
Breaking Eggs And Making Omelettes:
Intelligence Gathering For Open Source

Software Development

Mike Melanson (mike@multimedia.cx)

Legalnotice: Es können zusätzliche Angaben zur Veröffentlichung angegeben
werden, sofern sie nicht mit der Lizenzangabe im vCC kollidieren.

There is an ongoing information war raging on in the software world. Despite
free software developers' best efforts, new proprietary software continues to
proliferate. New techniques must be developed to efficiently reverse engineer
closed data formats so that free, interoperable solutions can be deployed
under Linux. This paper focuses on intelligence-gathering for developing
software algorithms, regardless of their difficulty or perceived legality.

Introduction

There is an ongoing information war raging on in the software world. Despite
free software developers' best efforts, new proprietary software continues to
proliferate. New techniques must be developed to efficiently reverse engineer
closed data formats so that free, interoperable solutions can be deployed under
Linux.

Software reverse engineering occurs on various levels. It may be necessary to
study a piece of poorly-written, poorly-commented code developed in a high-
level language such as C++ and understand what the original program was
supposed to accomplish. It may also be necessary to disassemble a program
that has been compiled into machine language and express it as a higher-level
language so that the underlying algorithms can eventually be expressed as
higher-level concepts in a human language. After obtaining an algorithmic
description via reverse engineering, the algorithm can be reimplemented for
any language on any computing platform.

Scope

This paper discusses the technical issues and challenges surrounding software
reverse engineering. This has always been the subject of much legal and
ethical controversy, particularly with respect to such intellectual property ideas
such as patents, trade secrets, and software ownership. However, such
discussion is outside the scope of this paper.

Motivation

The Linux operating system, as well as free and open source software in

file:///home/melanson/personal/linuxtag-2005/mike@multimedia.cx

general, has made extraordinary strides in the computer world in the past
decade. Once confined to the back office server, Linux has become a more
viable option for desktop computing. However, in order to create a desktop
(and in some respects, a server), that is acceptable to much of the world, the
computer must be able to interoperate with existing computers and the
dominant software that runs on them.

This has traditionally been a substantial problem in the multimedia arena.
Many popular multimedia files available on the internet are encoded with
proprietary software algorithms that commercial companies do not share.

Thus, it often becomes necessary to reverse engineer the algorithms in order
to use them on an open source Linux desktop.

Alternatives To Binary Reverse Engineering

It is important to view binary software reverse engineering as strictly a last
resort. It is not an easy task and it is certainly not something that a
programmer should want to do if there might be an alternative. Given that the
end goal of reverse engineering tends to be understanding data formats and
data manipulation algorithms, a programmer should search far and wide to
learn if the reverse engineering target is already available via other means.

Perhaps the algorithm was opened up by the creating company. In some cases,
another reverse engineer has taken an interest in the same algorithm, figured
out the code, and released it as open source. Sometimes, that same
programmer has figured out the code but opted not to release the source code,
only the compiled binary, but for no specific reason. Upon reasoned request,
such programmers may be willing to make the source code available.

If all other methods are fruitless then it may be time to employ some reverse
engineering techniques.

Requirements

There are some minimum requirements that an individual should meet if they
endeavor to reverse engineer software.

• A Goal-- Of course, the reverse engineer should have a specific goal in mind.

• Time-- A reverse engineer should have plenty of time to devote to the craft.
Preferably, the time should be in large continuous blocks (better for
concentration).

• Patience-- Anything that takes a lot of time will also require a lot of patience.

• Tenacity-- A reverse engineer must be willing to stick to the goal to the very
end.

• Tools-- A well-stocked toolbox is essential, as is knowledge in their proper
use.

• Programming knowledge-- A software reverse engineer should at least know
C programming and have exposure to assembly language. Generally, Intel

x86 assembly language is important as much proprietary software is
targeted at the platform. Note that it is adequate to have a beginning
familiarity with the assembly language that the target is composed in; the
study and practice of reverse engineering tends to increase a programmer's
assembly aptitude many times over.

