VC-9 Decoder Software Technical Reference Manual

VC-1 Decoder Software
Technical Reference Manual

Embedded Software Division

Document version: 2.1

Date of Issue: 14 January 2005
Author: ARM
Abstract

Documentation on the implementation and operation of a reference implementation of the VC-1 video
bitstream format standard.

Keywords
VC-1,Video,Standard,Decoder

This document was prepared by ARM Ltd under contract by Microsoft Corp, and provided by Microsoft Corp to
SMPTE. Additional contributors are requested to append comments, etc. to the end of this document, stating name
and contact information. This copyright notice must be included in all copies or derivative works.

Copyright (c) 2005

version 2.1 Page 1 of 137

VC-9 Decoder Software Technical Reference Manual

Contents

1 ABOUT THIS DOCUMENT 7
1.1 Change control 7
1.1.1 Current status 7
1.1.2 Change history 7
1.2 References 7
1.3 Terms and abbreviations 8
2 SCOPE 8
3 INTRODUCTION 8
4 PROJECT STRUCTURE 9
4.1 Directories and modules 9
4.2 Design decisions 9
4.2.1 Type abstraction 10
4.2.2 Memory allocation 10
4.2.3 Library use 10
4.2.4 Error handling 10
4.3 Decoder modules 11
4.4 Generic modules 12
4.5 Building the decoder 12
4.5.1 Selecting and controlling debug output 13
5 DECODER OPERATION 13
5.1 Decoder overview 13
5.2 Decoding process 15
5.3 Decoder example session 15
5.4 Details of decoder operation 16
5.4.1 Bitstream unpack 16
5.4.2 Prediction 16
5.4.3 DC coefficient decode 16
5.4.4 AC coefficient reconstruction 16
5.4.5 Zigzag scan 17
5.4.6 Dequantise 17
version 2.1 Page 2 of 137

VC-9 Decoder Software Technical Reference Manual

5.4.7 Inverse transform 17
5.4.8 Block prediction 17
5.4.9 Post process 17
5.4.10 Display 17
55 Decoder API functions 17
5.5.1 Decoding 18
5.5.2 File handling 19
6 DECODER APPLICATION 19
6.1 Access to bitstream information 19
6.2 Option processing 19
6.2.1 Option file format 19
6.2.2 Option types 20
6.2.3 Available options 20
6.3 File handling 22
7 REFERENCE SECTION 23
8 VC-1DATA STRUCTURE DOCUMENTATION 23
8.1 RDOPTS_sOptionDefinition Struct Reference 23
8.2 vcl sBFraction Struct Reference 24
8.3 vcl sBIlk Struct Reference 25
8.4 vcl sBlkinter Struct Reference 26
8.5 vcl sBlkintra Struct Reference 27
8.6 vcl sComponent Struct Reference 28
8.7 vcl sField Struct Reference 28
8.8 vcl sHrdState Struct Reference 31
8.9 vcl slmagePosition Struct Reference 32
8.10 vcl_sintensityComp Struct Reference 33
8.11 vcl_sinterpolate Struct Reference 33
8.12 vcl sleakyBucket Struct Reference 34
8.13 vcl slevelLimit Struct Reference 35

version 2.1 Page 3 of 137

VC-9 Decoder Software Technical Reference Manual

8.14 vcl_sMB Struct Reference 36
8.15 vcl sMotion Struct Reference 38
8.16 vcl sMV Struct Reference 39
8.17 vcl sPanScanParams Struct Reference 39
8.18 vcl sPanScanWindow Struct Reference 40
8.19 vcl sPicture Struct Reference 41
8.20 vcl sPosition Struct Reference 43
8.21 vcl sQuant Struct Reference 47
8.22 vcl sRectangle Struct Reference 48
8.23 vcl sReferencePicture Struct Reference 49
8.24 vcl sScaleMV Struct Reference 52
8.25 vcl sSequencelayer Struct Reference 54
8.26 vC1DEC3DH_sRunLevel Struct Reference 59
8.27 vCc1DEC_sBitplane Struct Reference 60
8.28 vCc1DEC_sBitstream Struct Reference 60
8.29 vc1DEC_sDecoderConfiguration Struct Reference 62
8.30 vc1DEC_sPictureLayerParams Struct Reference 63
8.31 vCc1DEC_sState Struct Reference 68
8.32 vc1DEC_sVLCCode Struct Reference 70
9 VC-1FILE DOCUMENTATION 71
9.1 decfile.h File Reference 71
9.2 decopts.h File Reference 74
9.3 rdopts.h File Reference 76
9.4 vclcropmv.h File Reference 78
9.5 vcldeblock.h File Reference 79
9.6 vcldebug.h File Reference 80
version 2.1 Page 4 of 137

VC-9 Decoder Software Technical Reference Manual

9.7 vcldec.h File Reference 80
9.8 vcldec3dh.h File Reference 85
9.9 vcldecbit.h File Reference 86
9.10 vcldecbitpl.h File Reference 91
9.11 vcldecblk.h File Reference 93
9.12 vcldecent.h File Reference 94
9.13 vcldecmb.h File Reference 95
9.14 vcldecmv.h File Reference 96
9.15 vcldecpic.h File Reference 98
9.16 vcldecseq.h File Reference 100
9.17 vcldecslice.h File Reference 101
9.18 vcldeczz.h File Reference 103
9.19 vclderivemv.h File Reference 104
9.20 vclgentab.h File Reference 106
9.21 vclhrd.h File Reference 107
9.22 vclinterp.h File Reference 109
9.23 vcliquant.h File Reference 112
9.24 vclitrans.h File Reference 114
9.25 vclpred.h File Reference 115
9.26 vclpredcbp.h File Reference 118
9.27 vclpreddcac.h File Reference 119
9.28 vclpredmv.h File Reference 121
9.29 vclrecon.h File Reference 123
9.30 vclscalemv.h File Reference 124
9.31 vclsmooth.h File Reference 125
9.32 vcltools.h File Reference 127
version 2.1 Page 5 of 137

VC-9 Decoder Software Technical Reference Manual

9.33 vcltypes.h File Reference 130

9.34 vclzztab.h File Reference 137

version 2.1 Page 6 of 137

VC-9 Decoder Software Technical Reference Manual

1 ABOUT THIS DOCUMENT

1.1 Change control

1.1.1 Current status

This document describes release-quality code that, at the time of publication, conforms to CD2r1
of the VC-1 specification (reference [1] below). Changes from the previous release are
documented in the accompanying release note (reference [4] below).

1.1.2 Change history

Issue
1.0
2.0
21

Date By

15 September 2004 ARM

7 December 2004 ARM

14 January 2005 Microsoft

1.2 References

This document refers to the following documents.

Change
First release.
Second release.

