CE device) may choose to record a constant size based upon its current recording
mode even if the actual size recorded in the track is smaller.

Feature Value Algorithm

Examine all sample descriptions for the track, and use the maximum width and maximum height
found in any sample. The maximum width and maximum height may come from independent sample
descriptions.

Reader Responsibilities

A reader of this feature code should compare the recorded value with its own image buffer limits.

The reader should not interpret the value of this feature as the current video size. To determine the
current video size, the reader should use the dimensions of all currently displaying video tracks, their
matrices, and the movie matrix.

298 Universal Features
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

Comments

The width and height correspond to the largest image buffer dimensions needed for a visual track.
When present in a movie-level profile, these atoms document the maximum video size found in each
of the movie’s tracks.

The summarized width and height do not take into account any scaling or translation caused by the
track or movie matrices, and are not necessarily the same as the track height and width.

For the case where there is a single video track with an identity track and matrix and an identity
movie matrix, the movie’s maximum video size feature would have the same value as the track’s
feature.

Warning: Use of the "clean aperture" sample description extension does not affect the value of
the track visual size, as the picture buffer is needed immediately after decoding, prior to any
clean aperture clipping.

Maximum Video Frame Rate in a Single Track

Containing profile atom
Track (video), movie

part-ID
0x20202020 (universal feature)

feature-code
'vfps'

feature-value
An unsigned fixed-point (16.16) number holding the maximum video frame rate

Feature Values

This is an unsigned fixed-point (16.16) number holding the maximum video frame rate. The integer
portion of the number can range from 0 to 65535.

Examples: 25 fps = 0x00190000; 24 fps = 0x00180000; 29.97 = 0x001DF853 (close approximation of a
30000/1001 ratio). The value may be rounded up to the nearest integer.

Writer Responsibilities

A writer of the Maximum Video Frame Rate feature should record a 16.16 fixed-point value that is
equal to or greater than the current video frame rate. A writer (such as a CE device) may choose to
record a constant for the feature based on its current recording mode, even if the actual frame rate is
less.

A writer of a new video track (such as a CE device recorder) may set the maximum frame rate feature
value to a value set during video encoder initialization, so long as this frame rate is never exceeded.

If the current calculated frame rate is fractional (such as 22.3 fps), a writer may choose to round the
value up to the nearest integer value (such as 23.0 fps for 22.3 fps).

Universal Features 299
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

A writer calculating the video frame rate using the video track’s sample table should not consider
the first or the last sample duration if they differ from the other sample durations. The reason for this
is that captured movie files often have longer or shorter first and last sample durations. By not
considering them in the calculation, a more accurate calculation is achieved.

Feature Value Algorithm

This feature value may be calculated as the inverse of the smallest sample duration in the video track
or tracks.

If the value is written for a newly recorded video track it may be a value established during
initialization of the video encoder, so long as the frame rate is not exceeded.

Reader Responsibilities

A reader of this feature code should compare the recorded value with its own video frame rate limits.
It should not expect exact values.

The reader should not interpret the value of this feature as the current frame rate. To determine the
current frame rate, the reader should use the video track’s sample table.

Comments

A writer may choose to round up any fractional value of the fixed-point number to the nearest 16-bit
integer leaving the lower 16 bits of the Fixed value set to 0. So, in the case of the 29.97 approximation
of 0x001DF853, the writer could round this up to 0x001E0000 (which equals 30).

Average Video Frame Rate in a Single Track

Containing profile atom
Track (video), movie

part-ID
0x20202020 (universal feature)

feature-code
'tafr'

feature-value
An unsigned fixed-point (16.16) number holding the average video frame rate

Feature Values

This is an unsigned fixed-point (16.16) number holding the average video frame rate. The integer
portion of the number can range from 0 to 65535.

Examples: 25 fps = 0x00190000; 24 fps = 0x00180000; 29.97 = 0x001DF853 (close approximation of a
30000/1001 ratio). The value may be rounded up to the nearest integer.

300 Universal Features
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

When present in a movie-level profile, these atoms document the average video frame rate of each
track in the movie.

Writer Responsibilities

A writer of the Average Video Frame Rate feature should record a 16.16 fixed-point value that is
equal to or greater than the average video frame rate. A writer (such as a CE device) may choose to
record a constant for the feature based on its current recording mode, even if the actual frame rate is
less.

A writer of a new video track (such as a CE device recorder) may set the average frame rate feature
value to a value set during video encoder initialization, so long as this frame rate is not exceeded by
the actual average, as determined by the feature value algorithm described below.

If the average calculated frame rate is fractional (such as 22.3 fps), a writer may choose to round the
value up to the nearest integer value (such as 23.0 fps for 22.3 fps).

Feature Value Algorithm

This feature value is calculated by dividing the the total number of frames (samples) by the duration
of the track. It is permissible to omit the first and last frames from this calculation, as they may have
significantly different duration than the average.

Reader Responsibilities

A reader of this feature code should understand that each frame is a video sample with its own
independent and explicit duration. While it is possible for all frames to have the same duration, it is
equally possible for the duration of any frame to be radically different from any other. Therefore, the
average frame rate may not always be meaningful information.

The reader should not interpret the value of this feature as the current frame rate. To determine the
current frame rate, the reader should use the video track’s sample table.

Comments

A writer may choose to round up any fractional value of the fixed-point number to the nearest 16-bit
integer leaving the lower 16 bits of the Fixed value set to 0. So, in the case of the 29.97 approximation
of 0x001DF853, the writer could round this up to 0x001E0000 (which equals 30).