• Domain knowledge-- When reverse engineering a multimedia algorithm, for
example, it is useful for the reverse engineer to have some exposure to
multimedia coding theory in order to understand what the target might look
like.

• Capacity to believe the unbelievable and accept the unacceptable-- A
reverse engineer will undoubtedly encounter many odd situations and
methods of solving problems, and will need to be able to conceptualize how
other programmers might have solved similar problems.

• Creative thinking-- Reverse engineering is a very open field with few
standard methods of operation. A reverse engineer will often need to think of
innovative methods for understanding software.

Reverse Engineering Without Program
Disassembly

Disassembling a closed binary program may not be entirely necessary in order
to discover an algorithm or format. If there are alternatives to disassembling a
binary program and tracing through instructions, those alternatives are often
preferable.

One common problem area for reverse engineering is file formats. For
example, in the multimedia arena, encoded audio and video data are packed
into some kind of file format. Many multimedia file formats have similar
properties and patterns. A programmer with adequate domain knowledge in
multimedia file formats can often examine sample files a hex editor and figure
out most or all the information necessary to take apart the whole file. Typically,
no binary reverse engineering is necessary.

Another problem area is network communications protocols. For this type of
reverse engineering, a network protocol analyzer (a.k.a. sniffer) is an
indespensible tool. Occasionally, binary disassembly may be required in order
to discover the finer points of a network protocol like the way to unravel some
lightweight transport encryption. Generally, by analyzing patterns and
sequences in subsequent data packets, and understanding what type of data
payload the packets are already carrying, much intelligence can be gathered
without binary disassembly.

Example Disassembly

When it becomes inevitable that a binary program will have to be torn apart in
order to discover an algorithm, the first usual step is to disassemble the binary
into assembly language instructions. In the case of a program compiled for the
Intel i386 platform, a disassembly will yield thousands or even hundreds of

thousands of lines that resemble these:

1000 8B442404 mov eax, dword[esp+04]
1004 85C0 test eax, eax
1006 740D je 1015
1008 8B08 mov ecx, dword[eax]
100A 83F93C cmp ecx, 0000003C
100D 7506 jne 1015
100F B801000000 mov eax, 00000001
1014 C3 ret
1015 C7050090009004000000 mov dword[nnnn9000], 00000004
101F 33C0 xor eax, eax
1021 C3 ret

The first column shows program addresses. The second column lists machine
opcodes. The remainder of a line is the assembly language instruction
mnemonic. Note that although Intel i386 family processors use a 32-bit address
space, the top 16 bits of these addresses have been omitted for simplicity.

Basic Reverse Engineering

How does a reverse engineer interpret assembly code such as the code
presented in the previous section? This section will discuss and illustrate a few
basic techniques.

Breaking Down The Problem

As in any complicated problem, it is important to break down the problem into
manageable pieces. A reverse engineer should never attempt to understand
the entire program as a whole. It is more advantageous to view the program as
most programmers are trained: as a series of smaller pieces which typically
represent inidividual functions.

A good disassembler should be able to use various heuristics to determine and
visually indicate function boundaries. In the example presented in the previous
section, the disassembler correctly marked the sequence of lines as a single
function. Assembly language instructions that indicate a return from a
subroutine call are often good clues.

Context Analysis

Examination of the context in which a function is called often yields useful
intelligence, particularly regarding a function's parameter list and return type.
A typical invocation of the example function above looks like this:

1031 8B742408 mov esi, dword[esp+08]
1035 56 push esi
1036 E8C5FFFFFF call nnnn1000

103B 83C404 add esp, 00000004
103E 85C0 test eax, eax
1040 7405 je nnnn1047

Since the standard C convention is to pass parameters to a function by pushing
them on the stack in right to left order (right-most parameter is pushed first,
left-most parameter is pushed last), So the calling context reveals that the
function has one parameter (only one data item is pushed onto the stack).
Further, the context reveals that the function returns a value (via the eax
register) that is acted upon (code branch if eax is zero).