Updated copyright statement

Ref Document Author(s) Title
[1] SMPTE Standard xxxM Microsoft VC-1 Compressed Video Bitstream Format and
Decoding Process

[2] VC-1 decoder library ARM
source code

[3] SMPTE Recommended Microsoft VC-1 Decoder and Bitstream Conformance
Practice xxx

4] Decoder Software Release ARM
Note

version 2.1 Page 7 of 137

VC-9 Decoder Software Technical Reference Manual

1.3 Terms and abbreviations

This document uses the following terms and abbreviations.

Term Meaning

API Application Program Interface

BDU Bitstream Data Unit

CBP Coded block pattern.

MB Macroblock

MV Motion Vector

SMPTE Society of Motion Picture and Television Engineers

VC-1 The proposed SMPTE VC-1 video bitstream format standard

2 SCOPE

This document describes the structure and API of the VC-1 decoder implementation by ARM [2].
It provides a high level overview of how the decoder operates. Details of functions and structures
used in the library are contained within comments in the source code [2]. Some of these details
are also presented in sections 8 and 9 of this document, but the source is the reference for any
fine detail.

3 INTRODUCTION

The VC-1 decoder described here is designed as a reference decoder supporting all the
functionality defined in the standard [1]. It is capable of decoding I, P, B, Bl and skipped frames,
in all valid profiles. The decoder is written with portability and simplicity in mind. It is not
optimized for performance although care has been taken to keep data structures to a reasonable
size.

This document is split into the following sections:
e Description of project structure
o Directory and module structure
o0 Design decisions
0 General information on each module
e Decoder operation
o Decoder overview
o Decoder example
0 Decoder API
e Decoder application

o Description of code implementing functionality not related to the specification.

version 2.1 Page 8 of 137

VC-9 Decoder Software Technical Reference Manual

e Reference Section
o Data structures used

o Functions used

4 PROJECT STRUCTURE

4.1 Directories and modules

The decoder consists of various modules. The items within the modules follow a naming
convention:

o if the module is part of the bitstream format as defined in the specification, the name
starts with vecl

¢ the name of the top-level module is then added
e the module name for the component follows
e the descriptive part of the name then follows:
0 an underscore separates the prefix from the descriptive part

0 a'limited Hungarian’ set of prefixes is then used:

= pointer to a function

= p pointer to any other item

= e enumerated type

= s variable or type is a structure

o the name follows, using CapitalsToMarkWords (rather than underscores).

For example, the function to unpack sequence layer information is named
VC1DECSEQ UnpackSequencelLayer. This is made up from:

e the bitstream format prefix: vcl
e the top-level module prefix: DEC
e the specific module prefix: SEQ
e the function description: _UnpackSequencelLayer

Each module is contained within a source file. The filename consists of the module prefixes
(lowercased) as the main part of the name, followed by the type suffix (for example .c or _h).
Each top-level module is held within a separate directory. For example, the above function is
declared in file decoder/vcldecseq.h.

4.2 Design decisions

The code has been designed to be portable across a wide variety of systems, including ones
with restricted facilities. The major points are discussed in the following sections.

version 2.1 Page 9 of 137

VC-9 Decoder Software Technical Reference Manual

4.2.1 Type abstraction

All variables with specific range requirements are defined in terms of abstracted types that can
be redefined as needed for alternative compilers, with different basic sizes. The types are
defined in shared\vcltypes.h, and are as follows:

Type name | Type definition

BYTES A signed 8-bit value
UBYTES An unsigned 8-bit value
HWD16 A signed 16-bit value

UHWD16 An unsigned 16-bit value

WORD32 A signed 32-bit value

UWORD32 An unsigned 32-bit value

LLONG®64 A signed 64-bit value

ULLONG64 | An unsigned 64-bit value

FLAG A Boolean value

Figure 1 - Abstract Types

4.2.2 Memory allocation

The release build of the decoder library does not use global variables, static variables, or heap
memory allocation (mal loc, etc.). Memory must be allocated per-session by the calling
application. This means that the library is fully re-entrant, and is not dependent on the availability
of a heap manager. The debug build of the library does use global and static variables.

Note that the file handling module does use global and static variables, and also calls mal loc.
The file handling is regarded as being part of the application, and not the decoder library.

4.2.3 Library use

The code makes minimal use of the C library functions. Currently, only memset and memcpy are
used, in non-debug builds. These functions are easy to re-implement on any system lacking
them.

Debug builds make more use of library functions, such as printf. However, the debug code is
small and self-contained, and so can be retargeted to available system primitives.
4.2.4 Error handling

The code returns error indicators throughout, rather than relying on any exception mechanism.
The error codes are defined by an enumerated type (vcl_eResult), which can take the following
values:

vcl ResultFatal Fatal condition detected

vcl ResultWarn Continuable fault detected

vcl ResultOK Function completed successfully

vcl ResultNoFrame No frame to display (due to buffering)

vcl ResultSlice More slice data required to complete decode
vcl ResultField Second field data required to complete decode

version 2.1 Page 10 of 137

VC-9 Decoder Software Technical Reference Manual

vcl ResultinvalidParameter

vcl ResultBadFile

vcl ResultBadLine

vcl ResultBadType
vcl_ResultNoMemory

vcl ResultNoData

vcl ResultBufferExhausted

vcl ResultBadlmageSize

vcl ResultimageTooBig

vcl ResultimageSizeChanged
vcl ResultUnsupportedTransform
vcl ResultACRunLevelDecodeFailed
vcl ResultNoStartCode

Option value not accepted

File will not open

Line in option file not parseable

Invalid type for parameter

malloc() failed

Failed to read picture data

No more data to read from buffer

Size breaks restrictions set by the standard
Size bigger than profile limits

Size changed in simple or main profile
Invalid transform

Decoder failed to read the AC coef run levels
Start code not found in file input data

Note that not all calls can return all error codes. Note also that some codes do not indicate
errors: vcl ResultNoFrame, vcl _ResultSlice and vcl_ResultField indicate that the function
completed successfully but the decoder has reached a specific state.

4.3 Decoder modules

The table below describes the contents of each of the modules that make up the VC-1 decoder
library. The top-level module with prefix DEC is held within the decoder directory.

Module name Contents

vc1DEC Decoder top level API functions

vc1DEC3DH Decoder variable length code decoding functions
vc1DEC3DHTAB Decoder variable length code decoding tables
vCc1DECBIT Decoder bitstream reading functions
vc1DECBITPL Decoder bitplane decoding functions
vc1DECBITPLTAB | Decoder bitplane decode tables

VvC1DECBLK Decoder block level decode functions
VvC1DECBLKTAB Decoder block level decode tables
VvC1DECENT Decoder entry point layer decode functions
vc1DECMB Decoder macroblock level decode functions
VvC1DECMBTAB Decoder macroblock level decode tables
vC1DECMV Decoder motion vector decode functions
vc1DECPIC Decoder picture level decode functions
vc1DECPICTAB Decoder picture level decode tables

version 2.1

Page 11 of 137

VC-9 Decoder Software Technical Reference Manual

VvCc1DECSEQ

Decoder sequence layer reading functions

vc1DECSLICE

Decoder slice layer reading functions

vclDECZZ

Decoder de-zigzag functions

4.4 Generic modules

Generic code has no top-level module prefix. It is held within the shared directory.