Video Variable Frame Rate Indication

Containing profile atom
Track (video), movie

part-ID
0x20202020 (universal feature)

feature-code
'vvfp'

Universal Features 301
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

feature-value
Unsigned int(32) holding the value 0 if the frame rate is constant or the value 1 if the frame
durations vary

Feature Values

The feature value holds one of the following two values: 0 if all video samples have the same display
duration, or 1 if any video samples vary in duration.

Writer Responsibilities

A writer of the Video Variable Frame Rate Indication feature should compare the video track sample
durations. If all considered durations have the same value, the value 0 indicating constant frame rate
should be recorded. If any durations differ, the value 1 should be recorded for the feature. No other
value should be recorded.

Feature Value Algorithm

If the Time to Sample table records a constant duration for all samples, then record 0, else record 1.

Reader Responsibilities

A reader of this feature code should only expect the values 0 or 1.

Audio Sample Rate for a Sample Entry

Containing profile atom
Track (sound), movie

part-ID
0x20202020 (universal feature)

feature-code
'ausr'

feature-value
Unsigned int(32) holding the audio sample rate in units per second (for example, 44100 for
44.1 kHz)

Feature Values

This feature value is an unsigned 32-bit integer holding the audio sample rate in units per seconds
(cycles per second). The value should be rounded up to the nearest integer if it has a fractional portion.

Examples: 24 kHz = 24000, 44.1 kHz = 44100.

302 Universal Features
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

Writer Responsibilities

A writer of the Audio Sample Rate feature should record the integer portion (rounded up if there is
a fractional portion) of the audio sample rate found in a sound track’s SoundDescription structure.

If multiple audio sample rates are used in the movie, then either all must recorded in the profile atom,
or none must be recorded.

Feature Value Algorithm

This is the integer portion of the sample rate from a QuickTime audio sample description (rounded
up if there is a fractional portion). If the sample rate is greater than 64 kHz, the integer portion can
be recorded here.

If a sample rate has a fractional portion, the writer should round up to the nearest integer. So, the
22254.54545 value that may occur in QuickTime audio as a Fixed value represented as 0x56EE8BA3
can be recorded as 22255.

Reader Responsibilities

A reader of this feature code should compare the recorded value with its own audio sample rate
limits. If the reader only supports discrete values (such as 44100), it can perform equality comparisons
(=). If the reader supports ranges of audio sample rates (such as all rates less than or equal to 32000),
the reader can perform relative comparisons (<, <=, >, or >=).

Audio Variable Bitrate Indication

Containing profile atom
Track (sound), movie

part-ID
0x20202020 (universal feature)

feature-code
'avbr'

feature-value
Unsigned int(32) holding the value 0 if the audio is constant bitrate or 1 if the audio is variable
bitrate

Feature Values

The feature value holds one of the following two values: 0 if the audio is constant bitrate, or 1 if the
audio is variable bitrate.

Writer Responsibilities

A writer of the Audio Variable Bitrate Indication feature should determine if the audio frames are
constant or variable bitrate in nature and record either 0 or 1, respectively.

Universal Features 303
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

Feature Value Algorithm

Consult the audio sample descriptions. If the compressionID field in the sample descriptions is 0 or
-1, then the audio is constant bitrate. If the field is -2, then the same algorithm as for video applies: if
all the samples have both constant duration and constant size, then the audio is constant bit-rate;
otherwise is it variable.

Reader Responsibilities

A reader of this feature code should only expect the values 0 or 1.

Audio Channel Count

Containing profile atom
Track (sound), movie

part-ID
0x20202020 (universal feature)

feature-code
'achc'

feature-value
Unsigned int(32) holding the number of audio channels

Feature Values

The feature value is an unsigned 32-bit integer holding the number of audio channels encoded by a
Sound Track in the movie. For monaural, the value would be 1. For stereo, the value would be 2. Note
that the audio channel count is a standard field in the sound sample description.

Writer Responsibilities

A writer of the Audio Channel Count feature should determine the number of audio channels encoded
in the sound track or tracks of the movie.

Feature Value Algorithm

Consult the audio sample descriptions.

Reader Responsibilities

The reader should be prepared to either play the specified number of channels or to map the audio
to the number of channels the reader supports (for example, mixing down stereo sound for a monaural
speaker).

304 Universal Features
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

A P P E N D I X F

Profile Atom Guidelines

This table describes the changes to QuickTime File Format Specification.

NotesDate

First public release of complete, updated QuickTime File Format Specification
with information about atoms and atom types. Added licensing information
and disclaimer for developers. Modified introductory sections and atom
descriptions; updated artwork and edited for technical accuracy.

2007-09-04

A QuickTime file may now contain a file type compatibility atom. See “The
File Type Compatibility Atom” (page 30). A movie atom may now contain
a movie profile atom. See “The Movie Profile Atom” (page 37). A track
atom may now contain a track profile atom. See “Track Profile Atom” (page
48). Video sample descriptions may now contain a pixel aspect ratio atom
for non-square pixels. See “Pixel Aspect Ratio ('pasp')” (page 103). Video
sample descriptions may now also contain a color parameter atom. See
“Color Parameter Atoms ('colr')” (page 105). Video sample descriptions
may now a clean aperture atom. See “Clean Aperture ('clap')” (page 110).
The sound description record has been expanded to represent variable
bit-rate compression more accurately. See “Sound Sample
Descriptions” (page 117). The section describing MPEG-4 audio has been
modified. See “MPEG-4 Audio” (page 125).