Context analysis also applies to any extra knowledge that a binary program
module provides. Very few programs exist in a vacuum; in other words, many
programs depend on shared libraries in order to operate. A compiled program
that relies on external libraries must carry information about which modules
must be loaded by the operating system and which function calls must be
located inside the various modules. It is very difficult for the compiled program
to obscure the fact that it makes calls out to these external library functions.
For example, this statement was disassembled from the same module as the
preceding assembly language instructions:

53BA FF15FCA00090 call dword[nnnnA0FC]
 ;;call KERNEL32.ReadFile

The disassembler informs the reader that the the program calls out to the
standard Windows 32-bit API function called ReadFile() to read data from the
disk. Consulting any Windows API guide reveals that this function takes 5
parameters and returns a Boolean value. Further, it defines what all of the
parameters and return value indicate which can be used to determine the
meanings of more variables.

Call Trees

Provided that a high-level language program is not written as one large
function littered with GOTO statements, it is a fair assumption that many
programs can be represented by call trees. A C program begins with a main()
function. A non-trivial C program will call other functions and those functions
will likely call other functions. For example:

main()
 +-function1()
 +-function2()
 +-function2()
 +-function3()

A call tree is another way to view the reverse engineering problem. In this
simple example, main() calls function1() and function3(). Function1() calls
function2() twice. In reverse engineering, it is sometimes useful to identify leaf
functions that are called repeatedly (like function2()) and understand them

first. Doing so can help with context analysis. As a practical example, many
multimedia audio and video coding algorithms pack data as bit streams rather
than byte streams. Many audio and video decoders need to read variable
amounts of bits from the bitstream. So a programmer will often write a small
bit reading function and call it many times throughout a decoder.
Understanding this early on in the reverse engineering process can be useful.

There are exceptions to every rule. It is always possible for a program to use
some clever construct where two functions call each other. This is a corner
case that a reverse engineer may need to deal with eventually.

Reverse Engineering By Hand

Reverse engineering by hand is a phenomenally tedious chore. This is where
the reverse engineer examines the disassembled code and pieces together
original algorithms by understanding the operation of each individual line. To
apply the practice to the example code fragment used in this paper:

' move the function parameter from the stack into register eax
1000 mov eax, dword[esp+04]
' logically AND the function parameter in eax with itself; do
' not store the result but modify the CPU flags
1004 test eax, eax
' jump if equal (the CPU's zero flag is set) to address 1015
1006 je 1015
' move the 32-bit doubleword pointed at by eax into register ecx
1008 mov ecx, dword[eax]
' compare (subtract) 0x3C from value in ecx; do not store
' difference but modify the CPU flags
100A cmp ecx, 0000003C
' jump if not equal (the CPU's zero flag is clear) to address 1015
100D jne 1015
' move the constant value 1 into the eax register
100F mov eax, 00000001
' return to the calling function
1014 ret
' move the constant value 4 into a global 32-bit variable
' indicated by [nnnn9000]
1015 mov dword[nnnn9000], 00000004
' logically eXclusive OR the eax register with itself
' this has the net effect of setting the register to 0
101F xor eax, eax
' return to calling function
1021 ret

Observe that from the very beginning of the function, the comments take
advantage of substitution. After the function parameter is moved into the eax
register at address 1000, it is safe to express that the function parameter, and
not just eax, is being tested at address 1004. Since the address inside eax is
dereferenced at address 1008, it is also safe to assume that the lone function
parameter is a memory pointer. The function has two paths of returning to the

calling function (addresses 1014 and 1021) and it explicitly sets eax prior to
leaving. In Intel i386 programs, it is customary to return function values
through the eax register. Thus, the function takes a pointer parameter and
returns a 32-bit integer:

unsigned int functionA(unsigned char *pointer);

And the algorithm inside the function can be expressed as:

{
 if (pointer == NULL) {
 /* set a global variable at address 0xnnnn9000 to 4 */
 return 0;
 }

 if (*((unsigned int*)pointer) != 0x3C) {
 /* set a global variable at address 0xnnnn9000 to 4 */
 return 0;
 }

 return 1;
}

To sum up this function's algorithm, make sure the pointer parameter is non-
NULL and that the first 4 bytes that it points to (in little-endian/Intel format) are
0x0000003C. If these two conditions are true, return 1. If either of these
conditions are false, set a global variable at address 0xnnnn9000 to 4 and
return 0.