Module name Module functions

vc13DHTAB Tables for variable length code decode
vc1CROPMV Motion vector pull-back/crop functions
vc1DEBLOCK In-loop deblocking filter functions

vc1DEBUG Debug routines (not required in a release build)
VC1DERIVEMV Motion vector derivation routines

VC1GENTAB General tables

vc1HRD Hypothetical reference decoder

VC1INTERP Block interpolation functions

VC1IQUANT Inverse Quantize functions

VC1lITRANS Inverse Transform functions

VC1PRED Routines for use by prediction functions
vc1PREDCBP Prediction of CBPY (coded block pattern Y values)
vc1PREDDCAC | Prediction of DC and AC quantized coefficients
VC1PREDMV Motion vector prediction

vC1RECON Block level reconstruction (inverse quantize, transform, smooth, clamp)
VC1SCALEMV Motion vector scaling

vc1SMOOTH Overlap smooth filter

vclTOOLS General tool functions

vclZZTAB Zigzag tables

4.5 Building the decoder

The decoder is written in standard ANSI C, and should compile and run with any standard C

compiler.

For Visual C++ users, a project workspace file is supplied within the decoder directory. To build
the decoder, load the project workspace file (decoder\decoder .dsw) into Visual C++, and
select menu entry Build -> Build, or press F7. Visual C++ version 6.0 (with all Service

version 2.1

Page 12 of 137

VC-9 Decoder Software Technical Reference Manual

Packs installed) or higher is required to be sure of correct operation — this reflects the systems
used to test the code during development.

For other compilers, a makefile is supplied within the decoder directory. Adapt this to suit the
local development environment.

4.5.1 Selecting and controlling debug output

To include code to produce debugging information, ensure that the ‘Win32 Debug’ build variant is
selected, and that the build is up to date. The debug output is divided into zones which can each
be independently enabled or disabled at runtime. For the available zone names and bit settings,
see the shared\vcildebug.h header file. For more information on how to select the zones to be
displayed, see section 6.2.3.4, DebugMask.

5 DECODER OPERATION

5.1 Decoder overview

This section provides an overview of the decoder API functions. For details of the API functions
and structures, see the header file decoder\vcildec.h.

The decoder takes a single command-line parameter, which is the name of the options file. This
file defines all the options used when running the decoder. For details of the option file format
and contents, see section 6.2, Option processing.

version 2.1 Page 13 of 137

VC-9 Decoder Software Technical Reference Manual

The following graphs show the relationship between the major functions within a decoder
application:

VvC1DECPIC_DisplayPicture

/

vc1DEC_DecodeFlush

vclTOOLS InitReferencePicture

% vclDEC_ SetMaxSize

vc1DEC _Decoderlnitialise /
vc1DEC_DecodeSequence \ vC1DECSEQ_ UnpackSequencel ayer
vc1DEC DecodeEntryPoint VvC1DECENT_UnpackEntryPointLayer
man [
T

\ vc1DEC_DecodeFrame - VvC1DECPIC_UnpackPicturelayer

- vC1DECSLICE_UnpackSlicel ayer

vc1DEC DecodeSlice /\ >
vc1DEC DecodeField / - VvC1DECPIC_UnpackFieldPictureL ayer

vc1DEC_DecoderRequirements

Figure 2: Major decoder functions

version 2.1 Page 14 of 137

VC-9 Decoder Software Technical Reference Manual

| VC1IDECPIC_SetDimensionsinMB |

g VCIDECPIC_UnpackPicturel ayerAdvanced |

| VvCc1DECPIC_ReadPicturel ayer

VC1DECPIC_UnpackPictureLayerSimpleMain |

VC1DECSLICE_DecodeSlice |

vc1DECPIC_UnpackPicturel ayer |

T

VC1DECPIC_UnpackFieldPicturel ayer

VC1GENTAB_ChooseZigZagTableSet |

| vclTOOLS InitReferencePicture |

vclTOOLS NewReference |

It

vc1DECPIC_DisplayPicture |

vclTOOLS_CopyReference |

]

vclTOOLS |CPadReferencePicture |

VCISCALEMV _InitScaleMV |

| vc1DECPIC_ReadAdvancedPicturelayer |

Figure 3: Unpack Picture Layer function

5.2 Decoding process

Decoding an | picture involves unpacking the picture, macroblock and block layers, predicting the
information about the current block from previous blocks, decoding the DC and AC coefficients,
de-zigzagging and dequantising the transform coefficients, and finally performing an inverse
transform. Processing operations may be applied to the image in the display buffer.

Decoding a P picture involves unpacking the picture, macroblock and block layers, predicting
information about the current block from previous blocks, decoding the AC coefficients, decoding
the motion vectors of the predicted block, de-zigzagging and dequantising the transform
coefficients, performing the inverse transform, and finally combining the difference block with the
motion vector predicted block.

Decoding a B picture is similar to the P picture case, but up to two motion vectors are decoded,
which are used to predict blocks from up to two reference pictures.

A complete macroblock is decoded before moving on to the next macroblock; within each
macroblock, all blocks are unpacked, then all blocks decoded, predicted and written to the
picture. Note that deblocking is not included within this decoding: deblocking is performed as a
separate pass.

5.3 Decoder example session

The following pseudo-code shows a simple example of a decoder session, for processing a Main
profile bitstream:

version 2.1 Page 15 of 137

VC-9 Decoder Software Technical Reference Manual

Configuration = Initial Decoder Configuration;
vclDEC_DecoderRequirements(&Size, &Configuration, &Bitstream);
State = malloc(Size);
vc1lDEC_Decoderlnitialise(State, &Configuration);
vc1DEC_DecodeSequence(State, &Bitstream);
while (Bitstream not exhausted)
{
vclDEC_DecodePicture(State, &Bitstream, &Picture);
[* display or write picture to disk */
}
vc1DEC_DecodeFlush(State, &Picture);

[* display or write picture to disk */

Figure 4 - decoder example

5.4 Details of decoder operation

The following sections describe, in order, the stages involved in decoding a picture, from
bitstream input to YUV pixel output.

5.4.1 Bitstream unpack

The sequence, picture and macroblock layers of the bitstream are unpacked according to
sections ‘Bitstream syntax and semantics’, ‘Progressive bitstream syntax and semantics’ and
‘Interlace syntax and semantics’ of the standard [1], and the data they represent stored in the
decoder’s state structure.