It is now recommended that the file creation and modification times be
set using UTC, rather than local time zones. See “Calendar Date and Time
Values” (page 222). User data text may now be encoded using either
Macintosh text encoding or ISO text encoding (Unicode). See “User Data
Text Strings and Language Codes” (page 45). MPEG-4 video and audio
sample descriptions may now contain elementary stream descriptor atoms.
See “MPEG-4 Elementary Stream Descriptor Atom ('esds')” (page 104) and
“MPEG-4 Elementary Stream Descriptor ('esds') Atom” (page 123). It is
now possible to specify languages using either Macintosh language codes
or ISO language codes. See “Language Code Values” (page 219).

305
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

306
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

R E V I S I O N H I S T O R Y

Document Revision History

alpha channel The upper bits of a display pixel,
which control the blending of video and graphical
image data for a video digitizer component.

alternate track A movie track that contains
alternate data for another track. QuickTime
chooses one track to be used when the movie is
played. The choice may be based on such
considerations as image quality or localization.
See also track.

API (Application Programming Interface) The
set of function calls, data structures, and other
programming elements by which a structure of
code (such as a system-level toolbox) can be
accesses by other code (such as an application
program).

atom The basic unit of data in a movie resource,
sprite, or other QuickTime data structure. There
are a number of different atom types, including
movie atoms, track atoms, and media atoms. There
are two varieties of atoms: QT atoms, which may
contain other atoms, and classic atoms, which do
not contain any other atoms. See also movie
resource, sprite , QT atom , and classic atom.

atom container A tree-structured hierarchy of
QT atoms. See also QT atom.

atom ID A 32-bit integer that uniquely identifies
an atom among other child atoms of the same
parent atom. The root atom has an atom ID value
of 0x0001. See also child atom, parent atom , and
root atom.

atom type A 32-bit value that uniquely identifies
the data type of an atom. It is normally an OSType,
rendered by four ASCII characters. An atom’s data
type helps determine how the atom’s contents are
interpreted.

background color The color of the background
behind a sprite or other image.

bit depth The number of bits used to encode the
color of each pixel in a graphics buffer.

chapter list A set of named entry points into a
movie, presented to the viewer as a text list.

child atom A QT atom inside a container atom,
which is its parent atom. See also QT atom,
container atom , and parent atom.

chunk A collection of sample data in a media.
Chunks, which may contain one or more samples,
allow optimized data access. Chunks in a media
may have different sizes, and the samples within
a chunk may have different sizes.

classic atom A QuickTime atom that contains no
other atoms. A classic atom, however, may contain
a table. An example of a classic atom is an edit list
atom, containing the edit list table. Compare QT
atom.

clipped movie boundary region The region that
combines the union of all track movie boundary
regions for a movie, which is the movie’s movie
boundary region, with the movie’s movie clipping
region, which defines the portion of the movie
boundary region that is to be used. See also movie
boundary region and movie clipping region.

clipping The process of defining the boundaries
of a graphics area.

container atom An atom that contains other
atoms, possibly including other container atoms.

creator signature In the Macintosh file system,
a four-character code that identifies the application
program to which a file belongs.

307
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

Glossary

data fork In a Macintosh file, the section that
corresponds to a DOS/Windows file.

data handler A piece of software that is
responsible for reading and writing a media’s
data. The data handler provides data input and
output services to the media’s media handler. See
also media handler.

data reference A reference to a media’s data.

display coordinate system The QuickDraw
graphics world, which can be used to display
QuickTime movies, as opposed to the movie’s
time coordinate system, which defines the basic
time unit for each of the movie’s tracks. Compare
time coordinate system.

dithering A technique used to improve picture
quality when you are attempting to display an
image that exists at a higher bit-depth
representation on a lower bit-depth device. For
example, you might want to dither a 24 bits per
pixel image for display on an 8-bit screen.

dropframe A synchronizing technique that skips
timecodes to keep them current with video frames.

duration A time interval. Durations are time
values that are interpreted as spans of time, rather
than as points in time.

edit list A data structure that arranges a media
into a time sequence.

edit state Information defining the current state
of a movie or track with respect to an edit session.
QuickTime uses edit states to support undo
facilities.

effect description A data structure that specifies
which component will be used to implement an
effect in a movie, and how the component will be
configured.

effect track A modifier track that applies an effect
(such as a wipe or dissolve) to a movie. See
modifier track.

file fork A section of a Macintosh file. See also
data fork, resource fork.

file preview A thumbnail picture from a movie
that is displayed in the Open File dialog box. See
also thumbnail picture.

fixed point A point that uses fixed-point
numbers to represent its coordinates. QuickTime
uses fixed points to provide greater display
precision for graphical and image data.

fixed rectangle A rectangle that uses fixed points
to represent its vertices. QuickTime uses fixed
rectangles to provide greater display precision.

Flash A vector-based graphics and animation
technology. Flash data is exported by SWF files.

flattening The process of copying all of the
original data referred to by reference in QuickTime
tracks into a QuickTime movie file. This can also
be called resolving references. Flattening is used
to bring in all of the data that may be referred to
from multiple files after QuickTime editing is
complete. It makes a QuickTime movie
stand-alone—that is, it can be played on any
system without requiring any additional
QuickTime movie files or tracks, even if the
original file referenced hundreds of files. The
flattening operation is essential if QuickTime
movies are to be used with CD-ROM discs.

frame A single image in a sequence of images.

frame rate The rate at which a movie is
displayed—that is, the number of frames per
second that are actually being displayed. In
QuickTime the frame rate at which a movie was
recorded may be different from the frame rate at
which it is displayed. On very fast machines, the
playback frame rate may be faster than the record
frame rate; on slow machines, the playback frame
rate may be slower than the record frame rate.
Frame rates may be fractional.

free atom An atom of type 'free', which you can
include in a QuickTime file as a placeholder for
unused space.

file type atom An atom of type 'ftyp', which
defines which file specifications a file is
compatible with.