Now that the general purpose of the function has been determined (checking
the first four bytes of a buffer), the function can be renamed everywhere it is
called in the disassembly which will help in context analysis.

Tracing

A traditional method of reverse engineering is tracing through code, The basic
idea is to use a code debugger to step through code, line-by-line,
understanding the operation of an algorithm by watching the sequence of
instructions executing, the code branches taken, and the data moved in and
out of registers. A step debugger that can set breakpoints can also help in
finding interesting portions of code in the first place.

By itself, however, tracing can turn into an even more tedious chore than
disassembly by hand.

Tools For Reverse Engineering

Clearly, reverse engineering even the simplest function from binary software is
a non-trivial task. Anyone who spends a serious amount of time reverse
engineering binary software will notice that the whole process is tedious, time-

consuming, boring, and highly error-prone. Fortunately, tasks that fit those
criteria have traditionally been prime candidates for automation.

Boomerang

Boomerang is an open source project that works to ease the pain of reverse
engineering by searching for patterns in binary code and replacing them with
equivalent C constructs. It uses a series of algorithms that convert assembly
language instructions to C code and then make automatic substitutions
throughout. Ideally, all the is left for the reverse engineer is to rename variable
and function identifiers. Boomerang can also accept a set of hints that specify
the names of known data structures so that the program can automatically
replace those names as they are seen in the decompiled code.

Boomerang is an interesting and developing projeect. It is not perfect as
software methods can only do so much without human intervention. In
particular, case-switch constructs have long been the bane of software revere
engineers. Due to the way such constructs intermingle code and data in a
compiled program, it is a very difficult problem to automatically determine how
the original case-switch construct was laid out in the original source code.

See the references for more information regarding the Boomerang project.

IDA PRO

IDA Pro is a famous tool designed for reverse engineering code. Heavily geared
toward the IT security specialist, the IDA Pro features an impressive variety of
tools to lighten to burden of reverse engineering such as variable naming
substitution: when it becomes evident that [esp+04] represents value foo, IDA
Pro can rename instances of that variable; call trees: IDA Pro can track call tree
structures; control flow: IDA Pro has facilities for graphing control flow such as
if-else constructs.

IDA Pro is a proprietary, closed source tool. However, the creating company,
DataRescue, makes a free Windows version available which runs under Wine in
Linux. Recently, DataRescue has also made a native Linux version available.

See the references for more information regarding the IDA Pro product.

Ad-Hoc Tools

Many novice reverse engineers seem to develop grand plans to create a full-
featured, generalized reverse engineering tool. But due to the highly
experimental nature of reverse engineering, it is often useful to develop
creative new ideas and test them carefully in a limited environment rather than
trying to find a magical approach to reverse engineering all software.

This section explores other possibly useful reverse engineering techniques and
tools.

Execution Profiling

Code profiling is used during software development to understand where a
program spends the majority of its execution time. The goal of collecting such
execution data is to discover places where the code ought to be optimized.

In reverse engineering, profiling can provide useful intelligence to understand
where a program spends its time. Combined with domain knowledge regarding
the specific application, a reverse engineer can gain an understanding of
specific areas of code that contain the most important algorithms.

However, it is rather difficult to use standard profiling tools on binary programs
that lack any debugging information. It is possible to bypass this limitation by
creating special tools to monitor a program's execution activity.

See the references for more information about this type of tool.