5.4.2 Prediction

The CBP, MV, DC and AC coefficients are predicted for the current block based upon the
previous blocks, as described in sections ‘Coded Block Pattern’, 'Motion Vector Predictors’, ‘DC
Predictor’ and ‘AC Prediction’ of the standard [1] respectively.

5.4.3 DC coefficient decode

If the picture is type |, or the block is intra type, the quantised DC coefficient is extracted from the
block layer, added to the predicted DC coefficient, and stored in the first element of the transform
coefficient array. The predicted DC coefficient is added at this stage.

5.4.4 AC coefficient reconstruction

If the CBP indicates AC coefficients are present in this block, the algorithm described in the
figure named ‘Coefficient decode pseudo-code’ of the standard [1] is used to obtain each run and
level pair. These are used to reconstruct the AC coefficients of the transform coefficient array
according to the algorithm described in the figure named ‘Run-level decode pseudo-code’ of the
standard [1]. These are stored in a temporary array.

version 2.1 Page 16 of 137

VC-9 Decoder Software Technical Reference Manual

5.4.5 Zigzag scan

If the CBP indicated AC coefficients are present in this block, the temporary transform coefficient
array is rearranged using a zigzag scan array, and the result put into the transform coefficient
array. The results are combined with predicted AC coefficients, if AC prediction is enabled.

5.4.6 Dequantise

The DC coefficient is dequantised according to the algorithm described in section ‘DC Inverse-
guantization’ of the standard [1].

If the CBP indicated AC coefficients are present in this block, they are dequantised according to
the algorithm described in section ‘Inverse AC Coefficient Quantization’ of the standard [1]. The
transform coefficient array is dequantised in place.

5.4.7 Inverse transform

The inverse transform operation is performed according to the specification in the annex ‘Inverse
Transform Specification’ of the standard [1]. The operation is performed on the transform
coefficient array, in place.

Unclamped results from the macroblock are stored for use in overlap smoothing.

5.4.8 Block prediction

If the picture is type P, a macroblock is obtained, interpolated if necessary, from the reference
picture, and combined with the resulting macroblock from the inverse transform.

If the picture is type B, one or two macroblocks are obtained, interpolated if necessary, from one
or two reference pictures, averaged and combined with the resulting macroblock from the inverse
transform.

The macroblock is clamped and copied into the key frame buffer in the decoder’s state structure,
for future prediction use.
5.4.9 Post process

If enabled, overlap smoothing is performed as described in section ‘Overlapped Transform’ of the
standard [1]. Data from previous macroblocks required to perform the operation is stored in the
decoder state. The image is also deblocked, if the bitstream requires it.

5.4.10 Display

The key frame buffer is copied to the display buffer, which is returned to the application. Range
reduction and resolution scaling is performed at the same time, if required by the bitstream.

5.5 Decoder API functions

This section describes the API functions used by the decoder. For more detailed internal
structure and function documentation, see section 8, VC-1 Data Structure Documentation, and
section 9, VC-1 File Documentation.

version 2.1 Page 17 of 137

VC-9 Decoder Software Technical Reference Manual

5.5.1 Decoding

5.5.1.1 vc1lDEC_DecoderRequirements()

This function is called once per bitstream. It will examine the bitstream and calculate the amount
of memory that the application must allocate for the decoder to decode the bitstream.

5.5.1.2 vc1DEC_Decoderlnitialise()

This function initialises the area of memory allocated by the application for use by the decoder.

5.5.1.3 vc1lDEC_DecodeFrame()

This function is called once for each picture to be decoded. It will decode a whole or part of a
picture, depending on whether the picture is split into slices or fields. It will write the resulting
data into the decoder’s picture pipeline if a complete picture is available, otherwise further calls
to vc1DEC_DecodeSlice() or vc1DEC_DecodeField() will be required. A picture will be copied to
the application’s picture buffer if the pipeline has been filled, which will be indicated by the
function’s return value.

5.5.1.4 vc1lDEC_DecodeFlush()

This function is called once per bitstream, at the end of a decoding session. It flushes the
decoder’s picture pipeline, and writes the picture to the application’s picture buffer. No bitstream
is consumed, and no decoding operations are performed.

5.5.1.5 vclDEC_DecodeSequence()

This function is called when a sequence layer BDU is received. It decodes the layer, and puts the
information it contains into the sequence parameters structure, which may be accessed by the
application.

5.5.1.6 vclDEC_DecodeEntryPoint()

This function is called when an entry point layer BDU is received. It decodes the layer, and puts
the information it contains into the sequence parameters structure, which may be accessed by
the application.

5.5.1.7 vc1DEC_DecodeSlice()

This function is called when a slice layer BDU is received. It decodes the layer, and any image
data it contains. The decoder’s internal picture buffer is updated with more image data. If the
slice completes a picture, the picture is returned to the application. Otherwise, further calls to
vclDEC_DecodeField() or ve1DEC_DecodeSlice() may be required. This is indicated by the
function’s return value.

5.5.1.8 vc1DEC_DecodeField()

This function is called when a field BDU is received. It decodes the image data in the field, and
updates the decoder’s internal picture buffer. If the field completes a picture, the picture is
returned to the application. Otherwise, further calls to vc1DEC_DecodeField() or
vc1DEC_DecodeSlice() may be required. This is indicated by the function’s return value.

5.5.1.9 vclDEC_UpdateBuffers()

This function is called to update the Hypothetical Reference Decoder model within the decoder at
the end of decoding a frame. The function will return vcl_ResultHrdUnderflow or
vcl ResultHrdOverflow if any of the HRD buffers underflow or overflow respectively.

version 2.1 Page 18 of 137

VC-9 Decoder Software Technical Reference Manual

5.5.2 File handling

The application must provide bitstream reading and YUV buffer output. See the reference code
for an example of how to update the decoder library bitstream information.

6 DECODER APPLICATION

6.1 Access to bitstream information

The decoder library parses many informational items from the bitstream which are potentially of
interest to the calling application, but are not used within the decoder library itself. The library
stores this information within the allocated state information. If the application wishes to read
particular values, it can do so via the allocated state structure:

e pState-> sSegParams provides the sequence layer and entry point layer information

e pState-> sPicture provides information on each output picture.

6.2 Option processing

The decoder requires a single command line parameter when run. This parameter is the name of
a simple text file that defines all the particular options used by that run of the program. The
option file can define options for use by the decoder only, or other associated tools — simple
conditional inclusion allows tool-specific options to be parsed only when appropriate.

This code is not part of the operation defined by the standard, so the modules do not use the vci1
prefix.

6.2.1 Option file format

Option lines are name and value pairs, with the name separated from the value by a colon (‘:’).
For options controlling arrays, an index in square brackets, such as [0], can be added after the
option name. Comments are allowed; any text following a ‘#‘ or ‘;’ character will be ignored
(unless it is recognised by the conditional processing described below). Case is ignored
throughout. Whitespace is also ignored throughout (except for the values for string-type options,
which have leading and trailing whitespace removed).