308
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y

graphics mode The method by which two
overlapping images are blended together to
produce a composite image.

graphics world A software environment in which
a movie track or set of images may be defined
before importing them into a movie.

handler reference atom A QT atom of type 'hdlr'
that specifies the media handler to be used to
interpret a media. See also QT atom, media, media
handler.

hint track A track in a streaming movie that
contains information for a packetizer about the
data units to stream. See also streaming.

hot spot An area, typically in a VR presentation,
that the user can click to invoke an action.

hypertext Action media that contains a URL and
takes the user to a website.

identity matrix A transformation matrix that
specifies no change in the coordinates of the
source image. The resulting image corresponds
exactly to the source image. See also
transformation matrix.

image In sprite programming, one of a sprite’s
properties. See also sprite, property.

image sequence A series of visual
representations usually represented by video over
time. Image sequences may also be generated
synthetically, such as from an animation sequence.

image track Any track in a QuickTime movie
that contains visual images. The term particularly
applies to video tracks that contain VR data.

input map A data structure that describes where
to find information about tracks that are targets
of a modifier track. See modifier track.

interlacing A video mode that updates half the
scan lines on one pass and goes through the
second half during the next pass.

interleaving A technique in which sound and
video data are alternated in small pieces, so the
data can be read off disk as it is needed.
Interleaving allows for movies of almost any
length with little delay on startup.

ISO Acronym for the International Standards
Organization. ISO establishes standards for
multimedia data formatting and transmission,
such as JPEG and MPEG.

Joint Photographic Experts Group (JPEG) Refers
to an international standard for compressing still
images. This standard supplies the algorithm for
image compression. The version of JPEG supplied
with QuickTime complies with the baseline ISO
standard bitstream, version 9R9. This algorithm
is best suited for use with natural images.

key frame A sample in a sequence of temporally
compressed samples that does not rely on other
samples in the sequence for any of its information.
Key frames are placed into temporally compressed
sequences at a frequency that is determined by
the key frame rate. Typically, the term key frame
is used with respect to temporally compressed
sequences of image data. See also sync sample.
See also key frame rate.

key frame rate The frequency with which key
frames are placed into temporally compressed
data sequences. See also key frame.

leaf atom An atom that contains only data, and
no other atoms.

layer A mechanism for prioritizing the tracks in
a movie or the overlapping of sprites. When it
plays a movie, QuickTime displays the movie’s
tracks according to their layer—tracks with lower
layer numbers are displayed first; tracks with
higher layer numbers are displayed over those
tracks.

matrix See transformation matrix.

matte A defined region of a movie display that
can be clipped and filled with another display.

media A data structure that contains information
that describes the data for a track in a movie. Note
that a media does not contain its data; rather, a

309
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y

media contains a reference to its data, which may
be stored on disk, CD-ROM disc, or any other
mass storage device. Also called a media structure.

media handler A piece of software that is
responsible for mapping from the movie’s time
coordinate system to the media’s time coordinate
system. The media handler also interprets the
media’s data. The data handler for the media is
responsible for reading and writing the media’s
data. See also data handler.

MIDI Acronym for Musical Instrument Digital
Interface, a standard format for sending
instructions to a musical synthesizer.

modifier track A track in a movie that modifies
the data or presentation of other tracks. For
example, a tween track is a modifier track. See
also tween track.

movie A structure of time-based data that is
managed by QuickTime. A movie may contain
sound, video, animation, or a combination of any
of these types of data. A QuickTime movie
contains one or more tracks; each track represents
a single data stream in the movie. See also
time-based data, track.

movie boundary region A region that describes
the area occupied by a movie in the movie
coordinate system, before the movie has been
clipped by the movie clipping region. A movie’s
boundary region is built up from the track movie
boundary regions for each of the movie’s tracks.
See also movie clipping region, track movie
boundary region.

movie clipping region The clipping region of a
movie in the movie’s coordinate system.
QuickTime applies the movie’s clipping region to
the movie boundary region to obtain a clipped
movie boundary region. Only that portion of the
movie that lies in the clipped movie boundary
region is then transformed into an image in the
display coordinate system. See also movie
boundary region.

movie display boundary region A region that
describes the display area occupied by a movie in
the display coordinate system, before the movie
has been clipped by the movie display clipping
region. See also movie display clipping region.

movie display clipping region The clipping
region of a movie in the display coordinate
system. Only that portion of the movie that lies
in the clipping region is visible to the user.
QuickTime applies the movie’s display clipping
region to the movie display boundary region to
obtain the visible image. See also movie display
boundary region.

movie file A QuickTime file that stores a movie
and its associated data.

movie header atom A QT atom that specifies the
characteristics of an entire QuickTime movie.

movie poster A single visual image representing
a QuickTime movie. You specify a poster as a
point in time in the movie and specify the tracks
that are to be used to constitute the poster image.

movie preview A short dynamic representation
of a QuickTime movie. Movie previews typically
last no more than 3 to 5 seconds, and they should
give the user some idea of what the movie
contains. You define a movie preview by
specifying its start time, its duration, and its tracks.

movie resource One of several data structures
that provide the medium of exchange for movie
data between applications on a Macintosh
computer and between computers, even
computers of different types.

movie sprite A sprite that lives in a sprite track
and acts in a movie. See also sprite track.