Automated Call Tree Generation

Many disassemblers to a very good job of automatically determining function
boundaries when outputting textual disassembly. Using programming
languages that are reputed to be very good at manipulating text (Perl, for
example), it is possible to create tools that automatically generate call tree
data from raw disassembly listings.

See the references for more information about this type of tool.

Reverse Engineering Other Languages

Not all computer software is written in C and C++ and subsequently compiled
into machine language for distribution and execution. Unix operating systems
such as Linux have a rich tradition of programming languages. Programs
written for many of these languages, such as Perl and Python, are distributed
as source code and interpreted and/or compiled at run time. Rarely are they
compiled into binary modules for distribution.

However, recent years have seen efforts such as Sun's Java and Microsoft's dot-
NET framework as a method of compiling source code into machine-
independent bytecode for distribution. Indeed, this is sometimes vaunted as a
selling point for such languages.

In Java's case, however, it is ironically possible to decompile a compiled
bytecode program file (called a class file in Java parlance) and obtain the
complete source code with all control structures and identifier names intact.
Such a disassembly will even include intact case-switch code constructs. Any
comments in the original file will have been stripped away during compilation
and will not be available in the decompilation.

Since a Java class file retains so much information about the original source
code, a market has sprung up for Java source code obfuscators. These
programs operate by looking through Java source code and replacing identifiers
(such as function and variable names) with random, unintuitive, or confusing

names. However, there is little that such obfuscators can do to make the actual
source code harder to decompile. A Java decompiler will still be able to
interpret all of the original code structures simply because the Java run-time
engine needs to be able to do the same to run a Java program.

Granted, the obfuscation can make decompiled code more difficult to interpret.
But the same techniques and programs that are used to obfuscate the code in
the first place can be subverted to partially deobfuscate the same code. In this
process, the unintuitive identifiers are replaced with random, but more logical
words. For example, replace obfuscated variable names with random animal
names and obfuscated method names with random verbs. Ideally, the list of
animal names and verbs used should be selected from the reverse engineer's
native language. The logic behind this method is that it should be easier,
psychologically, to understand source code with better identifiers.

For example, a Java source file may have a class constructor with the following
declaration:

MainClassConstructor(int width, int height);

After being run through a code obfuscator, the declaration may appear as:

_mthelse(int aQ, int v);

After deobfuscation, the method name will be replaced with a random verb and
the function parameters will be random nouns:

streamline(int sparrow, int bullDog);

Such names actually are easier to deal with than the obfuscated equivalent,
particularly since they are easier to search and replace on a global text file
level.

Conclusion

This paper has presented a rather broad overview of the equally broad topic of
software reverse engineering. The topic is still open to much research and
much potential improvement. It is something about which more programmers
need to think seriously and talk openly. There is still a whole world of
proprietary software algorithms and data structures at large that have yet to be
understood.

References

• Breaking Eggs And Making Omelettes Blog: http://multimedia.cx/eggs/

This weblog tracks various experiments related to the art of software reverse
engineering as well as its application towards multimedia techology.

• Practical Reverse Engineering: http://multimedia.cx/pre/

This page features various reverse engineering experiments such as
automated call tree generation, execution profiling, and partial automated

http://multimedia.cx/pre/
http://multimedia.cx/eggs/

Java de-obfuscation.

• Boomerang: http://boomerang.sourceforge.net/

Web site for the Boomerang project.

• IDA Pro: http://www.datarescue.com/

Web site for the IDA Pro product.

http://www.datarescue.com/
http://boomerang.sourceforge.net/

	Introduction
	Scope
	Motivation
	Alternatives To Binary Reverse Engineering
	Requirements
	Reverse Engineering Without Program Disassembly
	Example Disassembly
	Basic Reverse Engineering
	Breaking Down The Problem
	Context Analysis
	Call Trees
	Reverse Engineering By Hand
	Tracing

	Tools For Reverse Engineering
	Boomerang
	IDA PRO

	Ad-Hoc Tools
	Execution Profiling
	Automated Call Tree Generation

	Reverse Engineering Other Languages
	Conclusion
	References