Conditional processing recognises only #if and #endif directives. These cannot be nested.
The condition consists of the tool name, or a list of tool names separated by the C logical-OR
operator (‘|).

Here is a simple option file to demonstrate the syntax.

Options for SMPTE VC-1 reference decoder.
Comments in this file can start with # or ; at any point in the line
; Blank lines are allowed.

#iT decoder
DebugMask : 0x80000000 # See debug.h for bits to set/clear
#endif

Picture width : 176
Picture height : 144

version 2.1 Page 19 of 137

VC-9 Decoder Software Technical Reference Manual

Bitstream File : testseq.bits
Level : Low
Output YUV : testout.yuv

6.2.2 Option types

Each option has a type. The types in use are:

UWORD32 the option can take any unsigned 32-bit value (unless otherwise restricted).

WORD32 the option can take any signed 32-bit value (unless otherwise restricted).

UHWD16 the option can take any unsigned 16-bit value (unless otherwise restricted).

UBYTES the option can take any unsigned 8-bit value (unless otherwise restricted).

Enum the option can take one value from a predetermined list.

String the option can accept a text value, usually checked for some particular
syntax.

Flag the option is a Boolean value, which can be specified as 0, 1, Yes or No.

The value ‘Yes’ sets the flag to 1, the value ‘No’ sets it to 0.

Numeric options can accept values in decimal, or hexadecimal (indicated by a Ox prefix).

6.2.3 Available options

6.2.3.1 BitstreamFile
Type: String
Value: valid filename

Function: Sets the name of the file read by the decoder.

6.2.3.2 ChainAfter
Type: UWORD32
Value: 0 — OXFFFFFFFF

Function: Sets the number of frames to decode before reading in the next option file. A value of 0
means chaining of options will happen immediately before the next frame is decoded (and so can
be used to suppress debug output during sequence layer parsing).

6.2.3.3 ChainOptions

Type: String

Value: valid filename

Function: Sets the name of the file to be read if the ChainAfter count expires.

Note Not all options can meaningfully be reset in a chained option file. Updating some values
will cause faulty behaviour of the decoder. This option is primarily intended for
debugging assistance: verbose debug output can be suppressed until the frame
demonstrating a problem.

6.2.3.4 DebugMask

version 2.1 Page 20 of 137

VC-9 Decoder Software Technical Reference Manual

Type: UWORD32

Value: 0 — OXFFFFFFFF

Function: Sets the mask controlling debug output in debug builds. All debug output is marked as
being within one or more zones. Zones are defined within file shared/vcldebug.h by the
VvC1DEBUG_eZone enumerated type. To enable output from a particular zone, set the relevant bit
in the option value. The zones are:

Zone name Bit to set Output enabled

vc1DEBUG_API 0x00000001 API debug (initialization etc)
vc1DEBUG_FRAME 0x00000002 Frame debug (print frame number/type)
vclDEBUG_SEQ 0x00000004 Sequence Layer debug
vc1DEBUG_PIC 0x00000008 Picture Layer debug
vc1DEBUG_SLICE 0x00000010 Slice Layer debug

vclDEBUG_MB 0x00000020 Macroblock layer debug
vc1DEBUG_BLK 0x00000040 Block layer debug

vc1DEBUG_RC 0x00000080 Rate control/hypothetical ref decoder
vclDEBUG_CMP 0x00000100 Display run, level, mv values
vc1DEBUG_BIT 0x00000200 Display low level bitstream data
vc1DEBUG_BITPL 0x00000400 Display bitplane coding debug
vclDEBUG_PDCAC 0x00000800 Display DCAC predicted quantized coefficients
vclDEBUG_DCAC 0x00001000 Display DCAC prediction
vc1DEBUG_QUANT 0x00002000 Display quantized coefficients
vc1DEBUG_TRANS 0x00004000 Display transformed coefficients
vclDEBUG_DBLK 0x00008000 Display difference image block (not transformed)
vc1DEBUG_PBLK 0x00010000 Display motion predicted image block
vclDEBUG_RBLK 0x00020000 Display reconstructed block
vcl1DEBUG_SMOOTH 0x00040000 Display overlap smoothing result
vc1DEBUG_DEBLK 0x00080000 Display deblocking filter result
vclDEBUG_IBLK 0x00100000 Display raw input block
vclDEBUG_ZZ 0x00200000 Display zigzagged coefficients
vc1DEBUG_MV 0x00400000 Display motion vectors
vclDEBUG_REFPICT 0x00800000 Dump reference pictures to a file
vclDEBUG_ME 0x01000000 Display motion estimation process

version 2.1

Page 21 of 137

VC-9 Decoder Software Technical Reference Manual

vc1DEBUG_MBSUM 0x02000000 Display block type summary for each macroblock
vc1DEBUG_PADIC 0x04000000 Display padding and intensity compensation
vc1DEBUG_HRD 0x08000000 Display Hypothetical Reference Decoder status
vc1DEBUG_ENT 0x10000000 Display entry point layer debug

vC1DEBUG_OPTIONS 0x40000000 Option parsing

vclDEBUG_COVERAGE | 0x80000000 Coverage output for automated testing

6.2.3.5 Level
Type: Enum

Value: Low, Medium, High, LO, L1, L2, L3, L4 or Unknown

Function: Defines the level within the profile. It is not necessary to specify this option for
advanced profile bitstreams. If the level is specified as Unknown, then the decoder will select the
lowest level that the coded size will fit into.

6.2.3.6 OutputYUV
Type: String
Value: a valid filename

Function: Sets the name of the file that the decoder output will be written to. Set to stdout to
obtain YUV data on standard output.

6.3 File handling

The decoder top-level module contains file handling. This code is not part of the operation
defined by the standard, so the module does not use the vc1l prefix. The code handles the
following file formats:

Format Usage

RAW bitstream Default input format for the decoder. This format is the RCV v2 raw format
developed by Microsoft. For format details see the RCV v2 format
information in the conformance specification [3].

ELEMENTARY Default format for Advanced profile bitstreams. The decoder will inspect the
bitstream supplied file to determine if it is in ELEMENTARY format. This file format
consists of a sequence of Encapsulated Bitstream Data Units (EBDU), as
defined in the standard [1].

YUV This is the output format for the decoder. Each frame consists of the Y
values as an array of bytes, followed by the U and V byte arrays. The data
is in 4:2:0 format.

The decoder inspects the supplied file to determine the file format.