MPEG-4 An ISO standard (based on the
QuickTime file format) that supports video and
audio streaming. See also streaming.

music One of the QuickTime media types, in
which sequences of sounds and tones are
generated.

National Television System Committee
(NTSC) Refers to the color-encoding method
adopted by the committee in 1953. This standard
was the first monochrome-compatible,
simultaneous color transmission system used for
public broadcasting. This method is used widely
in the United States.

310
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y

node Either a panorama or an object in a
QuickTime VR movie.

NTSC See National Television System
Committee.

object track A track in a QuickTime VR movie
that contains a set of views of a VR object.

offset-binary encoding A method of digitally
encoding sound that represents the range of
amplitude values as an unsigned number, with
the midpoint of the range representing silence.
For example, an 8-bit sound sample stored in
offset-binary format would contain sample values
ranging from 0 to 255, with a value of 128
specifying silence (no amplitude). Samples in
Macintosh sound resources are stored in
offset-binary form. Compare twos-complement
encoding.

PAL See Phase Alternation Line (PAL).

panorama A structure of QuickTime VR data
that forms a virtual-world environment within
which the user can navigate.

panorama track A track in a QuickTime VR
movie that contains a panorama.

parent atom A QT atom that contains other QT
atoms, which are its child atoms. See also child
atom.

Phase Alternation Line (PAL) A color-encoding
system used widely in Europe, in which one of
the subcarrier phases derived from the color burst
is inverted in phase from one line to the next. This
technique minimizes hue errors that may result
during color video transmission. Sometimes called
Phase Alternating Line.

playback quality A relative measure of the
fidelity of a track in a QuickTime movie. You can
control the playback (or language) quality of a
movie during movie playback. QuickTime chooses
tracks from alternate tracks that most closely
correspond to the display quality desired. See also
alternate track.

poster A frame shot from a movie, used to
represent its content to the user.

preferred rate The default playback rate for a
QuickTime movie.

preferred volume The default sound volume for
a QuickTime movie.

preview A short, potentially dynamic, visual
representation of the contents of a file. The
Standard File Package can use previews in file
dialog boxes to give the user a visual cue about a
file’s contents. See also file preview.

preview atom An atom of type 'pnot', which can
appear in a QuickTime file to contain a movie’s
file preview.

profile atom An atom of type 'prfl', which
summarizes the features of a movie or track.

property Information about a sprite that
describes its location or appearance. One sprite
property is its image, the original bitmapped
graphic of the sprite.

QT atom A QuickTime atom that contains other
atoms, possibly including other QT atoms and
classic atoms. A data reference atom is an example
of a QT atom. Compare classic atom.

QTMA (QuickTime Music Architecture) The
part of QuickTime that lets other code create and
manipulate music tracks in movies.

QTVR track A track in a QuickTime movie that
maintains a list of VR nodes.

QuickDraw The original Mac OS
two-dimensional drawing software, used by
QuickTime.

QuickTime A set of Macintosh system extensions
or a Windows dynamic-link library that other code
can use to create and manipulate time-based data.

QuickTime VR A QuickTime media type that
lets users interactively explore and examine
photorealistic three-dimensional virtual worlds.
QuickTime VR data structures are also called
panoramas.

rate A value that specifies the pace at which time
passes for a time base. A time base’s rate is
multiplied by the time scale to obtain the number

311
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y

of time units that pass per second. For example,
consider a time base that operates in a time
coordinate system that has a time scale of 60. If
that time base has a rate of 1, 60 time units are
processed per second. If the rate is set to 1/2, 30
time units pass per second. If the rate is 2, 120 time
units pass per second. See also time base and time
unit.

resource In Macintosh programming, an entity
in a file or in memory that may contain executable
code or a description of a user interface item.
Resources are loaded as needed by a resource
manager, and are identified by their type and ID
number.

resource fork In a Macintosh file, the section that
contains resources.

root atom The largest atom container in a
hierarchy, with atom type 'sean'.

sample A single element of a sequence of
time-ordered data.

sample format The format of data samples in a
track, such as a sprite track.

sample number A number that identifies the
sample with data for a specified time.

SECAM (Systeme Electronique Couleur avec
Memoire) Sequential Color With Memory; refers
to a color-encoding system in which the red and
blue color-difference information is transmitted
on alternate lines, requiring a one-line memory in
order to decode green information.

single-fork movie file A QuickTime movie file
that stores both the movie data and the movie
resource in the data fork of the movie file. You
can use single-fork movie files to ease the
exchange of QuickTime movie data between
Macintosh computers and other computer
systems. Compare movie file.

skip atom An atom of type 'skip', which you can
include in a QuickTime file as a placeholder for
unused space.

SMPTE Acronym for Society of Motion Picture
and Television Engineers, an organization that
sets video and movie technical standards.

sprite An animated image that is managed by
QuickTime. A sprite is defined once and is then
animated by commands that change its position
or appearance.

sprite track A movie track populated by movie
sprites.

streaming Delivery of video or audio data over
a network in real time, to support applications
such as videophone and video conferencing. See
MPEG-4.

string atom An atom in VR media that contains
text.