It is intended that all implementation details of file handling should be handled within the decfile
module. Adding alternative file formats should involve changes only to this code (other than
possibly adding an option to select the new format).

version 2.1 Page 22 of 137

VC-9 Decoder Software Technical Reference Manual

7/ REFERENCE SECTION

The following sections contain more detailed documentation on selected components of the
decoder. These sections have been generated directly from the source. They do not exhaustively
document all features of the code — they are intended only to cover the major features. See the
source itself for any items not covered here. There are two automatically generated sections:

e documentation of the major data-structure types used by the decoder
o file-by-file documentation of functions and other elements

8 VC-1 DATA STRUCTURE DOCUMENTATION

8.1 RDOPTS_sOptionDefinition Struct Reference

#include <rdopts.h>

Data Fields

RDOPTS_eType eType

const char * Name

void * Value

WORD32 MaxIndex

vcl_eResult(* rvValidateString)(char *)

const void * pDummy

const RDOPTS_sWord32Range * pWRange

const RDOPTS_sUWord32Range * pURange

const RDOPTS_sFloatRange * pFRange

const RDOPTS_sEnumeratorValue * pEnumeratorValue

Detailed Description

Top-level option specifier record.

Field Documentation

RDOPTS_eType eType
Type of value (byte, word, string, ...)

WORD32 MaxIndex
Maximum array index: 0 means scalar value

version 2.1 Page 23 of 137

VC-9 Decoder Software Technical Reference Manual

const char* Name
Option name

const void* pDummy

The structure starts with a void pointer, because static initialisation uses the first field to
determine the acceptable values. A (void *) means that as long as all other union elements
are pointers, they can be initialised.

const RDOPTS_sEnumeratorValue* pEnumeratorValue
Enumerable values

const RDOPTS_sFloatRange* pFRange
Range limits for FLOAT data

const RDOPTS_sUWord32Range* pURange
Range limits for UWORD32 data

const RDOPTS_sWord32Range* pWRange
Range limits for WORD32 data

vcl eResult(* rvalidateString)(char *)

String parameters are optionally validated by calling a function. A NULL pointer means no
validation will be done. This would be just another member of the above union, but standard
C does not allow conversion of function pointers to void *.

void* Value
Pointer to (untyped) value to update

8.2 vcl_sBFraction Struct Reference

#include <vcltypes.h>

Data Fields
e UBYTES8 Numerator

version 2.1 Page 24 of 137

VC-9 Decoder Software Technical Reference Manual

e UBYTES8 Denominator
e UBYTES ScaleFactor

Detailed Description

B Fraction numerator and denominator structure.

Field Documentation

UBYTES8 Denominator
BFraction denominator

UBYTES8 Numerator
BFraction numerator

UBYTES8 ScaleFactor
Approximated Numerator*256/Denominator

8.3 vcl_sBIk Struct Reference

#include <vcltypes.h>

Data Fields

vcl_eBlkType eBlkType
FLAG Coded
union {
vcl sBlkintra sintra
vcl_sBlkinter sinter

}u

Detailed Description

Structure defining the state required for a block.

version 2.1

Page 25 of 137

VC-9 Decoder Software Technical Reference Manual

Field Documentation

FLAG Coded

Non zero AC coefficients for Intra, non zero AC/DC for Inter

vcl eBlkType eBlkType
Block type

vcl sBlkinter sinter
Inter block state information

vcl sBlkintra sintra
Intra block state information

union{ ...} u
Intra/Inter union

8.4 vcl sBlkinter Struct Reference

#include <vcltypes.h>

Data Fields

e vcl_NumZeroCoef NZC [4]
e vcl sMotion sMotion [2]

Detailed Description

Structure defining the state required for inter blocks.

version 2.1

Page 26 of 137

VC-9 Decoder Software Technical Reference Manual

Field Documentation

vcl NumZeroCoef NZC[4]
NUMZERO and NUMCOEF for sub-blocks (includes DC)

vcl sMotion sMotion[2]
Forward and Backward motion parameters

8.5 vcl sBlkintra Struct Reference

#include <vcltypes.h>

Data Fields

vcl NumZeroCoef NZC
HWD16 DC

HWD16 ACTop [7]
HWD16 ACLeft [7]
HWD16 SmoothRows [16]

Detailed Description

Structure defining the state required for intra blocks.

Field Documentation

HWD16 ACLeft[7]
Quantized AC left column for prediction

HWD16 ACTop[7]
Quantized AC top row for prediction

HWD16 DC
Quantized DC for prediction

version 2.1

Page 27 of 137

VC-9 Decoder Software Technical Reference Manual

vcl NumZeroCoef NZC
NUMZERO and NUMCOEF (excludes DC)

HWD16 SmoothRows[16]
Bottom two rows kept for overlap smoothing

8.6 vcl _sComponent Struct Reference

#include <vcltypes.h>

Data Fields
e UBYTES * pData
e intBpl

Detailed Description

Defines the format of a single image component.

Field Documentation

int Bpl
Number of bytes per line

UBYTES8* pData
Pointer to raster scan data

8.7 vcl sField Struct Reference

#include <vcltypes.h>

Data Fields

e vcl ePictureType ePictureType
¢ vcl_eCondOver eCondOver

version 2.1

Page 28 of 137

VC-9 Decoder Software Technical Reference Manual

vcl eQuantMode eQuantMode
vcl_eMVRange eMVRange
vcl eMVMode eMVMode
vcl eBlkType eBlkType
FLAG PostProcess

FLAG DMVExtendX

FLAG DMVExtendY
UBYTE8 NumRef

UBYTES RefField

UBYTE8 MVCodingTable
UBYTE8 MBModeTable
UBYTE8 BP2MVTable
UBYTES8 BP4MVTable
UBYTE8 CBPCodingTable
UBYTE8 ACCodingSetintra
UBYTE8 ACCodingSetinter
UBYTE8 DCCodingSet
UHWD16 SliceRows

Detailed Description

Defines the format of a single field.

This structure contains information that can be local to one of the two Fields in an
Interlaced Field Picture.

Field Documentation

UBYTES8 ACCodingSetinter
Range 0-2, Coding set to use for Inter or for Cb,Cr Intra

UBYTE8 ACCodingSetintra
Range 0-2, Coding set to use for Y Intra

UBYTES BP2MVTable
Range 0-3, Block pattern 2MV table

UBYTES8 BP4MVTable
Range 0-3, Block pattern 4MV table

version 2.1 Page 29 of 137

VC-9 Decoder Software Technical Reference Manual

UBYTE8 CBPCodingTable
Range 0-3, Inter CBP variable length code table

UBYTES8 DCCodingSet
Range 0-1, Coding set to use for DC

FLAG DMVExtendX
Extend X DMV range

FLAG DMVExtendY
Extend Y DMV range

vcl eBlkType eBlkType
Transform type; one of Inter8x8,8x4,4x8,4x4, or Any

vcl eCondOver eCondOver
Conditional overlap mode

vcl_eMVMode eMVMode
Motion vector mode

vcl _eMVRange eMVRange
Motion vector range

vcl ePictureType ePictureType
I, P, BorBI

vcl eQuantMode eQuantMode
Quantization mode

UBYTE8 MBModeTable
Range 0-7, MB mode variable length code table

version 2.1

Page 30 of 137

VC-9 Decoder Software Technical Reference Manual

UBYTES8 MVCodingTable
Range 0-7, Motion vector variable length code table

UBYTES8 NumRef
Number of reference fields 0=one 1=two

FLAG PostProcess
Post processing flag

UBYTES RefField
Reference field O=last 1=last-but-one

UHWD16 SliceRows
Rows per slice (O=slices not used)

8.8 vcl sHrdState Struct Reference

#include <vcltypes.h>

Data Fields

e UBYTE8 NumLeakyBuckets
e vcl slLeakyBucket sLeakyBucket [VC1_MAX_HRD_NUM_LEAKY_BUCKETS]

Detailed Description

Structure defining the state of the hypothetical reference decoder.