SWF files Files that contain Flash data. See Flash.

sync sample A sample that does not rely on
preceding frames for content. See also key frame.

Systeme Electronique Couleur avec Memoire See
SECAM.

temporal compression Image compression that
is performed between frames in a sequence. This
compression technique takes advantage of
redundancy between adjacent frames in a
sequence to reduce the amount of data that is
required to accurately represent each frame in the
sequence. Sequences that have been temporally
compressed typically contain key frames at regular
intervals.

thumbnail picture A picture that can be created
from an existing image that is stored as a pixel
map, a picture, or a picture file. A thumbnail
picture is useful for creating small representative
images of a source image and in previews for files
that contain image data.

time base A set of values that define the time
basis for an entity, such as a QuickTime movie. A
time base consists of a time coordinate system
(that is, a time scale and a duration) along with a
rate value. The rate value specifies the speed with
which time passes for the time base.

time-based data Data that changes or interacts
with the user along a time dimension. QuickTime
is designed to handle time-based data.

312
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y

timecode media A media of type 'tmcd' that is
used to store timecode data.

timecode track A movie track that stores external
timing information, such as SMPTE timecodes.

time coordinate system A set of values that
defines the context for a time base. A time
coordinate system consists of a time scale and a
duration. Together, these values define the
coordinate system in which a time value or a time
base has meaning.

time scale The number of time units that pass
per second in a time coordinate system. A time
coordinate system that measures time in sixtieths
of a second, for example, has a time scale of 60.

time unit The basic unit of measure for time in a
time coordinate system. The value of the time unit
for a time coordinate system is represented by the
formula (1/time scale) seconds. A time coordinate
system that has a time scale of 60 measures time
in terms of sixtieths of a second.

time value A value that specifies a number of
time units in a time coordinate system. A time
value may contain information about a point in
time or about a duration.

track A Movie Toolbox data structure that
represents a single data stream in a QuickTime
movie. A movie may contain one or more tracks.
Each track is independent of other tracks in the
movie and represents its own data stream. Each
track has a corresponding media, which describes
the data for the track.

track boundary region A region that describes
the area occupied by a track in the track’s
coordinate system. QuickTime obtains this region
by applying the track clipping region and the track
matte to the visual image contained in the track
rectangle.

track clipping region The clipping region of a
track in the track’s coordinate system. QuickTime
applies the track’s clipping region and the track
matte to the image contained in the track rectangle
to obtain the track boundary region. Only that
portion of the track that lies in the track boundary
region is then transformed into an image in the
movie coordinate system.

track header atom A QT atom that specifies the
characteristics of a track in a QuickTime movie.

track height The height, in pixels, of the track
rectangle.

track input map A structure of QT atoms that
specifies how secondary data for a track is to be
interpreted (clipping, blending, etc.).

track load settings Information that specifies
how and when a track is to be preloaded before
running in a movie.

track matte A pixel map that defines the blending
of track visual data. The value of each pixel in the
pixel map governs the relative intensity of the
track data for the corresponding pixel in the result
image. QuickTime applies the track matte, along
with the track clipping region, to the image
contained in the track rectangle to obtain the track
boundary region. See track matte, track rectangle,
and track boundary region.

track movie boundary region A region that
describes the area occupied by a track in the movie
coordinate system, before the movie has been
clipped by the movie clipping region. The movie
boundary region is built up from the track movie
boundary regions for each of the movie’s tracks.

track offset The blank space that represents the
intervening time between the beginning of a
movie and the beginning of a track’s data. In an
audio track, the blank space translates to silence;
in a video track, the blank space generates no
visual image. All of the tracks in a movie use the
movie’s time coordinate system. That is, the
movie’s time scale defines the basic time unit for
each of the movie’s tracks. Each track begins at
the beginning of the movie, but the track’s data
might not begin until some time value other than
0.

track reference A data structure that defines the
relation between movie tracks, such as the relation
between a timecode track and other tracks. See
timecode track.

313
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y

track rectangle A rectangle that completely
encloses the visual representation of a track in a
QuickTime movie. The width of this rectangle in
pixels is referred to as the track width; the height,
as the track height.

track width The width, in pixels, of the track
rectangle.

transformation matrix A 3-by-3 matrix that
defines how to map points from one coordinate
space into another coordinate space.

tween data The data in a tween track, such as
interpolation values.

tween track A modifier track that performs a
specific kind of tweening, such as path-to-matrix
rotation.

tweening A process interpolating new data
between given values in conformance to an
algorithm. It is an efficient way to expand or
smooth a movie’s presentation between its actual
frames.

twos-complement encoding A system for
digitally encoding sound that stores the amplitude
values as a signed number—silence is represented
by a sample with a value of 0. For example, with
8-bit sound samples, twos-complement values
would range from –128 to 127, with 0 meaning
silence. The Audio Interchange File Format (AIFF)
stores samples in twos-complement form.
Compare offset-binary encoding.

URL The address of a website.

user data Auxiliary data that your application
can store in a QuickTime movie, track, or media
structure. The user data is stored in a user data
list; items in the list are referred to as user data
items. Examples of user data include a copyright,
date of creation, name of a movie’s director, and
special hardware and software requirements. See
also user data list, user data item

user data item A single element in a user data
list, such as a modification date or copyright
notice.

user data list The collection of user data for a
QuickTime movie, track, or media. Each element
in the user data list is called a user data item.

VR (virtual reality) See QuickTime VR.

Wired Sprite A sprite such as a clickable button
that has wired actions associated with it.