Field Documentation

UBYTE8 NumLeakyBuckets
Buckets (0 if none specified)

version 2.1 Page 31 of 137

VC-9 Decoder Software Technical Reference Manual

vcl sleakyBucket sLeakyBucket[VC1 MAX HRD_NUM_LEAKY_ BUCKETS]
Per-bucket information

8.9 vcl _simagePosition Struct Reference

#include <vcltypes.h>

Data Fields

UWORD32 Width

UWORD32 Height

vcl sRectangle simageRectangle
vcl sRectangle sPadFromRectangle
vcl sRectangle sPadToRectangle

Detailed Description

A structure to hold the rectangles to control padding and cropping.

Field Documentation

UWORD32 Height
Total height of buffer

vcl sRectangle simageRectangle
Image rectangle in pels relative to buffer origin

vcl sRectangle sPadFromRectangle
Rectangle to pad outwards from in pels relative to buffer origin

vcl sRectangle sPadToRectangle
Rectangle limits to pad outwards to in pels relative to buffer origin

version 2.1 Page 32 of 137

VC-9 Decoder Software Technical Reference Manual

UWORD32 Width
Total width of buffer

8.10 vcl_sintensityComp Struct Reference

#include <vcltypes.h>

Data Fields

e FLAG IntensityCompFlag
¢ UBYTES8 LuminanceScale
e UBYTES8 LuminanceShift

Detailed Description

Intensity compensation information structure.

Field Documentation

FLAG IntensityCompFlag
Intensity Compensation Enable

UBYTES8 LuminanceScale
Intensity Compensation Scale

UBYTES8 LuminanceShift
Intensity Compensation Shift

8.11 vcl_sinterpolate Struct Reference

#include <vcltypes.h>

Data Fields
e vcl sComponentsC

version 2.1 Page 33 of 137

VC-9 Decoder Software Technical Reference Manual

e UBYTES SizeX
e UBYTES SizeY
e FLAG RndCtrl

Detailed Description

A structure holding information required by the bilinear and bicubic interpolation
functions.

Field Documentation

FLAG RndCitrl
Rounding control for the frame

vcl sComponent sC
Component from which to obtain the patch to be filtered

UBYTES SizeX
X size in pixels of the resulting filtered patch

UBYTES SizeY
Y size in pixels of the resulting filtered patch

8.12 vcl sleakyBucket Struct Reference

#include <vcltypes.h>

Data Fields

HRDVALUE Rate
HRDVALUE Buffer
HRDVALUE Fullness
UWORD32 FullFraction
UWORD32 FullDenominator

version 2.1 Page 34 of 137

VC-9 Decoder Software Technical Reference Manual

Detailed Description

Hypothetical reference decoder information.

Remarks:

Note that the decoder can always round up the Rate, Buffer size and Fullness parameters. Note that 0
<= FullFraction/FullDenominator < 1 bit.

Field Documentation

HRDVALUE Buffer
Buffer size in bits

UWORD32 FullDenominator
Denominator of fractional bit buffer fullness count

UWORD32 FullFraction
Numerator of fractional bit buffer fullness count

HRDVALUE Fullness
Buffer fullness in complete bits

HRDVALUE Rate
Maximum bit rate in bits per second

8.13 vcl slevelLimit Struct Reference

#include <vcltypes.h>

Data Fields

UWORD32 MBs
UWORD32 MBf

UWORD32 Rmax
UWORD32 Bmax
vcl_eMVRange eMVRange

version 2.1 Page 35 of 137

VC-9 Decoder Software Technical Reference Manual

Detailed Description

A structure holding the limits for a given profile and level.

Field Documentation

UWORD32 Bmax
Maximum buffer size in multiples of 16kbits

vcl _eMVRange eMVRange
Motion vector range allowed

UWORD32 MBf
Maximum macroblocks per frame

UWORD32 MBs
Maximum macroblocks per second

UWORD32 Rmax
Maximum peak transmission rate in kpbs

8.14 vcl sMB Struct Reference

#include <vcltypes.h>

Data Fields

vcl _eMBType eMBType
vcl_eACPred eACPred
vcl eBlkType eBlkType
FLAG OverlapFilter
FLAG Skipped

UBYTE8 CBPCY
UBYTE8 MVBP

vcl sQuant sQuant

version 2.1

Page 36 of 137

VC-9 Decoder Software Technical Reference Manual

e vcl sBIk sBlk [VC1_BLOCKS_PER_MB]

Detailed Description

A structure to hold macroblock data.

Field Documentation

UBYTE8 CBPCY
Coded block pattern, where:

bit 5 set means YO is coded
bit 4 set means Y1 is coded
bit 3 set means Y2 is coded
bit 2 set means Y3 is coded
bit 1 set means Cb is coded
bit 0 set means Cr is coded

vcl eACPred eACPred
AC prediction status

vcl eBlkType eBlkType
One of 8x8,8x4,4x8,4x4, or Any (Any=block based choice)

vcl eMBType eMBType
Macroblock type

UBYTE8 MVBP

Motion vector block pattern, with:
bit3 set if dmv!=0 for YO
bit2 set if dmv!=0 for Y1

bitl set if dmv!=0 for Y2
bit0 set if dmv!=0 for Y3

FLAG OverlapFilter
Overlap filter active for this macroblock

version 2.1 Page 37 of 137

VC-9 Decoder Software Technical Reference Manual

vcl sBlk sBIk[VC1 BLOCKS PER_MB]
Block level information

FLAG Skipped
Indicated macroblock is motion predicted only

vcl sQuant sQuant
Macroblock Quantizer information

8.15 vcl sMotion Struct Reference

#include <vcltypes.h>

Data Fields

e vcl eHybridPred eHybridPred
e vcl sMVsMmV
e vcl sMVsDMV

Detailed Description

Structure defining motion vector and associated parameters.

Field Documentation

vcl_eHybridPred eHybridPred
Hybrid Prediction mode

vcl sMV sDMV
Differential motion vector (X,Y) in 1/4 pel units

vcl _sMV sMV
Motion vector

version 2.1

Page 38 of 137

VC-9 Decoder Software Technical Reference Manual

8.16 vcl _sMV Struct Reference

#include <vcltypes.h>

Data Fields
e HWD16 X
e HWD16Y

¢ FLAG BottomField

Detailed Description

Structure to hold a motion vector.

Field Documentation

FLAG BottomField
O=TopField 1=BottomField

HWD16 X
X component of the motion vector (offset to target)

HWD16 Y
Y component of the motion vector (offset to target)

8.17 vcl _sPanScanParams Struct Reference

#include <vcltypes.h>

Data Fields
e FLAG PanScanPresent

e vcl sPanScanWindow sPanScanWindow [VC1_MAX_PAN_SCAN_WINDOWS]

version 2.1

Page 39 of 137

VC-9 Decoder Software Technical Reference Manual

Detailed Description

Structure holding all the pan and scan window information.

Field Documentation

FLAG PanScanPresent
PS present

vcl_sPanScanWindow sPanScanWindow[VC1_MAX_PAN_SCAN_WINDOWS]
Per-window information

8.18 vcl sPanScanWindow Struct Reference

#include <vcltypes.h>

Data Fields

¢ UWORD32 HOffset
e UWORDS32 VOffset
e UHWD16 Width

e UHWD16 Height

Detailed Description

Structure holding individual Pan Scan Window information.

Field Documentation

UHWD16 Height
Height in pixels

UWORD32 HOffset
Horizontal offset in pixels

version 2.1 Page 40 of 137

VC-9 Decoder Software Technical Reference Manual

UWORD32 VOffset

Vertical offset in pixels

UHWD16 Width

Width in pixels

8.19 vcl_sPicture Struct Reference

#include <vcltypes.h>

Data Fields

UWORD32 Frame

vcl ePictureFormat ePictureFormat
vcl sComponent sY

vcl sComponent sU

vcl sComponent sV

vcl sField sField [2]

vcl _ePictureRes ePicRes

FLAG TFF

FLAG RFF

FLAG RangeReduction

FLAG INTERPFRM

FLAG UVSAMP

UBYTE8 RPTFRM

vcl sPanScanParams sPanScanParams
vcl_ePostProcessing ePostProcessing

Detailed Description

A Picture is the basic image unit decoded by the library. A Picture can be one of the
following formats:

e A Progressive Frame
e AnInterlaced Top Field
e An Interlaced Bottom Field
e An Interlaced Frame
version 2.1 Page 41 of 137

VC-9 Decoder Software Technical Reference Manual

Field Documentation

vcl ePictureRes ePicRes
Picture resolution index

vcl ePictureFormat ePictureFormat

ProgressiveFrame, InterlacedField/Frame

vcl ePostProcessing ePostProcessing
Out of loop post processing mode

UWORD32 Frame
Frame number modulo (1<<32)

FLAG INTERPFRM
Frame interpolation hint

FLAG RangeReduction
Range reduction used

FLAG RFF
Repeat First Field flag

UBYTE8 RPTFRM
Repeat Frame Count field

vcl sField sField[2]
Field information, First then Second

vcl _sPanScanParams sPanScanParams
Pan scan window coordinates

vcl _sComponent sU
U/Cb chrominance values

version 2.1

Page 42 of 137

VC-9 Decoder Software Technical Reference Manual

vcl sComponent sV
V/Cr chrominance values

vcl sComponent sY
Y luminance values

FLAG TFF
Top Field First flag

FLAG UVSAMP
UV sampling format

8.20 vcl sPosition Struct Reference

#include <vcltypes.h>

Data Fields

vcl ePictureType ePictureType
vcl_ePictureFormat ePictureFormat
vcl eProfile eProfile

vcl eMVMode eMVMode
vcl_eMVRange eMVRange
FLAG BottomField

FLAG SecondField

vcl sMB * pCurMB

vcl sMB * pStartMB

vcl sMotionHist * pMVHist
UWORD32 SizeMB
UHWD16 X

UHWD16 Y

UHWD16 SliceY

UHWD16 WidthMB
UHWD16 HeightMB
UWORD32 CodedWidth
UWORD32 CodedHeight
UWORD32 DisplayWidth
UWORD32 DisplayHeight
UBYTES8 PQuant

UBYTES8 BFraction
UBYTE8 NumRef

UBYTES8 RefField

version 2.1

Page 43 of 137

VC-9 Decoder Software Technical Reference Manual

UBYTES IntraBias

UBYTES8 RangeYScale

UBYTE8 RangeUVScale

FLAG FastUVMC

vcl ePictureRes ePictureRes

vcl sReferencePicture * pReferenceOld
vcl sReferencePicture * pReferenceNew
vcl_sReferencePicture * pReferenceB
vcl sReferencePicture * pReferenceNoIC
vcl sScaleMV pScaleMV [2]

HWD16 pSmooth [6][64]

Detailed Description

Current position structure describing the macroblock being processed and the slice,
field, and picture it lies in.

Field Documentation

UBYTES8 BFraction
BFRACTION syntax element

FLAG BottomField
0=Top Field, 1=Bottom Field

UWORD32 CodedHeight
Height in pixels of coded picture

UWORD32 CodedWidth
Width in pixels of coded picture

UWORD32 DisplayHeight
Height in pixels of display picture

UWORD32 DisplayWidth
Width in pixels of display picture

version 2.1 Page 44 of 137

VC-9 Decoder Software Technical Reference Manual

vcl_eMVMode eMVMode
Motion vector mode for this picture

vcl _eMVRange eMVRange
Motion vector range setting for this picture

vcl ePictureFormat ePictureFormat
Picture format: Progressive, Interlace Field/frame

vcl ePictureRes ePictureRes
Picture resolution scale mode

vcl ePictureType ePictureType
Picture type: |, P, B or Bl

vcl eProfile eProfile
Profile Simple/Main/Advanced

FLAG FastUvMC
Fast U,V motion compensation flag

UHWD16 HeightMB
Height in macroblocks of coded picture

UBYTES IntraBias
Bias to add to intra blocks post transform

UBYTES8 NumRef
Number of reference fields-1

vcl sMB* pCurMB
Pointer to the current macroblock

version 2.1 Page 45 of 137

VC-9 Decoder Software Technical Reference Manual

vcl_sMotionHist* pMVHist
Current position in motion vector history buffer

UBYTES8 PQuant
Picture quantizer

vcl sReferencePicture* pReferenceB
Reconstructed B picture

vcl sReferencePicture* pReferenceNew
Pointer to new/current I/P

vcl_sReferencePicture* pReferenceNolC
Backup copy of reference before intensity compensation applied

vcl sReferencePicture* pReferenceOld
Pointer to old I