314
2007-09-04 | © 2004, 2007 Apple Inc. All Rights Reserved.

G L O S S A R Y

	QuickTime File Format Specification
	Contents
	Figures, Tables, and Listings
	Introduction
	Overview of QTFF
	Metadata
	Atoms
	Atom Layout
	Atom Structure

	QT Atoms and Atom Containers
	QT Atom Containers

	QuickTime Movie Files
	The File Type Compatibility Atom
	Free Space Atoms
	Movie Data Atoms
	Preview Atoms

	Movie Atoms
	Overview of Movie Atoms
	The Movie Atom
	The Movie Profile Atom
	Movie Header Atoms
	Color Table Atoms
	User Data Atoms
	User Data Text Strings and Language Codes
	Print to Video (Full Screen Mode)

	Track Atoms
	Track Profile Atom
	Track Header Atoms
	Clipping Atoms
	Clipping Region Atoms
	Track Matte Atoms
	Compressed Matte Atoms
	Edit Atoms
	Edit List Atoms
	Track Load Settings Atoms
	Track Reference Atoms
	Track Input Map Atoms

	Media Atoms
	Media Header Atoms
	Handler Reference Atoms
	Media Information Atoms
	Video Media Information Atoms
	Video Media Information Header Atoms
	Sound Media Information Atoms
	Sound Media Information Header Atoms
	Base Media Information Atoms
	Base Media Information Header Atoms
	Base Media Info Atoms
	Data Information Atoms
	Data Reference Atoms

	Sample Atoms
	Sample Table Atoms
	Sample Description Atoms
	General Structure of a Sample Description

	Time-to-Sample Atoms
	Sync Sample Atoms
	Sample-to-Chunk Atoms
	Sample Size Atoms
	Chunk Offset Atoms
	Using Sample Atoms
	Finding a Sample
	Finding a Key Frame

	Compressed Movie Resources
	Allowing QuickTime to Compress the Movie Resource
	Structure of a Compressed Movie Resource

	Reference Movies
	Reference Movie Atom
	Reference Movie Descriptor Atom
	Data Reference Atom
	Data Rate Atom
	CPU Speed Atom
	Version Check Atom
	Component Detect Atom
	Component Description Record

	Constants
	Quality Atom

	Media Data Atom Types
	Video Media
	Video Sample Description
	Video Sample Description Extensions
	Pixel Aspect Ratio ('pasp')
	MPEG-4 Elementary Stream Descriptor Atom ('esds')
	Color Parameter Atoms ('colr')
	Clean Aperture ('clap')

	Video Sample Data
	Uncompressed RGB
	Uncompressed Y′CbCr (including yuv2)
	JPEG
	MPEG-4 Video
	Motion-JPEG

	Sound Media
	Sound Sample Descriptions
	Sound Sample Description (Version 0)
	Sound Sample Description (Version 1)
	Redefined Sample Tables

	Sound Sample Description Extensions
	siSlopeAndIntercept Atom
	siDecompressionParam atom ('wave')
	Format atom ('frma')
	Terminator atom (0x00000000)
	MPEG-4 Elementary Stream Descriptor ('esds') Atom

	Sound Sample Data
	Uncompressed 8-Bit Sound
	Uncompressed 16-Bit Sound
	IMA, uLaw, and aLaw
	Floating-Point Formats
	24- and 32-Bit Integer Formats
	kMicrosoftADPCMFormat and kDVIIntelIMAFormat Sound Codecs
	kDVAudioFormat Sound Codec
	kQDesignCompression Sound Codec
	MPEG-1 Layer 3 (MP3) Codecs
	MPEG-4 Audio
	Formats Not Currently in Use:MACE 3:1 and 6:1

	Timecode Media
	Timecode Sample Description
	Timecode Media Information Atom
	Timecode Sample Data

	Text Media
	Text Sample Description
	Text Sample Data
	Hypertext and Wired Text

	Music Media
	Music Sample Description
	Music Sample Data

	MPEG-1 Media
	MPEG-1 Sample Description
	MPEG-1 Sample Data

	Sprite Media
	Sprite Sample Description
	Sprite Sample Data

	Sprite Track Properties
	Sprite Track Media Format
	Sprite Media Format Atoms
	Sprite Media Format Extensions
	Sprite Track Property Atoms

	Atom Types
	Sprite Button Behaviors
	QT Atom Container Description Key
	Sprite Media Handler Track Properties QT Atom Container Format
	Sprite Media Handler Sample QT Atom Container Formats
	Wired Action Grammar
	Flash Media
	Tween Media
	Tween Sample Description
	Tween Sample Data
	Tween Type Categories
	Tween QT Atom Container
	General Tween Atoms
	Path Tween Atoms
	List Tween Atoms
	3D Tween Atoms
	Interpolation Tween Atoms
	Region Tween Atoms
	Sequence Tween Atoms

	Modifier Tracks
	Limitations of Spatial Modifier Tracks

	Track References
	Chapter Lists
	3D Media
	3D Sample Description
	3D Sample Data

	Streaming Media
	Streaming Media Sample Description

	Hint Media
	Adding Hint Tracks to a Movie
	Packetization Hint Media Header Atom
	Hint Track User Data Atom
	Movie Hint Info Atom

	Finding an Original Media Track From a Hint Track
	RTP Hint Tracks
	Hint Sample Data Format
	Packetization Hint Sample Data for Data Format 'rtp '
	No-Op Data Mode
	Immediate Data Mode
	Sample Mode
	Sample Description Mode

	VR Media
	VR World Atom Container
	VR World Header Atom Structure
	Imaging Parent Atom
	Panorama-Imaging Atom

	Node Parent Atom
	Node Location Atom Structure
	Custom Cursor Atoms
	Node Information Atom Container
	Node Header Atom Structure
	Hot Spot Parent Atom
	Hot Spot Information Atom
	Specific Information Atoms
	Link Hot Spot Atom
	Link Hot Spot Valid Flags

	URL Hot Spot Atom
	Support for Wired Actions
	QuickTime VR File Format
	Single-Node Panoramic Movies
	Single-Node Object Movies
	Multinode Movies

	QTVR Track
	QuickTime VR Sample Description Structure

	Panorama Tracks
	Panorama Sample Atom Structure
	Panorama Image Track
	Cylindrical Panoramas

	Cubic Panoramas
	Image Tracks in Cubic Nodes

	Panorama Tracks in Cubic Nodes
	Nonstandard Cubes
	Hot Spot Image Tracks
	Low-Resolution Image Tracks
	Track Reference Entry Structure

	Object Tracks
	Object Sample Atom Structure
	Animation Settings
	Control Settings

	Track References for Object Tracks
	Movie Media
	Movie Sample Description
	Movie Media Sample Format

	Basic Data Types
	Language Code Values
	Macintosh Language Codes
	ISO Language Codes

	Calendar Date and Time Values
	Matrices
	Graphics Modes
	RGB Colors
	Balance

	Some Useful Examples and Scenarios
	Creating, Copying, and Disposing of Atom Containers
	Creating New Atoms
	Copying Existing Atoms
	Retrieving Atoms From an Atom Container
	Modifying Atoms
	Removing Atoms From an Atom Container

	Creating an Effect Description
	Structure of an Effect Description
	Required Atoms of an Effects Description
	Parameter Atoms of an Effects Description
	Creating an Input Map
	Structure of an Input Map
	Building Input Maps

	Creating Movies with Modifier Tracks
	Authoring Movies with External Movie Targets
	Target Atoms for Embedded Movies

	Adding Wired Actions To a Flash Track
	Extending the SWF Format
	What You Need to Modify
	File Length
	ActionRecordsOffset
	ActionOffset
	Condition
	Actions
	DoAction

	Creating Video Tracks at 30 Frames per Second
	Creating Video Tracks at 29.97 Frames per Second
	Creating Audio Tracks at 44.1 kHz
	Creating a Timecode Track for 29.97 FPS Video
	Playing with Edit Lists
	Interleaving Movie Data
	Referencing Two Data Files With a Single Track
	Getting the Name of a QuickTime VR Node
	Adding Custom Atoms in a QuickTime VR Movie
	Adding Atom Containers in a QuickTime VR Movie
	Optimizing QuickTime VR Movies for Web Playback
	The QTVR Flattener
	Sample Atom Container for the QTVR Flattener

	Appendix A: QuickTime Image File Format
	Atom Types in QuickTime Image Files
	Recommended File Type and Suffix

	Appendix B: Defining Media Data Layouts
	Using QuickTime Files and Media Layouts

	Appendix C: Random Access
	Seeking With a QuickTime File

	Appendix D: Metadata Handling
	Digital Video File Formats
	Digital Audio File Formats
	Still Image File Formats
	Animation and 3D File Formats

	Appendix E: Summary of VR World and Node Atom Types
	C Summary
	Constants
	VR World Atom Types
	Node Information Atom Types
	Miscellaneous Atom Types
	Track Reference Types
	Imaging Property Valid Flags
	Link Hot Spot Valid Bits
	Animation Settings
	Control Settings
	Controller Subtype and ID
	Object Controller Types
	Node Location Flag
	Panorama Sample Flag

	Data Types
	Sample Description Header Structure
	String Atom Structure
	VR World Header Atom Structure
	Panorama-Imaging Atom Structure
	Node Location Atom Structure
	Node Header Atom Structure
	Hot Spot Information Atom Structure
	Link Hot Spot Atom Structure
	Angle Range Atom Structure
	Panorama Sample Atom Structure
	Cubic View Atom Structure
	Cubic Face Data Atom Structure
	Object Sample Atom Structure
	Track Reference Entry Structure

	Appendix F: Profile Atom Guidelines
	About This Appendix
	Profile Atom Specification
	Definition
	Syntax
	Semantics

	Universal Features
	Table of Features
	Maximum Video Bitrate
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities
	Comments

	Average Video Bitrate
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities
	Comments

	Maximum Audio Bitrate
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities

	Average Audio Bitrate
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities
	Comments

	QuickTime Video Codec Type
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities

	QuickTime Audio Codec Type
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities

	MPEG-4 Video Profile
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities
	Comments

	MPEG-4 Video Codec
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities
	Comments

	MPEG-4 Video Object Type
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities

	MPEG-4 Audio Codec
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities
	Comments

	Maximum Video Size in a Movie
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities
	Comments

	Maximum Video Size in a Track
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities
	Comments

	Maximum Video Frame Rate in a Single Track
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities
	Comments

	Average Video Frame Rate in a Single Track
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities
	Comments

	Video Variable Frame Rate Indication
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities

	Audio Sample Rate for a Sample Entry
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities

	Audio Variable Bitrate Indication
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities

	Audio Channel Count
	Feature Values
	Writer Responsibilities
	Feature Value Algorithm
	Reader Responsibilities

	Revision History
	Glossary

